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Abstract. A microscopic theory of the mixtures of polymer chains and colloidal particles
immersed in a common solvent is developed on the basis of the RIS~I integral equation tech-

nique. The obtained general equations enable the calculation of the correlation functions and

thermodynamic characteristics of the system at an arbitrary ratio of the components. The the,

ory is used for a comprehensive study of interaction of small spherical particles with flexible

polymer chains in the regimes of weak and strong adsorption of the macromolecules on the

surface of the particles. The temperature and concentration regions characterized by different

effect of the polymer on stability of the colloidal dispersion are determined. The corresponding
temperature-concentration diagrams of state are constructed.

1. Introduction

One of the important recent trends in chemical techilology is a wide use of synthetic and

natural polymers as stabilizers for colloid systems (sols- dispersions, Inicroemulsions, micellar

solutions, etc.) [1-3j- The traditional fields of application of polymer additives are precon-

centration and dehydration of suspensions in mineral processing, purification of drinking and

~&>aste water, improvement of the filtration characteristics and structure of soil, stabilization of

lacquers, dyes, and nutritional and pharmaceutical emulsions, etc. Even very small polymer
additives can have a crucial effect on the aggregation and kinetic stability of colloids and change

their rheological characteristics. Moreover, interaction of macromolecules with colloidal parti-

cles can result in formation of thermodynamically stable structures of different types. These

structures are of considerable interest on their o~v-n. Three different structural types can be

defined, namely, colloidal liquids; colloidal aggregates, and colloidal crystals. Normally; the

colloidal liquids consist of the positively charged small counterions immersed in water and the

negati,>ely- charged colloidal particles, with the size ranging from 2-5 nm
(typical micelles) to

m~

10~
nm

(e.g., polystyrene balls). The colloidal aggregates and their growth processes are at

present being actively in,~estigated in connection with fractal structures. As for the colloidal

crystals, both natural and synthetic colloidal crvstals exist, and these systems sometimes bear

a similarity to the classical Wigner crystal.

(*)Author for correspondence (e-mail: khokhlov©polly.phys.msu.su)
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Numerous practical applications stimulate development of theoretical approaches for quan-

titative description of various processes occurring in polymer-containing colloid systems. Con-

sequently, colloid systems containing polymers have been extensively studied by several au-

thors [1-35]. Most of the theories known in the literature are based either on a classical mean-

field approximation [5-14, 21; 22, 26, 28-30j widely used in the physics of polymer solutions [36j

or on a phenomenological scaling concept [4] (see; e. g., Refs. ii 5-18, 20, 24, 25, 27. 31, 35] ). Us-

ing both approaches one can consider the behavior of the system only qualitatively. In other

words, such theories do not take into account directly the chemical structure of macromolecules

and the interaction potentials of polymer segments and colloidal particles. There are several

other theories for the interaction of colloidal particles in polymer solutions with and without

adsorbed polymer. If we assume that a pair of colloidal particles can be represented by two

parallel plates immersed in a solvent, then the simplest model of a problem of this type is a

dilute polymer solution that is confined into a thin film bet~-een t~&.o flat impenetrable surfaces.

The statistical behavior of polymer chains confined between solid surfaces has been investi-

gated by many authors [6,13,18, 37-49], mostly for diluted solutions. It has been found that

at very low polymer densities the effective interaction between the plates is of the order of the

size of the polymer coil
(m~ Rg) At moderate and high polymer densities, however, the interac-

tion between neutral plates induced by polymer chains differs from the interaction in a dilute

solution in the sense that the relevant length scale for the polymer-mediated interaction is not

the global size of the polymer coil Rg, but rather the diameter of monomeric unit. ap [50. slj.
This result was obtained first by Yethiraj and Hall [50]. In their study, they used the RISM

(reference interaction site model) theory of Curro and Schweizer [52-54] in conjunction with

the ~'growing adsorbent" model of Henderson et at. [55] and its extension to slitlike pores by
Zhou and Stell [56j, to develop an integral equation theory for hard chains placed in slitlike

pores. The theory- [50] is in good agreement with full many-molecular Monte Carlo simulation

data for the density- profiles of short hard chains (4-mers and 8-mers) at a smooth hard ~&.all-

Using the RISNI-wall theory, Schweizer et at- [57j have calculated these profiles for a system
of long chains. It was concluded [50, slj that at high chain concentrations a correct calcula-

tion of the effective potential acting between hard walls in polymer medium must be based

on a more realistic model than has been widely used [5-35, 37-42], 1.e-, on a model of poly-

mer chains that includes both the global length scales
rw

Rg and the short, monomeric length
scales op. In particular, it has been found that the force on surfaces immersed in a polymer
solution is an oscillatory function of plate separation at high polymer concentrations, with a

period of about one monomeric diameter op. Thus, to understand many of the equilibrium
properties of polymers near the surface of hard particles, it is crucial that the structure of

polymers be realistically modeled at the molecular level. A second microscopic theory which

permits the calculation of the density profiles near a hard wall is the density functional (DF)
methodology [58-61] In the last years, there have been several investigations of the behavior

of polyatomic fluids near impenetrable walls using the DF theory [60,62-68]. The weighted
DF theory of ivoodward [60, 67,68] is able to accurately predict the segment density profiles
in hard chain /hard sphere mixtures.

The effecti,>e interaction between small hard spheres in solutions containing dissolved flexible

polymer chains has been investigated by Yethiraj, Hall, and Dickman [51] using the RIShI

integral equations. The polymer molecules were modeled as freely jointed chains of hard spheres
(beads j- In this study, the simplest regime n,as considered ~&~hen no adsorption of chains occurs

on
the particles. The model therefore focuses on excluded volume effects in the system. In

the limit as the colloids become infinitely diluted, the effective potential (or potential of mean

force) between t,vo colloidal particles immersed in a polymer solution was found. In the present

paper we also use the RISM integral equation theory to study the interaction bet~v.een colloidal
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1 nm
~

Fig. I. Schematic representation of a spherical micelle (a colloidal particle) and a fragment of

chain of poly(ethylene oxide). Observance of the proportions between the particle and polymer sizes

is approximate. The drawing of micelle is based on calculations by Gruen [73].

particles and macromolecules. The general purposes of our study is:

ii to develop a microscopic theory on the basis ofthe RISM integral equations which directly
takes into account the specific structure and adsorption interactions of the species;

it) to carry out a detailed study of interaction of flexible polymer chains with colloidal

particles, aggregation processes, and properties of structures forIned under equilibrium
conditions.

The key problem of the theory of polymer-containing colloid systems is the prediction of (a)
the types of structures formed as the result of interaction of macromolecules with the particles
and (b) the regions of thermodynamic stability e. g., the temperature and concentration ranges)
of different states of the system. In this paper we solve this problem within the framework of the

theoretical approach based on the method of integral equations. We will be mainly- interested

in the consideration of the interaction of flexible polymer chains ~v.ith small spherical particles
of diameter of the order of the Kuhn segment length of a

chailj. The prototype of our model

used is the system stud.ied experimentally in great detail by Cabane and Duplessix [69-73]
using small-angle neutron scattering; namely a semidilute aqueous solution of poly(ethylene
oxide) (PEO) containing spherical micelles of sodium dodecyl sulfate (SDS) molecules. Figure I

gives a
schematic representation of both components with the indication of the corresponding

spatial sizes. In the following discussion of the model and the results we
will use both notations

'~colloidal particle" and '~micelle" on equal terms.

In the next section we remind some of the basic equations of the RISM-type theory and

derive general RISM equations for the binary system considered in the present paper. The

specification of the model and the calculational procedure are described in Section 3- In

Section 4, we present and discuss the results obtained. In Section 5, ~v.e summarize our results.
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2. Integral RISM Equations Describing Polymer-Containing Colloid Systems

First of all, let us remind the fundamentals for the RISM approach for an arbitrary one-

component svstem consisting of identical molecules (particles). We assume that each molecule

is a set of N sites. the interaction between which is characterized by the pair potentials u(r).
By an interaction site we assume an atom, a single segment (monomer) of a polymer chain, or

a colloidal particle. The potential energy of interaction between two molecules I and 2 is

N /v

U(1, 2)
=

~ ~ u~a(r), (I)

a=i d=1

where r =
(ra

r ~( is the distance between two interaction sites a and
@; ra and rp are their

position vectors; and uap(r) is the corresponding pair potential. In the general case, such

description of the system gives the possibility to use the Chandler-Andersen integral matrix

RISM equation [74j.

