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Abstract. This paper describes
new theoretical results and calculations concerning the re-

cently introduced index of refraction of a gas for atomic waves. ~lore precisely, the motion of the

atoms of the gas is taken into account and the equation describing the Doppler and Fizeau effects

is introduced. The case where the atoms of the wave and the gas have spin 1/2 is also discussed

and the rotatory- power and circular dichroism of an optically pumped gas is calculated. Finally.
the index of the rare gases for sodium waves is calculated. The results show ho~v important it is

to take into account glory scattering and Doppler averaging to make a meaningful comparison
with experiments. The index appears to be very sensitive to the precise value of the quantum

parameter B
=

2pDea~ (in atomic unit). Using the available interaction potential curves, we

obtained a reasonably good agreement bet»,een the measurements and the corresponding cal-

culated values. Ho~&.ever, some experimental results appear difficult to explain with the best

available interaction potentials.

Rdsumd. Ce travail prAsente une Atude thAorique de l'indice de rA&action pour une onde

de matiAre se propageant dan~ un gaz. Le calcui de l'indice prend en compte le mouvement de~

atomes du gaz et met en Avidence les effet~ Doppler et Fizeau. Le cas oh les atomes du gaz et

ceux de i'onde ont un spin 1/2 est Agaiement discutA, ce qui permet ie caicui du pouvoir rotatoire

et du dichrNisme circuiaire d'un gaz optiquement pomp#. Finaiement, l'indice de l'hAiium, du

n#on, de l'argon, du krypton et du x4non est caiculA pour une onde de sodium. Ces caiculs

montrent l'importance des effets de gioire et de la mop,enne thermique. Ces effets doivent donc

Atre pris en compte pour i'interprAtation prAcise des rAsuitats expArimentaux. De plus, ii apparait

que i'indice dApend fortement du paramAtre quantique B
=

2pDea~ (en unitA atomique). En

utiiisant les potentiels sodium-gaz rares disponible~ dans la iittArature, nous obtenons un accord

raisonnabie entre i'indice caicuiA et [es rAsuitats expArimentaux. Cependant, ii reste diiliciie de

rendre compte de certaines valeurs expArimentales avec les meilleurs potentiels actuellement

disponibles.
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1. Introduction

The index of refraction of dilute matter for atomic waves has been recently introduced and

measured il-6]. This index is very interesting because it is an efficient way of interpreting
experiments in which a gas is introduced in one arm of an atomic (or molecular) interferometer

11, 2, 6]. It can be also used to evaluate the fundamental limits of atomic interferometry due

to the residual gas in the interferometer. Finally, this index is also interesting because it gives

a general framework to establish analogies between ordinary optics or neutron optics [7] and

atomic optics. A particularly interesting analogy concerns the possibility of developing an

amplifier for bosonic atomic waves [4,8].
The goal of the present paper is twofold:

. we shall first discuss briefly the theory of the index of refraction, with emphasis on the

Fizeau Doppler effects. We will also discuss the effects of spins on the atomic wave and

in the scattering gas and we will show that a spin polarised gas is a birefringent medium.

Finally, we shall use a simple Lennard-Jones potential to discuss the general properties
of the index;

.
in the second part of this paper, we shall calculate in some detail the index of refraction of

He, Ne, Ar, Kr and Xe for Na waves using available potentials. The results are compared

to the measurements of references [2] and [6].

2. Theory of the Index of Refraction

We are going to recall firstly the general equations established for the case of fixed scattering

centres, and for spinless particles. In a second step, we will discuss the effects due to the

motion of the scattering centres, namely the Doppler and Fizeau effects. In a third step, we

will discuss the effects of spins and the birefringence of an optically pumped gas.

2.I. BAsic IDEAS ABOUT THE INDEX OF REFRACTION. We consider here that the atom

and the scattering centres have no spins, and that the scattering centres are fixed in the

laboratory frame. The scattering of an incident plane wave by one scattering centre at the

origin O is described in many textbooks on quantum mechanics [9,10j:

'fi ~ e + ilk, k j- j~~
~~~ ~~~ '

~(~~

The second term is the asymptotic part of the scattered wave in the direction k'. The scattering
amplitude f contains all the information on the scattering process.

The connection from the scattering of one centre to the index of refraction n is straightfor-
ward ill,12]. It is made bj- summing the scattered amplitudes in the forward direction. The

result is

n "
I + $f(k> k)nb (2)

where f(k, k) is the forward scattering amplitude, noted from no~&. on
f(k) and nb the density

of scattering centres. The conditions necessary to establish equation (2) are discussed in ref-

erence [12]:

.
the atomic wavelength 1

=
2~r/k must be considerably smaller than the mean distance

between scattering centres n[~/~ This condition is in fact very weak for atoms at normal
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temperatures ii m
10~~~ mj;

.
collisions must also be independent which means that the potential range must also be smaller

than the mean distance nj~~~. The potential range is of the order of a few 10~~
m so that this

limits the density more severely.
The propagation of the atomic wave through the gas of index n involves a modified wavevec-

tor km.

km
=

k
n. (3)

The index is not real and usually the real and imaginary part of In I) have comparable
magnitudes. The real part describes a modification of the phase velocity of the wave, ~i>hile the

imaginary part describes an attenuation of the wave (this attenuation is well-known as this is

just a rewording of the idea of a mean free path) [4j.

2. 2. MOTION OF THE SCATTERING CENTRES. The fixed scattering centres are now replaced
by atoms b of mass mb and having as a

first step all the same velocity vb. The atomic wave

is made of atoms a of mass ma and velocity va. The associated wavevectors are ki
=

mivi16
Ii

= a, b). It is easy to describe the scattering process in the centre of mass frame. The centre

of mass velocity is vG "
(mava + mbvb)/(ma + mb) and the relative velocity is vr = v~ vb

with an associated wavevector

~~ ~i~ ~~~

where /t is the reduced mass /t =
mamb/(ma + mb). Then, in the centre of mass frame, the

index of refraction is

~~~ ~
~~~~~~~b

~~~

and the modified wavevector associated to the relative motion is

krm
"

krncm. (6)

Going back to the laboratory frame. ~ve can also define the index
n by

kam
=

kan (7)

using the usual relations between the t~&>o frames one gets

kam
=

ka + kr(nCM 1) (8)

thus, the relation between
n

and ncAi is expressed by

kain I)
=

kr(ncm Ii. 19j

In the general case, ka and kr are not parallel and the modification of the wavevector is not

parallel to ka. This is a dragging effect, by the motion of the scattering centre. It is related to

the Fizeau effect [13] which is also observed with neutrons [14, lsj, but usually the treatment

of the Fizeau effect neglects the modification of the motion of the scattering centre by the

wave, an effect which is taken into account here. The possibility of observing this effect is not

established at the present time. In practice, we are first interested by the case of an atomic

gas b at thermal equilibrium. Its normalized velocity distribution is given by:

~2
l~(Vb)d~vb

"
~ /~~~ eXP

(~~j ~~Vb (10)
~T
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Fig. I. a) iveight function g(va, ur) versus ur (in ms~~). The expression of g is given by equation
II16). The sodium wave

velocity va is taken equal to 1000 ms~ and the gas temperature is T
=

300 K.

The calculation has been made for helium (dot dashed line), neon
(broken line) and argon (solid line).

b) Comparison of the weight function g(va, vr) (solid line) with the one used in Dalgarno's work [16]
(dot dashed line) in the case of helium and neon (va

=
1000 ms~~~ T

=
300 K)

with o~
=

2kT/mb. T being the temperature of gas b. The modified wavevector kam is

obtained by ai,eraging equation (9) o,~er the distribution P(vb). The spherical symmetry of

P(vb) ensures that kam and ka are parallel. The index is a scalar given by:

~ ma~mb ~~~~~~~~ ~~~~~'~~~~ ~~~~~

,vhere the function g(1,~, vr) is normalized and given by:

~~~~ ~~~ "fiV] ~~~ ~~l~~
~~

l~ii~
1£)

~~ l~i~1) ~~~~~

The function g introduces an important averaging effect, especially in the cases where o is

comparable to va. In our previous work [5]. the weight function g was in error because of an

incorrect symmetry assumption. In a preprint of Dalgarno's group [16], the weight function gd
differs from equation ii16) and after con,>ersion in the present notations, it is given by:

This difference can be traced back to equation (9) which also appears in this work in a form

neglecting the vectorial character of k.

Our weight function is plotted in Figure la for the cases of a 1000 m
Is sodium wave and rare

gases (He, Ne, Ar) at 300 K which are representative of the experiments (Ref. [2]). Figure 16

compares our ,veight function with the one of Dalgamo's group. The difference is ,;ery large for

a light gas and is particularly important for low vr values as these functions behave differently
like v) for our function and like v) for Dalgarno's one.

2.3. PARTICLES iVITH SPINSI "CIRCULAR BIREFRINGENCE" OF AN OPTICALLY PUMPED

GAS. Birefringence in oriented samples is well-known in neutron optics and has been used
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to create polarizing elements [7]. The derivation of the refraction index is completely similar

to the derivation in the scalar case. Equation ii is replaced by:

'~ ~
~~~~~i~°) +