H(r)
=

WI jr r'( Cl jr' r"( [W(r" + pH(r" )jdr'dr". (2)

Here p is the number of molecules (particles) per unit volume; H, C, and W are the N x N

matrices combined of the intermolecular site-site total correlation functions, h(r), the corre-

sponding intermolecular direct correlation functions, c(r), and the intramolecular probability
distribution functions, w(r):

l11(r) hlN(r)

H(r)
=

,hNi(r) hNN(r)

cli (r) ON(T)

C(T)
"

,

(3)

CNi (T) CNN(T)

wit(r)
WIN(T)

l~(~)
"

,

wNi IT WNN (r

where the correlation functions hap IT), cad(r), and v,aj(r) refer to a given pair of interaction

sites a and fl lo, =1, 2,
.,

N) separated by distance r =
(ra rj(.

For a system of single-center (spherical) particles ii-e-, at N e Nd
=

I and wap(rj
=

I)
matrix equation (2) is reduced to the usual Ornstein-Zemike equation [75. 76]

h(rj
=

c(r) + p c((r r'()h(r')dr'. (4)

U~ing the sy.mbol
* as the notation for integral con,>olution gives a more convenient compact

representation of equations (2) and (4):

HIT)
=

Wlr)
*

Clr)
* WIT) + Pwlr)

*
Clr)

*
HIT), 15)

h(r)
=

c(r) + pc(r)
*

h(r)- (6)
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Returning now to the system of polymer chains and colloidal particles, let us divide the problem
into two parts. First, we must write the integral equations for each component of this system,

I. e- for polymer chains and colloidal particles, in the form allowing one to obtain their numerical

solution. Second, we must write the equation in the mixed form that takes into account the

interaction between the components at their arbitrary ratio.

It is natural to consider the colloid subsystem as a set of single-center spherical particles at

a given number density pd "
nd/~~- where nd is the number of particles in volume V. In this

case, using the subscript dd to identify the corresponding pair correlation for this component,

we have

hddirj
=

cddlr) + pdcddlr)
*

had[rj. j7j

As for the polymer component, a serious problem arises; because in this case the number

of interaction sites is usually very large (-AT e Np » I) and the initial set of coupled integral
equations (2) becomes rather cumbersome. However, in the case of regular polymers it becomes

possible to solve this problem by using some approximate description, the accuracy of which

increases with the chain length N e Np- The main idea of this approach, ihich was first

used in polymer theory by Schweizer and Curro fl7j (see also Refs. [52-54] ), is to go from

partial site-site correlation functions ha~(r), cap(r), and wap(r) to the collective (molecular)
functions. We will do the same thing, but using different derivation based on the scattering

theory-. Note that a some~v-hat similar approach has been applied by Genz et at. [78, 79j (see
also Refs. [80, 81j).

Let us rewrite equation (2) in the reciprocal q space. Then, for an arbitrary pair of interaction

sites a and fl we have

N N

la~ l~)
"

~j ~j da~ (~)i~& (qj [id3 l~) + pL&p jqjj
,

IO, fl
#

1, 2,
,

~vj, j8j

d=I ~=l

where iaj(q), dad(q), and lap(q) are the Fourier transforms of the corresponding correlation

functions; for example,
~iaa(q)

=

~~
rha~(r)sin(qr)dr. (9)

q

Now, let us recall some facts known from the scattering theory. In the experiments on scattering
of particles (e.g., neutrons) the total static sti'ucture factor 182]

1(qj
=

#(qj + ilm)(qj, (io)

is observed, where q e (4m Iii sin(fl/2) is the absolute value of the wave vector q, fl is the

scattering angle, and I is the de Broglie wave length. In equation (10), the function (l~'(q)
N

is associated with the intermolecular scattering and I(qj
=

N~~~(exp[iq(ra r~)]) is the

a-p
"intrinsic" contribution of the atoms belonging to the same N-atom molecule Ii, e., scattering

by the ideal gas of molecules j; ra and ra denote the positions of atoms a and fl on the same

molecule. By definition [82], for a homogeneous system ~v.e have

N N

~j~bab~hoplq)

@im)jqj
= °~~~~~~

,

(ii)

~~2
a

a=1
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h~p(q)
=

~~~ /~ rhap(r)sin(qr)dr- (12)
q o

Here ba is the amplitude of scattering bj; atom cx (its scattering length) and h~p(q) is the

partial structure factor of a given pair of atoms. Note that as long as the size of atom a is

smaller than the iIiverse scattering vector I /q, the q-dependence of ba can be neglected. As

can be seen from equations (9) and (12), had (q)
"

Pi~~(q)- For @(q), the well-known Debye

equation [82] is valid:

N N

~j~babp@~p(q)

dlq)
=

°~~~"~~
,

l13)

jjb2
o

a=I

'ball(q)
" ~~~j~°~, (14)

qafl

where tad is the equilibrium distance bet~v-een atoms a
and fl in a molecule. In this paper we

assume that scattering occurs from segments and all N e Np polymer segments, or monomers,

of a polymer chain are identical (bi
=

b2
= =

bN). In addition, we will assume that the

pair correlation functions between monomers do not have any angular dependencies, so that

our treatment is restricted to polymers having a coiled configuration. Thus the monomers

themselves will be considered to be spherical particles. Then, we can write

N N N N

ll~)
" &

~j ~
(doff l~) + plo81~)j ~ &

~j ~ tall(~)> lis)

a=I d=I a=I d=I

N N

@lq)
= fi

~ ~ doff lq). l16)

a=i #=i

The function ((q) is a typical example of a molecular correlation function. From the formal

point of view, this function is the result of averaging over partial contributions
(aa(q)

% @aj(q) + pi~~(qj. Note that ((q) is directly observed in an experiment, and it

is precisely via this function the main thermodynamic characteristics of the system can be

expressed (in particular, for isothermal compressibility ~v.e have: XT "
Ii /kBTp) lim ((q))-

q-o

The function @(q) is also the molecular function averaged over partial contributions i~a (q).
Taking into account equation (15), we rewrite equation (8) as

N N

Lad l~)
"

~ ~j io~ l~)t~& jqj@dfl (~) IO> fl
"

1, 2,
,

Nj. ii?)

d=I ~=i

Now let us rewrite this equation in terms of the molecular structure factors ((q) and dig). In

other words, the particular values of the individual contributions (~p(q) and da ~(q) are of no

further interest to us; the only requirement is that they give correct values of sums in equations
(15) and (16)- On the basis of the previous consideration, it is natural to suppose that in the

system of sufficieIitly long chains (Np e N » I). all the segments of which are identical, each

segment gives the same contribution to ((q) and @(q)- Therefore, we can write

ia#iq)
=

ji(qj, (18j
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ia~lq)
= j@lq). l19)

It is easy to show that substitution of equations (18) and (19) into equations (15) and (16)-
respectively, gives mathematically identical expressions. Using definitions (18) and (19),

we

rewrite equation ii?) in the form

la#iq)
=

jdlq) If ( ~Jiq)j iiq), IO, fl
=

1, 2, ,N). 120j

Next, by analogy ~v-ith equations (15) and (16) the molecular correlation functions I(q) and
/(qj

can be introduced (see also Ref. [77]):

~~~~ /2 ~ ~ ~°fl ~~~' ~~~~

~l ~l

Al~)
" p

~j ~j ?°fl l~). 122)
~l ~l

In this case we also do not consider the individual partial functions ia~(q) and doff (q) but take

into account only their averaged sums. It is these values that are closely related to the main

experimentally observed characteristic ((q)- Now, by summing equation (20) over a and fl
and using equations (21) and (22j,

we reduce the initial multicenter RISM equation (2) to a

one-dimensional integral equation

llq)
=

tblq)?lq)@lq) + NP@iq)?lq)llq). 123)

Finally, using the subscripts p and pp to identify density and correlation functions of the

polymer component and performing the inverse Fourier transform of equation (23),
we obtain:

hpp(r)
=

wpp(r)
*

cpp(r) * u,pp(r) + ppm,pp(r) *
cpp(r)

*
hpp(r), (24)

where pp =
Npp. This equation coincides with the so-called PRISM equation obtained for the

first time by Schweizer and Curro [77] on the basis of some other considerations (not related

to the scattering theory).
The change from partial correlation functions to the averaged molecular functions has a

rather clear physical sense. In fact, by doing so we assume that in the case of
a

long polymer
chain the end effects are small, inteI.nal (nonterminal) segments are all equivalent to each

other, and correlations between any arbitrary two segments belonging to the same chain (or
two different chains)

are determined only by the distance between these segments but not by
their positions in the chain (chains). Apparently, this assumption was used when we performed
averaging over all segments. One can find

a precise estimate for the inaccuracy of such an

approximation. As was sho,vn using the perturbation theory [52], the first-order correction to

the molecular functions (21) and (22) is proportional to N~~ and the expression for @(q) in

equation (23) is precise. Therefore, in the case N » I we can ignore the inaccuracy appearing

in going from equation (2) to equation (24). Thus, we have two one-dimensional integral
equations (7) and (24) that characterize behavior of the two individual components.

Our next problem is to write a system of coupled integral equations that would describe

interaction between the poly.mer component and the colloidal particles. To take into account

correlations of the "polymer-particles" type, in the general case it is necessary to introduce



550 JOURNAL DE PHYSIQUE 11 N°4

~wo additional types of total correlation functions. ,vhich will be further denoted as hdp(r)
and hpd(r)- Similarly we introduce the "mixed" direct correlation functions cdp(r) and cpd(r)-
From the complete set of correlation functions we combine the matrices

~j~~
hddiT) dplT)j

~j~~
~

cddlT) dplT)j
j~~~

~ ~j~~ ~ j~~ ~ ~j~~ ~ j~~
P PP P PP

For generality, we will use the function wdd(r); which is equal to unity everywhere in the

system considered. From the functions v,(r) and densities pd and pp we combine two diagonal
matrices

~~Tj~j
Wdd(T) 0 ~i/2 /~ °

j~~j
°

PPI~)~
° /&~

Using equations (25) and (26),
we can write the follo,ving integral matrix equation

D~/~HD~/~
=

W *
(D~/~CD~/~)

* (W + D~°HD~/~j (27)

At pd # 0 and pp # 0 we have

H=W*C*[W+DH]. (28)

Below we present the formal solution of this equation in the reciprocal q space (see also

Ref. [83])

lad
= )@dd lddd Ii ppipptpp) + pp?dpippdpdl @dd, 129al

~Pd l'~pp~Pdl~dd, (~~~)

~dp
"

~dd~dpfbpp>
(~~C)

lpp
= )lbpp I?pp Ii pddddAdd) + pddpd@dd?dpl ~bpp. 129d)

where the detei'minant of system (28) is

/~
=

Ii Pd#dddddi Ii ppippdpp) pdppdddddp@pptpd. 130)

One can get the actual solution if the relation, c(r)
=

~7[h(r), u(r)], between the direct cor-

relation functions c(r), the total correlation functions h(r), and the pair site-site potentials
i~(r) is given. Several such closure relations are known [75,76]. Substitution of the Fourier

transform (c(r) ~ i(q)) of these relations into equations (29) and (30) gives the closed system
of integral equations with respect to the set of the total pair correlation functions of interest

Ii-e-- (hij(r); I,
=

d,p)). For example, the Percus-Yevick closure [75, 76] gives

~" ~~~~~~~ ~ ~~
ij~~~~~

1' ~~'~ ~'~~ ~~~~

where fij(r)
= exp (-uij(r) /kBT) I is the Mayer function. As can be seen, using equation

(31) or similar relations le. g-, those corresponding to the hypernetted chain approximation)
leads to the system of nonlinear integral equations, which, in the general case; can be solved

only numerically. The macroscopic parameters ii. e., temperature T and densities pd and pp),
interaction potentials udd> upp, and udp " upd> and unimolecular correlation function wpp(r),

which takes into account the structural characteristics of
a single polymer chain ii- e., its length

Np and geometric and conformational parameters)- must be given as well.
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3. Model of the System and Method of Calculation

Let us consider the colloidal particles as mutually impenetrable hard spheres of diameter ad

and assume that volume l~ contains nd Particles at average number density pd " nd IV ii- e.,

at volume fraction of the particles 4ld "lra(pd/6)-
Each macromolecule is modeled as a freely jointed chain consisting of a given number Np

of segments linked by Np I bonds of fixed length t. Note that in a freely jointed chain each

segment is equivalent to a statistical Kuhn segment. The segment diameter is op. In the

following discussion all lengths are given in the units of op. The main parameter in our

calculations is the a,,erage density of polymer segments in the system pp (or their volume

fraction Alp =
ma(pp/6). The relation between the amounts of segments alid particles is

defined as pp /pd.
We do not directly account for the low-molecular solvent (liquid medium). It is assumed

that the presence of the solvent manifests itself only indirectly by affecting the interactions of

the colloidal and polymer components of the system. In fact, such a consideration implies the

absence of any specific interactions with participation of the solvent molecules and description
of the solvent as a continuous medium (which is justified when the size of the corresponding

molecules as is much less than ad and ap Note that the direct account for the solvent molecules

presents no difficulties in the RISM theory; ho~v-ever, the final equations are cumbersome and

their numerical analysis becomes rather complicated.
To formulate the model, it is necessary to choose the particle-particle, polymer-polymer,

and particle-polymer interaction potentials, udd upp, and udp. Although the theory of integral
equations does not constrain the choice of the type of the functions udd> upp, and ~dp, in this

work we restrict our consideration to the potentials of the simplest types, which, however,

account for the most substantial features of real systems. As udd and upp we take the simplest
hard-sphere potentials

~~ ~(~j
=

°~' ~~ T ~ ~d
~ j~,j

CC> l~ T ~ ~P (3~j
0, if

r > ad
~~ 0, if

r > ap '

where r is the distance between the corresponding sites. Interaction of the polymer segments
with the colloidal particles is described by the potential of the type hard sphere + rectangular
well

cc, if
r < adp

udp(r)
= edp, if adp < r < adp + ih (33)

0, if r >adp+ih,

where adp "
lad + ap) /2; /h is the width of the potential well (or the radius of action of the

potential): and edp is the energy parameter that accounts for the adsorption effects.

Let us give some comments to the set of the parameters chosen. The approximation used for

udd corresponds to the limiting case when the effective Hamaker constant, which characterizes

the van der Waals interaction of the particles, is disregarded. In practice, such a situation occurs

for example for ionic micelles or for ion-stabilized dispersions when repulsion of double electrical

layers prevails. In these cases the pure colloidal dispersion itself (without any additives) is

always stable. In other words, the second virial coefficient

Bdd 27r £°° Ii exP "iil~ r~dr> 134)

which completely determines the behavior of the pure colloid system at small pd -~
0, takes

only positive values. In our model, the condition Bpp > 0, where Bpp is written by analogy-
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with equation (34), is always fulfilled for the pure polymer component as well. In the theory
of polymer solutions [36], this condition corresponds to a thermodynamically good solvent

quite compatible with a given polymer. Because it is the values Bdd and Bpp that characterize

equilibrium properties of the individual components, one can assume that the particular type of

the potential is not essential in solving the general questions formulated above. It is reasonable

also to consider the values Bdd and Bpp as fixed parameters that describe the interactions not

in vacuum but in a given solvent. Similar consideration is true for the adsorption potential

udpl the important features in this case are also not the particular type of the potential or the

specific values of the parameters edp and ih but the sign and value of the corresponding virial

coefficient Bdp. Apparently, unlike Bdd or Bpp, at edp # 0 and ih > 0 the virial coefficient