(k,k')~~~ (§~o)
(13)

where (~7o) describes the initial spin state of the two atoms a and b.

To play a role in the index, a
collision must be fully elastic, so that the scattered wave can

interfere with the incident ~v-ave and thus modify the propagation. This means that the final

spin state of both atoms must be identical to the initial state (~Jo). The index is then simply
given by an equation similar to equation (2):

~l "
I +

$
(i~o(S(k> k)(§~o)nb. (14)

ive will not discuss in this case the Doppler and Fizeau effect, but they obviouslv may be taken

into account in a completely similar manner here too.

This expression assumes that the atoms a
and b can be both described by a pure spin state.

This is not usually the case for the gas b which will be described by a density matrix pb. We

calculate the index as a function of the spin state (~7a) of atom a.

~ii~ai
"

I + )ii~aiTtisPbiii~ai~b ilsi

where Tr(Spb) is the partial trace over the spin space of atom b. Let us consider a particular

case, chosen for its simplicity. The atoms a and b have spins 1/2 and no other angular

momentum i.e. they are both in a ~Si /2 state. Neglecting any coupling between the molecular

~E and ~L states due to fine and hyperfine structure terms, the scattering can be described

independently in these two electronic states and the operator S takes the form:

S(k, k')
=

fS(k, k')Ps + f~(k, k') eT (16)

where Ps and PT are the projectors on the singlet and triplet space, which can be written:

Ps
" sasb

PT
"

~
+ sasb Ii?)

and f~ (resp. f~) is the singlet (resp. triplet) scattering amplitude.
If the gas b is optically pumped in the state ms~ =

+1/2 (the quantization axis may be

in any direction of space), the index depends on the spin state m~~ =
+1/2 (along the same

quantization axis) of the atom of the wave. Its ,>alue is given by

n+ =
I + f~(k)nb

n- =
i + )( (j) ifTikj + fsjkj)n~. j18)

These two indices will usually be different: this is a circular birefringence effect very similar

to the rotatory power of a gas or a liquid containing chiral molecules. The analogy is however

not fully complete, because at variance with the case of circularly po1al.ized light, here the spin
quantization axis has no relation with the ~v-avevector direction.
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If the atomic wave a enters the gas b in a coherent superposition of the ms~ =
+1/2 states,

ii~ti
"

°i + )i + fli )) i19)

after a path of length L, the transmitted beam is in the state

(~7[~~) =
ae~~~+~( + + fle~~'~-~( ~). (20)

2 2

The real part of (n+
n-

induces a precession of the spin, while the imaginary part induces

a
circular dichroism.

The microscopic process has already been studied in the context of scattering experiments
of spin exchange collisions [17,18]. From a more macroscopic point of view, the spin ~&~aves

predicted and observed in spin polarised gases [19] present interesting similarities.

3. General Properties of the Index of Refraction

The index of refraction of the five rare gases have been measured by the group of Schmied-

mayer and Pritchard [2, 3, 6] as a function of the velocity of the sodium beam (in the range

v~ =
750-1750 m/s) and our discussion will be centered on these cases.

As it is difficult to measure with high accuracy the column density of the rare gas, the most

accurate experimental result is the ratio p =
Rein I) /Im(n I) which can be measured

without any measurement of the column density. ,~s a consequence our attention will be

focused on this ratio p. In a first step, we are going to discuss the sensitivity of the index to

the main characteristics of the interaction potential l~(r) between the rare gas atom and the

sodium atom. Although it is well-known that a simple Lennard Jones potential is a rough
approximation of the true potential, we ~&>ill use for this discussion a family of Lennard Jones

6-12 potentials as this is sufficient to understand the main physical ideas. In a second part

we will compare the experimental results to calculations involving more realistic potentials
whenever they are available.