Bdp is temperature dependent. The only reasonable restriction to udp is that the adsorption
potential must be a short-range one (ih

rw

ap). In our calculations the width of the adsorption
well ih is taken equal to the radius of a polymer segment (ih

= ap /2) and the well depth is

edp "
-I (in units of kBT)-

The relation between the characteristic sizes ad and ap is of vital importance. Usually,
the simplest limiting case ad lap ~ cc is considered in the theories of polymer-containing
dispersions, i.e., it is assumed that macromolecules are found in the gap bet~v.een two plane-
parallel plates that model the surface of colloidal particles [6,13,18, 37-49]. The situation

when ad and ap are comparable is much more complicated. However, this case is closer to

reality. We find estimations for the values ad and ap using the results of reference [69], where

adsorption of PEO on ionic micelles of sodium dodecyl sulfate is studied. The average size of

the micelles is about 2 nm.
To avoid the complications of the problem of micelle formation and

of their equilibrium size and shape, we discuss polymer adsorption on solid spheres of given
diameter. The typical size of the statistical segment of flexible polymers (including PEO) is

about I nm- Because in our case a segment of a macromolecule is equivalent to the statistical

segment, we assume that ad lap
=

2- From similar considerations, the bond length of a model

chain is taken equal to t
= op. Figure I gives a scheniatic representation of the real analog of

the model considered in the present paper.

For
a mixture of macromolecules and colloidal particles we have the integral matrix equation

(27); where wdd "
I and the intrachain correlation function wpp(r) describes the specific

features of a particular model. In the case of identity of all segments, this function takes

the form

Np Np

~PPIT)
"

) ~j ~j ~O~IT) 135)
P a=I ~=i

where wad(r) is given by [84, 85]

wa~(r)
=

dir r~~)/41rr(p. (36)

Here ra~ =
(ra rp and dir) is the Dirac delta function. In the reciprocal q space the Fourier

transform of wa~(r) gives lap
=

sin(qra~) /qra~. For a freely jointed chain with a fixed bond

length, t, considered here (~ ), we have: rap =
ii (o 3( )~" Then, summation over the indices

(~) In the literature. the term freely jointed chain is sometimes used to describe a
random-flight chain

in which each bond has a constant length (neglecting the deviation of the length of a bond from its

mean value due to atomic vibrations) (see Ref. [85], page 11). Here we use the term freely jointed
chain as Flory does [Flory P-J-, Statistical Mechanics of Chain Molecules (New ~~ork, Interscience

Publishers, J-Wiley & Sons, 1969) chap. 8].
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o and fl of the individual intrachain contributions clap(q) gives [84, 85]

@p~(qj
=

~~ 2@Npi (I @'~P

~~ ~)~ '

(37)

where I
=

sin(qt)/qt- The inverse Fourier transform of @pp(q) gives wpp(r). Using this

function and the Percus-~'evick closure (see Eq- (31)) we have a closed set of coupled nonlinear

integral equations (27) with respect to hdd(r), hdp(r)
=

hp~l(r), and hpp(r). These functions

completely define the pair radial densitv distribution functions of the colloidal particles or

polymer segments, gij(r)
=

ho (r) I-

Let us give some comments to the approximations and assumptions adopted in our study:

(I) The use of equation (37) for the intramolecular pair correlation function corresponds to

the assumption that intramolecular excluded volume effects can be ignored on all length scales.

This assumption is in-line with the so-called ideality principle of Flory [36] which states that for

flexible-chain polymers in the melt the equilibrium chain configuration is determined only by
intrachain short-range effects, I-e., the intrachain and interchain excluded volume interactions

effectively cancel. The use of the ideal form (37) for lpp(q) is a crucial step in our treatment,
because it decouples the intramolecular and intermolecular correlations and affords a great sim-

plification in the implementation of the RISM theory since the £lpp function can be obtained

separately without having to calculate it in a self-consistent manner with the intermolecular

correlations. On the other hand, the information on the single polymer behavior while inter,

acting with other molecules, is lost. Strictly speaking, the kind of factorization adopted here

for the intra- and intermolecular correlations in diluted and moderately concentrated polymer
solutions may be justified in the case ~v-hen the temperature T is taken as very close to the

one producing the collapse transition of the chain, and it is assumed to be slightly; higher than

the H-temperature of the polymer/solvent pair, i.e., IT H) IT > 0. The same situation may

be realized by suitable choice of a single (or mixed) solvent for a given polj-mer. In this case,

the coupled problem of intrachain and interchain correlations is simplified by constructing the

single-polymer form factor, @pp(q), separately, taking the influence of other chains and of

colloidal particles into account in an approximate way-. It should be noted that the general
RISM theory of the structure of flexible molecules in condensed phases has been developed

by Chandler et at. [86-89], who ha,+ introduced an
effecti,>e self-consistent solvation potential

such that the equilibrium conformation of a single solute molecule in its own internal poten-

tial plus this solvation potential is approximately the same as the conformation of the same

molecule surrounded by sol,int molecules in full many.-molecular system. The generalization
of the polymer RISM approach to self-consistently determined intrachain and interchain pair

correlation functions has also been initiated (see- for example, Refs. [53, 54, 90-95]), but this is

still a very difficult task. Among the difficulties appearing here the following ones are the most

serious. First. medium-induced t~v.o-site solvation potentials (the ~'hypernetted-chain-style"
soli-ation potential [88, 89] and the "Percus-~~evick-style" solvation potential [92]) proposed

in the literature are approximate only. Second, in the case of polyatomic molecules, there is

the deviation from pairwise additivity for the total N-site intramolecular solvent-mediated

potential of mean force [86-89, 92]- Taking into account these difficulties, we decouple the

intramolecular and intermolecular correlations. Thus; in the framework of the approximation

used in the present paper, the theory loses its self-consistency; but, as the problem is very

complex, this approximation is considered to be an appropriate starting point. The results

obtained on the basis of the self-consistent formulation of the polymer-RISM integral theory
for polymer-containing colloid systems ~v.ill be considered in a separate publication [96j.
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iii) In order to sol,>e the RISM equation (27) we employ the atomic Percus-~~e,>ick (PYj
closure (31j. This site-site closure is perhaps the most widely used for systems consisting of

unconnected atoms [75, 76j. Also there are other closure relations, such as mean spherical ap-

proximation (MSA), hypemetted chain approximation (HNC), etc. Atomic-like closures have

been found [75, 76, 97] to yield quite good results for homogeneous systems without attractive

interactions between chain beads or with relatively short ranged, weak attractions. Recently,
however, it has been- argued [98, 99] that the attempts to use the atomic site-site closures to

describe the molecular ~v~eight dependence of the critical solution temperature of binary poly-

mer blends give results which are inconsistent ~v.ith classical mean-field predictions [36] and

experiInental data. Further, it has been found that all the standard RISM approximations

have no correct limiting form at low density limit [100]. Two types of approaches have been

proposed in order to overcome these difficulties. One is the so-called RISM-2 theory based

on the method of functional Tayler expansion [101,102], which is analogous to the method for

simple fluids. Another is the formulation of
ne~v-

'-molecular" closures [53, 54, 98, 99], which are

apparently correct some of the deficiencies of the standard RISM theory. These closures predict

a linear dependence of the critical temperature as a function of the degree of polymerization,
in agreement with classical mean field theory 136] and computer simulations. The construction

of the RIShf-2 theory and the molecular closures is not based on the site-site correlation func-

tions, but on the two-molecule counterpart 153, 54,98,99;101,102]. It should be noted. however,

that the "usual" closure relations (PY, HNC, MSA) give often quite reasonable results. For

instance. Yethiraj and Hall [50] studied the adsorption of hard chains in slitlike pores ma the

wall-polymer-RISh/I theory in,vhich the wall-poly.mer and polymer-polymer correlations,,;ere

treated using the site-site PY closure relations; it was shown that the theory predicts fairly
accurately the partition coefficient and the adsorption isotherms for polymer chains. The same

approach was successfully used by Yethiraj, Hall. and Dickman [51] to determine the potential
of mean force between two small colloidal particles immersed in a polymer solution. Recently,

Gromuv and de Pablo [103] used the RISM theory to predict the structure of binary polymer
blends. In this ~tudy, theoretical radial distribution functions g(r) were compared to those

obtained from many- molecular Monte Carlo simulations of mixtures of Lennard-Jones chains.

For the sj-stems of attractive polymer chains Gromov and de Pablo did not find a significant
difference between the results obtained with molecular and atomic closures. (Note, ho~v.ever,

that such differences could become noticeable at temperatures below those in,~estigated in

their work. Bearing in mind the facts presented abo;e and taking into consideration that the

search of the ~'most accurate" molecular closures remain~ a topical problem [53, 54], we prefer
to use the ~'usual" PY crosure relation (31). It ~eems that this approximation will gi,>e quite
acceptable -results when the temperature is not too loi-

The calculations were performed by iterations using the algorithm described previously in

references [104] and [105]- In this algorithm, the Newton-Raphson scheme is combined,vith

the relaxation method. The solution was found in the distance range from 0 to 51.2ap. The

convolution integrals needed were evaluated ma fast Fourier transform (FFT) techniques on a

grid of L
=

2~° point,s equally spaced of ihr
=

51.2ap IL. The relative accuracy of convergence
of the iteration procedure was not lower than 10~~ When this accuracy ~v.as not achieved, ~v.e

assumed t,hat no solution existed under the given conditions.

4. Results of Calculations and their Discussion

4.I. CHARACTERISTICS OF THE INDIVIDUAL COMPONENTS. The aim of this suhsection

is to relate the spatial sizes of our model system to the real s,~stem studied by Cabane and

Duplessix [69].
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Fig. 2. Static structure factor of a one-component system of colloidal particles at
different densities.

The value of q is given in units of flap, where ap is a characteristic size of the statistical segment
(»,hich in our case coincides with a chain segment) of a polymer chain. Diameter of a spherical particle
is 2ap. Interaction of colloidal particles is described by the hard-sphere potential.

One of the main characteristics observed in experiments on light or neutron scattering is

the static structure factor ((q). In the case of scattering by point centers (spherical particles)

,ve have: ((q)
=

I + pi(q), where I(q) is the Fourier transform of the total correlation function,
and r is the average number density of scattering centers.

Figure 2 presents the function idd(q) calculated for a one-component system of colloidal

particles at different densities pd. As can be seen, at sufficiently large pd (,vhen the ,>olume
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fraction 4ld 2 0.I) the structure factor has an oscillating character typical for dense fluids.

Let us compare the results of calculation with the experimental data on the properties of a

micellar system without polymer additives. In reference [69], the parameter a(pd
was about

rw

10~~ Comparison of the structure factor obtained in reference [69] with the one calculated at

a( pd "
0.16 (pd

"
0-02 shows that both functions are in general close to each other. The excep-

tion is the region of small q rw
0- In this region, the experiment [69] gives smaller values for (dd.

This can be explained by the presence, in the real system; of the electrostatic forces of inter-

micellar repulsiun, which reduce the compressibility of the system XT =
Ii /kBTpd) lim (dd(q).

g-o
We do not take into account this interaction in order to simplify interpretation of the results.

In addition to this, as is mentioned in reference [69], for the system studied the electrostatic

repulsion is not sufficiently strong to form ordered array of micelles- In fact, micelles can move

sufficiently freely and the first maximum of the function (dd(q) at q = qi is not a small-angle
Bragg peak but a usual liquid structure peak characterizing statistical local order. In our

model, the origin ~of the first peak of the structure factor is the same. According to refer-

ence [69], average intermicellar distance, (r)
=

21r/qi> is about lo nm or re 2.sad. Calculations

at pd "
0.01- 0.02 give approximately the same estimate for (r)- The results discussed in the

following subsections are obtained at pd "
0.02.

Figure 3 presents the correlation functions (pp(q) and gpp(r) for -the individual polymer
component at the number of segments in a chain Np

=
1000. Note that in the case when

scattering centers are linked in a chain we have: (pp(q)
=

@pp(q) + ppipp(q), ,vhere @pp(q)
plays the role of a form factor that characterizes scattering by segments of a single chain (~).
Apparently, as folluws from equation (37), (pp ~ Np at pp ~ 0 and q ~ 0.

Let us consider first the pair correlation function gpp jr ). As can be seen, in a sufficiently large
interval of the interchain distances, r, this function is considerably less than unity. Decrease

in gpp(r) at small values of
r can be explained by mutual repulsion of the parts of chains in

thermodynamically good sol,>ent. The characteristic length, (, of the function gpp(r), which

determines the scale of correlation effects, decreases with the increase in pp. However, at all pp
considered here the value of ( remains large enough. Such

a behavior is typical for semidilute

polymer solutions [4j. ~

It is convenient to use double-logarithmic coordinates for the analysis of the polymer function

Spp (q). As follows from comparison of Figures 2 and 3, even at maximum volume fraction of seg-

ments studied here (Alp =
0A19) the reduced isothermal compressibility x*

=
kBTpxT %

((0)
observed for the polymer system is considerably higher than that for the system of particles.

This fact is connected with the possibility of interpenetrating of polymer coils. Also note that

application of RISM theory to dense polymer systems tends to gi;e predictions for x* which are

too high [53, 54j- This is due in part to the fact that intramolecular chain overlap is allowed in

the freely jointed chain correlation function (37). As a result, the effective packing fraction of

chain beads is smaller than in the <real system. This deficiency can be approximately corrected

by artificially using higher polymer densities to increase the efferti,>e volume fraction of chain

segments [84j. For the freely jointed chains the resulting effective mean monomer packing
fraction is Alp =

(1r/6)a(pp ii ~tN)> where ~t~ re 0.22 is the fractional o,,erlap volume [84].

At very small pp, the dominant contribution to fipp(q) is the intramolecular form factor

@pp(q), which behaves as
dpp(q)

oc q~ at small q (see Eq. (37)). With pp increasing, the

dependence of (pp(q)
on q becomes weaker because of strengthening of intermolecular inter-

actions. In this case we obtain a region of q, for which the power law (pp(q)
oc q~~ is ,>alid,

(~) It should be noted that the static structure factor for monomers is sometimes defined as

@jq)
=

i + pijqjli~jqj.
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q~~ ~
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where x is close to 1.7. To evaluate the characteristic scale, i.e., the radius of correlations of

density fluctuations, (, we use the well-known relation [75, 76]

or
I/((q)

=
a

+
bq~,

~i~here a = 1/x* and b = a(~. Figure 4 presents

dependencies of I/(pp(q) on q~ at small q (the so-called Guinier plot). In this figure we

ndicate
the ,>alues off obtained for selected by

east
squares fitting of the linear

parts

of the curves. he calculations show
that ( is a

decreasing
function
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the correlation ength f
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4.2. HIGH-TEMPERATURE LiAiiT. For the binary system under consideration the simplest
is the regime when no adsorption of chains occurs on the colloidal particles. This athermat

regime corresponds to the condition edp "
0 or T ~ cc. Description of properties at such

idealized conditions forms the basis for the following understanding of more complicated situ-

ations.

Figure 5 presents the correlation functions for the subsystem of colloidal particles at different

number densities of the polymer component. As can be seen, the presence of even a small

amount of polymer affects drastically spatial distribution of colloidal particles. Analysis of

the function gdd(r) sho~v.s that with pp increasing the main tendency is structurization of the

colloid subsyitem. The particles are pushed out of the regions occupied by chains, which

results in growth of density fluctuations and increase of the contact values gdd lad at r = ad

and the ,~alues of gdd (r) at small interparticle distances. In the case pp / 0.8, even at the small

density pd considered here the colloidal particles start to form a liquid-like structure with

the intensive first peak of the function gdd(r) and the secondary maximum at r re 2ad. At

small q, the function (dd(q) shows non-trivial beha,~ior. As follows from Figure 5, the reduced

compressibility-, X* %
(dd(0), increases drastically with pp from (dd(0) < 1 to (dd(0) > 1;

however, with the following increase in pp the function (dd(0) decreases gradually. Figure 6

gives a good illustration of such a nonmonotonic dependence of the reduced compressibility.
Note that the condition (dd(0j

=
1 is fulfilled for the model under consideration at some

threshold value pp re 0.015.