3.I. THE REFRACTIVE INDEX As A FUNCTION OF THE PHASE SHIFT~ Ii. As is well-

known, the forward scattering amplitude is simply expressed as a sum over
all the partial

~&-aves, and this sum involves the phase shifts Ii The real and imaginary parts are given by:

Im( f(kr))
=

~(21+ 1)(1 cos 2bi)
2kr

(21)
1 ~ j~j ~ l) sin 2biRe(f(kr))

" $

The phase shifts Ii are deduced from the integration of the Schr6dinger equation bj- Numerov

technique [20j. The only particular point upon ~&-hich ~v-e may insist is t,he fact that the

integration must go to very large
r values because of the large t involved (I values up to 500-

looo). The extraction of the phase shifts is made by comparing the wave to a reference wave

calculated in the same way with a ;anishing potential.

In Figure 2, we present Ii as a function of t for three different wavevectors kr. The shape

of this curve is well-known 121, 22], and n,e present this plot here mostly to discuss the glory
effect (see belo~&~).
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Fig. 2. Plots of the phase shift d< as a function of for a Lennard-Jones potential (B
=

636,

a =
8.06 a-u-j- Curve A: kr

=
2.I x10~° m~~,

curve B: kr
=

5.5 x10~° m~~ and curve C:

kr
=

20.8 x
10~° m~~. In the low k~ range, curve A presents jumps of the phase shift equal to ~,

indication of the existence of resonances while for larger kr value curves B and C are smooth. All these

curves present a maximum leading to the glory effect.

For the very high-t values, we used an asymptotic formula 19]. When the potential at long

range is given by a series of inverse r power (V(r)
=

~ ~~
), this formula is simple:

rn

j(app)
~

~ /lCn~~ ~ ~ ~ ~2 j~~j
~fi2(1 + 1jn-I p (fij

n
2 2

The agreement between the numerical calculations and the asymptotic formula is excellent at

large t and we usually switch to this asymptotic formula when Ii is converging toward zero

with (bi bj~~~~( less than lo~~ radian.

3.2. CALCULATION OF THE INDEX OF REFRACTION IN THE CASE OF A 6-12 LENNARD

JONES POTENTIAL. These potential curves depend only on two parameters, the well depth
D~ and the core radius

a

V(r)
=

4D~ (I) ~~ (i)~ (23)
r r

The collision problem depends on only two dimensionless quantities: the reduced wavevector

A
=

kra and the quantum parameter B
=

2/tD~a~ (in atomic unit). (Here we follow the

notations of Bernstein 12 ii. The very interesting and comprehensive review on elastic scattering
by Pauly 123] uses slightly different notations. This parameter B measures the quantum nature

of the atom-atom interaction; the higher B the less quantum is the problem. The number of

bound vibrational levels with zero angular momentum scales like B~/~ and various authors give
rules to predict the number of bound states in a Lennard Jones 6-12 potential well [23-26].
According to reference [23] the critical value of B to have

n
bound states is obtained by the

equation Bc
=

13.93 x in o.3698)~. The critical value for the appearance of one bound level is

thus Bc
=

5.53. From a dimensional analysis, the forward scattering amplitude can be written

as a function of a reduced amplitude fr(A. B):

f(kr)
= a

fr(-4, B (24)
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A

Fig. 3. Real and imaginary part of the for~&.ard scattering amplitude in a unit versus the reduced

~vavevector A (Lennard-Jone~ 6-12 potential ~vith B
=

775).

and the index ~&,ithout ,;elocity a,>eraging is given by:

n =
2~rnba~ ~°~ fr(A~ B). (25)

ma + mb

The scaling of the index is rather complex as it depends linearly on
nba~ and in a non-linear

manner on A and B. We have calculated the forward scattering amplitude for many cases as

a
function of A and Figures 3 and 4 present typical examples. The real and imaginary parts

of f increase,i;ith .I. This is due to the fact that more and more t values give significant
contributions. More interesting are the oscillations of these two quantities with -4. They are

due to the glory effect. They also appear very clearly on the ratio p =
Rein ii /Im(n I)

(also equal to Re( f) /Im( f)) which is plotted as a function of the reduced wavevector A for

various Lennard Jones 6-12 potentials spanning a range of B values from 5 to 775 (Fig. 4).
We are now going to discuss the shape of these curves.