The value of (dd(0) is closely related to the characteristics of the effective Ii. e., mediated by
the polymer medium) interparticle interaction. By analogy with definition of the second virial

coefficient B (which characterizes the bare potential ~(r)), let us write the expression for the

effective virial coefficient:

©Q ~fij
B*

-
2iT Ii exP

ii
r~dr. 139)

Here ~fi(r) is the potential of mean force, which is defined as

lbirj
=

-kBT Injgirjj. 140j

From equations (39) and (40), we have

B*
=

-21r
/ h(r)r~dr

=

~i(0). (41)
~

2

At B* > 0 the repulsive interaction prevails under the given conditions; at B* < 0 the effective

attraction dominates; and at B*
=

0 (or ((0)
=

1) the balance of the attractive and repulsive

forces is established (I.e., this is an isopoint) and the system behaves as I quasiideat one. Let

us clarify the term "quasiideality". For an ideal system of noninteracting nonbonded particles

we have: ((q)
=

I at any q. In the presence of interactions, heterogeneities (at least local) of

density distribution al,vays exist. In this case the system can be considered as a quasiideat one

if under the given conditions its large-scale properties (in particular, compressibility) coincide

with similar characteristics of the reference ideal system.
As follows from Figure 6, in the athermal regime there is a considerable effective attraction

hetween the particles in a wide range of pp. Such a beha,~ior is due to steric Ii-e-, entropic)
factors only. A detailed qualitative analysis of the obser,+d effects is gi,+n by de Gennes for a

lattice model [4]. According to reference 14], in the limit of large pp at pd ~ 0 and Np ~ cc

we mu~t have: B]~ ~ 0 or
(dd(0)

~ l. This i~ explained by a complete screening of the bare
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Fig. 5. Correlation functions for a subsystem of colloidal particles in the binary system of the

particles and polymer chains at different densities of polymer segments. The calculations correspond to

the high-temperature limit. All interactions in the system are described by the hard-sphere potential.

Particle density is pd =
0.02. Chain length is Np =1000.

potential udd by long polymer chains in an extremely dense (incompressible and defect-free)

polymer matrix. Our results shown in Figure 6 confirm this conclusion. Really, at large pp there

is a
well-pronounced tendency for (dd(0) to approach I, I.e., the transition to the quasiideal

conditions is observed. Not>e that for the system studied the quasiideal conditions are realized

in two cases: at low values of pp and in the limit of large pp. In the following discussion we

will use the superscript "o" to identify the values of the parameters at the isopoint.
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4.3. iVEAK ADSORPTION. At fixed value of the parameter edp "
-I the intensity of

adsorption is regulated by temperature (~). Figures 7 and 8 give examples of calculated pair
correlation functions gij jr ). ~i~here I, j

=
d, p. As can be seen from Figure 7, with temperature

T decreasing (I.e., adsorption increasing) the function gdd(r) diminishes in the region of small

interparticle distances
r

and simultaneously begins to gro~v. at r m 3.5 forming a distinct

maximum at this point. We can say that decrease in T results in the transfer of the first high-
temperature maximum to the second peak lying at larger distances. Such behavior indicates

that when adsorptional sticking to chains occurs the particles draw apart and the corresponding
distances redistribute in space so that the uptimum en,:ironment of the particles arranged by

the redistribution of a polymer component is achieved.

The function gdp IT takes its maximum ,~alue in the region of the potential well 11.5 < r < 2 ).
~v-here it is nearly constant. and quickly increases in this interval of

r
with T decreasing. The

origin of the second maximum of gdp(r) at r m 2.5 can be explained by the fact that a segment
sticked to the surface of a colloidal particle attracts the neighboring segment of the same chain

(~) The temperature, T, is measured in units of kBT/(edp(.
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ll~l~l~.

(the sum of the corresponding distances is i' = a~i /2 + ap /2 +1
=

2.5).
With pp increasing, at constant temperature and density pd the function gdd(r) undergoes

the evolution (see Fig. 8) that reminds the temperature changes (see Fig. ii. At the same

time, the correlation function gp~ jr does not exhibit any qualitatively new properties.

Let us no~v. consider the temperature dependence of (ii (0) and B( ii, j
=

d.p). Figures 9

and 10 gi,;e some typical examples of these dependencies. As can
b~

seen, in both cases the
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=
ll~l~l~. The function gpp(r) has a weakly pronounced break at

r =
2ap, which is due to the intramolecular structure of the chain.

beha,~ior of the functions of the dd and pp types is nonmonotonic: there is a slow decrease

(increase) at high T and a sharp growth (drup) at lo~v. T. On the other hand, with decrease in

temperature the effective virial coefficient B]~ always decreases showing rather quick transition

from positive to negative values. This indicates strengthening of the adsorption effects. In the
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=
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nent at particle density pd =
0.02 and chain length Np

=
1000. For better visualization the logarithmic

scale is used for temperature.

presents the results of the detailed calculation; given in double-logarithmic coordinates for

better visualization. The curves of Figure i la (the upper one
ii) and the lo,ver one (2)) define

the pairs of values T/, p[ or T(, p[, respectively, I.e., these curves describe the upper and lower

isopoints.

At temperatures between curves i and 2, there is a wide region, A, characterized by small

compressibility of the subsystem of colloidal particles ((dd(0) < il. In this region; the repulsive
forces prevail in the effective interaction of the particles. We can call this region "the region
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weak (moderate) adsorption. jai The curves of quasiideal behavior. In the region A the partial
compresqibility is ,* < I: above curve I and belo~v curve 2, x" > i. (b) The subregion S of the

increased stability of the colloidal component. On the boundaries of this subregion (curves i and 2)
x* is the same as for a one-component system of particles. Particle density is pd =

0.02; chain length
Np

=
1000. At pp < 0.05 and pp > 0.8 the dependencies ~vere not calculated.

of stable stated'. At high densities pp, I. e., in the case
of polymer melt, the region A infinitely

expands up to T
=

T/ ~ m and spreads do~N.n to the point T
=

T) ~ 0. At low densities

pp, the situation is different. At pp less than some threshold value pp =

p/~ (p/~
m 0.015

at pp =
0.02) an unlimited expansion of the region of stable states is observed. Note that
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the threshold value pi~ does not depend on the particle density pp in the system. In the

lo~N.er part of the diagram shown in Figure ha there must be also a threshold value pp =

p/~
corresponding to T( ~ 0. We can say that p/~ < pi~ at finite pd. Although the detailed

analysis of the limiting case pd ~ 0 is possible within the frame,vork of the RISM theory [sij,
we will not consider the corresponding questions in this paper.

In addition to the region A, ~v.e have in the diagram of states of Figure i la two more regions
corresponding to temperatures above curve i or belo~N. curve 2. In these regions, compressibility

of the system is more than unity and, therefore, is considerably higher than in the absence of

polymer additives. In these regions, B]~ is negative, I.c., under these conditions the addition

of a polymer results in the effective mutual attraction of the colloidal particles. Therefore, in

the binary system the particles show a tendency to aggregation.
It is necessary to note the following two circumstances related to the problem of aggregation

stability. First, the characteristics discussed here give only an indirect information about

aggregation of the particles and reveal only general tendencies of this process. For a more

complete description, the direct calculation of average aggregate sizes is necessary. Second, at

the conditions under consideration, the binary system always remains a single-phase one, I.c.,
it is stable at macroscopic scale. In other words, there is no large-scale inhomogeneities of

the component distribution in the system. However, as is shown in the following subsections,

the situations ,vith large-scale fluctuations of density of the colloidal particles
or with the

formation of partially ordered quasiregular structure are possible as well.