First of all, following Bernstein [21] and Paulv [23] there are various ranges of energy:

.
the very-low energy range, A~ < 0.88, is the range where the effective potential presents

a local minimum which supports quasi-bound states (provided that B is large enough).
The scattering amplitude exhibits shape resonances ~&>ell-described by the Breit-Wigner
formula. This energy range has no importance in the experimental data because uf the

behaviour of the g(~a,i,r) function for low values of ~r and will not be discussed here but

has been briefly discussed in our previous paper [5];

. in the low energy range, when B < A~ < B~, the scattering amplitude is sensitive to the

attractive and repulsive parts of the potential and presents glory oscillationsj

.
in the high energy range, when B~ < -4~, the scattering amplitude is sensitive almost

onl,> to the repulsive wall and the real and imaginary" parts of the scattering amplitude

are monotonous functions of A.
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B=775

B=300

B=63

,

B=ii

B=5

0 50 loo 150 200 250
A

Fig. 4. Ratio p =
Rein Ii /Im(n Ii before velocity averaging versus the reduced »,avevector A.

The calcuiation~ are made for different Lennard-Jones 6-12 potentials. For each curve, the x-axis is

shifted by 10 and the y-axis is shifted by one, and the corresponding B value appears on the top of

the curve. The number of glorv oscillations correspond to the number of bound levels +I. For the

different B values used: 5, II, 63, 143, 300, 775, the corresponding number of bound levels in the

potential is 0, 1, 2, 3, 5, 7. "

A simple understanding of the scattering amplitude can be obtained in the following way.
Since hfassey and Mohr [27], the total scattering cross section has been expressed as a function

of the asymptotic behaviour of di for large values (Eq. (22jj. This calculation has been

refined by Landau and Lifchitz [9] and gives the imaginary part of f for a potential behaving
at long range like r~~ by:

Im(fjasv
=

0.7925aA~/~B~/~ (26)

The ratio p of the real and imaginary parts of f can be calculated in the same ~&>ay and is given
for a long range r~~ attractive potential by:

posy =
Re( fjas,~/Im( f)a~v

=
o.7265. (27j

This calculation has been done for many r~~ attractive potential [2] and posy is a function of

n, decreasing when n increases (p~sy =
o.4816 for n =

8, p~sy =
o.3640 for n =

lo).
In this approximation the phase shifts are large for lo~i~ t ,>alues and the corresponding

a,+rage values of ~in2bi and cos2bi are equal to zero
(Random Phase Approximation). Glory

oscillations occur because Ii
as a

function oft goes through a maximum as shown in Figure 2.

This maximum is related to an undeflected trajectory in the iVKB approximation as dbi /dl is

equal to half the deflection angle in the semiclassical approximation. Then the region of the

maximum gives an extra contributiun to the sum. This contribution induces the oscillations

and one understands easily that these oscillations are out of phase for the real and imaginary

part as they involve sin 2bi and cos 2di respectively.

ilure precisely, following the work of Bernstein [21. 28] Pauly [23] and Helbing [29], one can

express the glury contribution in the imaginary part of f by a calculation of the sum over1
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replaced by an integral calculated in the stationary phase approximation.