Inside the region of stable states A we can locate a special subregion of "absolute stability"
(the subregion S in Fig. i16 ), ~N.here compressibility of the colloidal component is lower than

the one observed at the same value of pd for the system of individual particles ii. c.; without

polymer additives). An indication to the existence of such states follo~v.s; in particular, from

comparison of the values of (dd(0) at the minimum of the temperature dependence (see Fig. 9)
and the values of (dd(q) characterizing the individual component at q r~

0 (see Fig. 2).
Two temperatures (the upper T

=

T) and the lower T
=

T)) correspond to each density

pp =
p( belonging to the subregion S. The pairs of values T), p( and T), p( define the two

curves
(the upper one

ii and the lower one (2)) that are the boundaries of the subregion S

of the state diagram (see Fig. lib). On the boundaries of the subregion S compressibility of

the subsystem of colloidal particles coincides with compressibility of the pure colloid system;
inside the subregion S the compressibility- is lower. This region of the parameters T and pp lies

close to the lower curve of the quasiideal behavior (curve 2 of Fig. ha). One can say that,

in the case of weak (or moderate) adsorption, the polymer additives increase the aggregation
stability in the subregion S, I. c., the polymer plays the role of a stabilizer of the dispersion. The

detailed discussion of the problems connected with the stabilizing action of macromolecules is

the subject of a special publication.

4.4. STRONG ADSORPTION. At low temperatures belonging to the region of T < T( con-

siderable structural changes occur. The correlation functions g(r) presented in Figures 12 and

13 indicate these changes. The example given in Figure 12 sho,vs that the function gdd(r) is

characterized by qualitati,~ely new features, as compared to the case of weak adsorption (see
Fig. 7). The main peculiarity is the appearance of the regime typical for the system in the

vicinity of critical conditions. In this regime we observe not usual quickly damped oscillations

but long tails of the function gdd(r). At large r, the asymptotic decrease of these tails can be

described by the Ornstein-Zernike relation [75,106]

g(r) i oc
e~"/~, (42)

r



568 JOURNAL DE PHYSIQUE II N°4

22

N~=1000 p~#0 8 ml

~ j .' N~=I p ~#0 02 o#2

. a~=15 E~=I A#05

2 0

/+l~
tit

/

10

T

08 -15

----14

......13
°6

~
04

0 2

5 10 15 20 25 30

r
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adsorption of macromolecules at three different temperatures. The particle and segment densities are
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=

1000. Note the presence of long tails of the correlation function and

its specific features at small distances.

which is directly associated with equation (38). The fact that the long-range correlations of

the characteristic scale (
r~

10 are present in the system indicates a direct analogy with the

critical behavior (the process of colloidal aggregation or "condensation").

The nontrivial changes in the density distribution of polymer segments should be mentioned

as well. If density pp is not too high, then at sufficiently low temperatures the pair correlation

function gpp jr differs drastically from the typical one for a system of chains in a good solvent

(I.c., in the case when the repulsive forces between the segments prevail). As follows from the

example presented in Figure 13, in a narrow temperature inter,~al the pair correlation function

gpp(r) changes its behavior from the curve increasing monotonically from gpp(ap) to i to the

curve with a maximum and a long tail slowly decreasing to i. Note that such a transition is

observed only at sufficiently low concentrations of the polymer.

Now let us
consider behavior of the (dd(q) function in the region of strong adsorption. It

is ~N.ell-kno,vn that the scattering at the low q limit diverges not only at the critical point

but also at each point of the spinodal curve.
At pd "

const. the particular conditions for the
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at three different temperatures. The particle and segment densities are 0.02 and 0.3, respectively;
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=
1000. At T < 2.24 the correlation function shows an abnormal behavior in the region of

r m 20.

Under these conditions, the effective attraction of segments prevails (B]~ < 0), 1-e-, the chains are

found in a thermodynamically poor solvent.

colloidal component are achieved at some values of the parameters T
=

T* and pp =
p[, which

define the spinodal line of
a phase separation. At these points we must have a singularity in

compressibility XT of the given subsystem. We have already noted quick increase of the reduced

compressibility (dd(0) when crossing the lower cur,~e of quasiideality (see Fig. 9). Now it is

necessary to perform calculations at lower temperatures, for ,vhich (dd (0) ~ m. Unfortunately,
it is rather difficult to solve the integral equations in the vicinity of T*. Therefore, we used

extrapolation to the limiting case
i/(dd(0)

~ 0. Figure 14 presents the results of calculations

for some values of pp. As
can be seen, at pp / 0.6 the points calculated for

our model fall

on a straight line in the coordinates I/(dd(0) T. This fact provides reliable estimates for

T*. However, at lower pp deviations from the straight line occur and the estimates of T* were
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obtained using more complex regression equations, and are less reliable. At pp < 0.08 we

failed to find an estimate for T*. Figure IS presents the temperatures T* plotted against the

corresponding densities p[. For better visualization we use double-logarithmic ~oordinates.

The line passing through the calculated points is the spinodal curve of the state diagram of

the subsystem of the colloidal particles. At temperatures above the spinodal curve, the volume

distribution of particles is rather uniform. At T < T* condensation of particles occurs. This

process must be accompanied by appearance of large aggregates l'~drops" of the liquid phase).
In the vicinity of the spinodal curve the liquid-like and gas-like phases coexist ~N.ith each other.

We failed to calculate the spinodal curve in the region of,~ery small polymer concentrations.

However, one can assume that the temperature T* must decrease monotonically with the

decrease of the polymer content in the system. Really, for the same effect to be achie,~ed the

loss in the number of adsorption contacts (which causes condensation) in the region of small

pp can be compensated only by the increase in intensity of contacts. In addition to this, it

is evident that T* ~ 0 at pp ~ 0j this means that at infinitely small polymer concentration

infinitel; large influence on the particles is necessary to achieve any effect. Note also that T*

must, drop to zero in the liInit of large pp at Np ~ m.
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4.5. AGGREGATION MECHANISM. A considerable body of literature exists relating to the

interaction of polymers ,vith a
flat infinite surface and the interaction between solid surfaces

in the presence of polymer solution (see, c.g., Refs. Ii;13,18. 20, 37-49,107]). It has been

sho,vn that in an
athermal system at pp < i and adlap ~ m the resulting osmotic pres-

sure AH (which is the difference of the pressure in the gap between the t~N.o surfaces and

the pressure on the external surfaces) has the asymptotic: /hH ~ +0 at r~id ~ m and

~hII ~ -kBTpp/Np at rdd ~ 0, where rdd is the distance between the two surfaces. As a

result, we have at small rddi ~hH < 0, I-c-, under the external pressure the particles stick

together. In other words, the polymer mediated surface-surface interaction is attractive. This

"steric" aggregation mechanism is universal, I.e. ;alid both for high and low temperatures, as

~N.ell as
for infinite surfaces and for small colloidal particles. The physical reason is that the

polymer chains are ousted from the gap bet~N.een the particles creating the osmotic pressure

difference between this gap and external solution. In the last case, however, the aggregation
tendency is weak and does not lead to phase separation. Note that at large pp r~

i, ~N.hen the
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solvent (or free volume) is absent in the system, approach of the surfaces (or particles) to each

other gives no gain in free energy.

Adsorption can have a considerable effect as well [15,25,45,107]. At strong adsorption, the

energy contribution has a dominant role, because the chain fragments found in the gap between

the two surfaces (or colloidal particles) play the role of bridges. If the characteristic sizes ad and

ap are comparable then the role of this energy contribution becomes less important. However,

at lo~N. temperatures it is the main reason of intensive aggregation of particles. In addition, one

could mention another mechanism of aggregation, ,vhere particles with saturated adsorption
layers would be connected to each other through excess particles. This mechanism has been

discussed by Alexander [15] in the context of polymer adsorption onto micelles.

Thus, in the case of strong adsorption the theory predicts that the polymer additives cause

sharp strengthening of aggregation processes. In a real system this must result in flocculation.

I.c., in the appearance of macroscopic regions rich in colloidal particles. Under such conditions

each particle is covered with a dense polymer )aver and bridging fragments of chains provide
sticking of separate particles to each other.

4.6. ORDERED STRUCTURES. As is mentioned above, the first maximum of the structure

factor (dd(q) (see Figs. 2 and 5) characterizes usual (statistical) order arising from almost ran-

dom collisions of particles. This behavior is typical for a wide region of parameters. However,

it turns out that the conditions are possible, under which both components form well-ordered

quasiregular structures, the scattering functions of which are characterized by some special
features.

Let us follow the temperature evolution of the structure factors presented in Figure 16. At

high temperatures these functions exhibit an ordinary behavior. However; if the temperature
becomes sufficiently low, then a new maximum appears in the structure-factor curves of both

components at certain q =
q+. Note that for the subsystem of colloidal particles the value

of q+ is considerably smaller than the value of qi that characterizes the position of the main

peak for the individual component or for the binary system at high temperatures. For the

polymer, the peak at q+ appears first at smaller q than for the colloidal particles, but with

further decrease of temperature it shifts to the right.
The calculation shows that the appearance of the q+ peak in a structure-factor curve of

the polymer component is possible only at sufficiently high densities of the two components.
Figures 17 and 18 give an illustration to this statement. For the colloidal particles, the effect

discussed is observed in a somewhat larger range of densities. In this case. the value of q+
depends on pd lit shifts to the right with pd increasing) but almost does not depend at all on

pp. On the other hand, for a polymer component the growth in pp results in q+ shifting to

larger q. Note also that appearance of the q+ peak for the colloidal particles is accompanied by
disappearance of the initial qi Peak. At last, note that under the same conditions the position

of the polymer q+ peak does not vary with the chain length ~~p (at Np / 10~).

Figure 19 presents the temperature T+ of appearance of the polymer q+ peak plotted against
the corresponding density pp =

pj. The curve in Figure 19 must be considered as the curve

of the state diagram: the states with periodic (quasiregular) structures are realized belo,v this

curve. Note also that this curve starts in the vicinity of the curve of critical states of the

system.
Therefore, the results presented above indicate considerable structural changes due to the

formation of specific states characterized by binding together chains and particles. The peak

of the polymer structure factor at q # 0 indicates the presence of large fluctuations of density.

This means that alternating regions with lowered and ele,~ated segment densities are formed in

the system. This structure exhibits a set of interesting properties, c. g., very low compressibility.
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Let us try to explain the observed effects.

ivhen adsorption is strengthened, an adsorption layer of polymer segments is formed.

Figure 7 illustrates this process. In the case of the short-range adsorption potential used

in this study, the adsorption layer as a whole consists of a layer of polymer segments ~N.ithin

the adsorption potential well (~N.ith the width of order of the width of a
monolayer) and a

somewhat more expanded "corona". Due to the presence of the corona, the local segment
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density; just outside the adsorbed monolayer is somewhat higher than the average (over the

,vhole system) ;alue of pp and decreases rapidly in the radial direction. A colloidal particle
together,vith the neighboring polymer-rich shell can be considered as a single adsorption com-

plex [the A complex). From this point of view, to describe the structure of the system under

the conditions discussed, one should consider interaction and spatial distribution of these A

complexes. A specific feature of interaction of such subunits is that the corresponding effective
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potential ~bA(r) consists of two parts: the internal hard core of diameter aA * ad + ap and

the subsequent "soft" screening part, where ~A IT) diminishes rather quickly with the increase

of
r. It is evident that in the case of adsorption of small molecules on particles the screen-

ing tail of the potential ~bA(r) is absent. The presence of this tail is characteristic only for

a polymer-containing system. Packing of the A complexes with the interaction potential of

this type may result in the formation of quasiregular arrays, in which the A complexes move
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freely but at the same time the average positions of their centers correspond to some sites of

a regular quasilattice (cf. Wigner crystals, see Refs. [108,109]). Naturally, this must lead to

a considerable nonuniformity in distribution of both colloidal particles and polymer segments.
This nonuniformity of density distribution manifests itself as appearance of the q+ peak of

structure factors.

Figure 20 gives an attempt to represent the distribution of density of polymer segments
under the conditions described above. In positioning spherical structural subunits (I.c., A

complexes) in space we took into account only the elements of symmetry corresponding to a

simple cubic lattice. For more complex lattices additional peaks of structure factors would

appear, which is not observed in our study and in the experiment [69] (see below). The

periodic structure presented in Figure 20 is similar to the Schwarz surface 1110, ii ii, which is

topologically equivalent to a simple cubic lattice. The lattice sites (cavities in Fig. 20) are

occupied by the colloidal particles. Near the cavities ii. c., particles) the segment density is

maximal. Each site is linked ~N.ith six nearest neighbors by channels, in the central part of which

the segment density is minimal. Position of the q+ peak defines the period of the structure

r+ (r+
=

2~/q+). Apparently, here we have in mind only average periodicity; heat motion

destructs the regular structure and provides a nonzero
probability of direct contacts between

the particles. Note that nearly all the states corresponding to a quasiperiodic structure belong
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Fig. 20. The schematic representation of density distribution of polymer chains in a system of

colloidal particles and polymer chains, in which a quasiperiodic structure of adsorption complexes
is formed. Continual representation of the distribution of segments is used. The representation is

constructed by analogy with the Schwarz surface [i10]. The cavities of the structure are occupied by
colloidal particles.

to the subregion of the "increased" stability (I.c., the region S in Fig. lib). ~Ve recall that

a very low compressibility of the system is typical for this subregion. In the next section we

compare some of the above-mentioned results of calculation with the experimental data.

4.7. COMPARISON WITH THE EXPERIMENT. As is shown in reference [69], binding of

micelles with PEO macromolecules in a semidilute solution results in a considerable change of

properties of both subsystems,
as compared to the properties of the individual (noninteracting)

components. The appearance of
a characteristic peak of the partial structure factor of the

polymer component indicates redistribution of segment density. This result is consistent with

our calculations. In Figure 21 we compare the changes predicted by theory in the behavior of

the function (pp(q) with the corresponding experimental curve of neutron scattering intensity

Ipp(q)
r~

ppv(pp(q). As can be seen, in both cases the adsorption effects drastically reduce

compressibility and result in the appearance of the peak on the curves. This indicates formation

of quasiregular structures. According to reference [69], the characteristic size of the str~cture

varied from 5 to IS nm depending on polymer concentration. According to our calculations, as

temperature decreases the q+ peak of the polymer component appears at q m 0.751ap and shifts

gradually to q m 1.81ap. These estimates for the period of the structure are consistent with

the experimental data (if, according to Sect. 2, ap m i nm). According to reference [69], with

PEO concentration increasing the q+ peak shifts to larger q. The same tendency is observed

in Figure 18.
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Fig. 22. The calculated schematic state diagram of the subsystem of colloidal particles in the

coordinates: temperature polymer volume fraction.

together chains and particles. On the boundaries of the subregion S the polymer additives

do not affect compressibility of the colloidal dispersion. In the region C intensive aggregation
of particles occurs. This is due to their effective attraction mediated by strong adsorption of

chains. In this case a singularity of x* is observed (x* ~ m). The dashed line that begins

at the boundary of the subregion C defines the region D, where packing of stable adsorption
complexes results in formation of quasiregular structures with periodic alternating of particles
and polymer segments. Note that the diagram of states presented in Figure 22 corresponds

to a semidilute polymer solution and does not describe the behavior of the system at higher
concentrations of the polymer.

5. Conclusion

A detailed study of interaction of small spherical particles with polymer chains in the regimes
of strong and weak adsorption of macromolecules on the surface of the particles is performed

on the basis of the RISM integral equation theory. The temperature and concentration regions
characterized by different effect of the polymer on the stability of the colloidal dispersion are

determined. The conditions of formation of thermodynamically stable quasiregular structures

are established. The corresponding temperature-concentration state diagrams are constructed.
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