Imi fj
=

Imi fjasy + Imi fjgj 128aj

~~~~~

Im( f)~j
=

-Im(f)asyG(A, B)
C°S (2~i~ ~~ ~~~~~

where bm is the maximum of the phase shift and G is the relative amplitude of glory contribution

which is a function of the quantum parameter B and the reduced wavevector A. The G function

expression is detailed in references [21] and [23]. The same calculation can be done for the real

part of f and gives:

R£lfl
"

R£lf)asy + IlLllflasyGlA. B) Slll (2bm
() (291

The maximum of the real (imaginary) part is thus reached for bra
=

1r
(bm

=
~1r) (in both
8

cases modulo 1r).
An example of the Im( f) and Re( f) variation versus -4 is presented in Figure 3 for a B value

of 775. The real and imaginary parts of the index are just obtained by a division by k) these

two quantities behave roughly like k/~ with superimposed oscillations due to the glory effect.

4. Comparison with Experimental Results for Sodium Waves

4.I. THE POTENTIAL CuRvEs. These family of potential curves can be accessed by scat-

tering experiments [30-34] by various types of quantum chemistry calculations [35-44j and

finally by laser spectroscopic techniques [45-57j.
The scattering experiments give quite accurate information through glory oscillations of the

total cros~ section and rainbow scattering observed in differential experiments. Unfortunately,
most of the accurate experiments do not concern alkalis other than sodium.

Ab initio calculations are a,>ailable in most cases. Such weak van der ~vaals bonds require
special treatments to be described accurately, and the well depth is so small that it is not

predicted with great accuracy, with some exceptions like NaNe [37]. However, the long range
electronic interaction coefficient Cn(n

=
6,8,10j have been usually calculated with a good

accuracy [39].
Laser spectroscopy experiments give the most accurate description of the interaction poten-

tials. For NaNe 147,50,51,59], NaAr [48,49~52,53, 56j, NaKr [53,54]. NaXe [55], the study of the

A-X transition has given the energies of many rovibrational levels of the X state. From these

energies, an accurate description of the well is generally obtained. Moreover, the spectrum of

the bound-free emission of the A-X system has been recorded and analysed for a few A levels

for NaAr, NaKr, and NaXe [53-56]. The spectral oscillations of these bound free emissions

give a very sensitive technique to measure the repulsive wall of the X state potential. Usually

a potential has been fitted to all the available data and is expected to give a very accurate

description of the K state well and repulsive wall. However these fits are not always fully
satisfactory for the calculation of the index of refraction as they do not use a function which

connects smoothly to the correct long range behaviour.

For NaHe and NaNe, the measurement of the far red wing of the sodium resonance line

perturbed by the corresponding rare gas has been made and interpreted to get the repulsive
wall of the X state potential [58, 59].

In all the following calculations. the electronic and nuclear spins of the sodium atoms have

been forgotten. This is a good approximation because the terms of the Hamiltonian sensitive to
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Fig. 5. Ratio p =
Rein I)/Im(n I) for helium after velocity averaging versus sodium velocity

va (in nis~~). For Figures 5, 6, 7, 8, and 9, the points with error bars are the experimental results

of Pritchard's group [2, 6] and the used potentials are described in appendix. Curve (cj: Tang-
Toennies potential using experimental result of Havey et al. [58] and calculated Cn values [39], curve

16): Lennard-Jones potential (B
=

8). curve
la): Same potential as in curve (c) with modified

repulsive wall.

the spin in the alkali-rare gas molecules (spin rotation interaction [60] and hyperfine structure

comparable to the atom hyperfine structure)
are so small that they play a negligible role during

a collision at thermal energy (sudden approximation [lo]).
Finally, the sodium atomic beam used in the experiments [2. 6] has a velocity distribution

with a relative width ihv/~ of the order of 3$lo. This induces a supplementary averaging of the

index, ~v.hich has not been taken into account because it has negligible effects.

4.2. THE REFRACTIVE INDEX OF HELIUM FOR SODIUM ATOAIIC WAVES. The case of

helium is particular for the following reasons:

I) if the repulsive wall of the NaHe potential is reasonably well-knoin, there is very little

kno~i4edge of the attractive well [41, 44, 58, 61]. It seems clear that this well is very shallow

(D~ m
lo~~

a-u- near r~ m lo-12 a-u- and can hold at most one bound state. In such a case,

the ratio p is very small as soon as the wavevector is not too small, and p can even be negative

as predicted for the limiting case of the hard-sphere potential [2];
it) the thermal velocity of He at 300 K is large so that the averaging function g(v~,~r) is

particularly broad and its peak value does not depend much of ~~ for low ~~ values.

We have built a Tang-Toennies [62] potential with the measured repulsive ~v-ing [58] and the

calculated long range Cn (Ref. [39] ). This attempt is somewhat deceiving: it predicts a too

shallow well at a too large r~ ,~alue and the corresponding values of the ratio p are all negative
in clear disagreement with experiment (curve c in Fig. 5). A slightly modified potential with a

deeper well was obtained by modifying the repulsive wall in the range r > 6ao. This potential
leads to a too high value of the ratio p (curve

a in Fig. 5).
Therefore, we have made a series of calculations with Lennard-Jones 6-12 potentials al-

though this type of potential curve is not expected to give an accurate representation of the

true potential. The ratio p for a given velocity depends of B and a so that a similar agreement

can be obtained with various choices. We have arbitrarily fixed
a =

10.02 a-u-
ii.

e. the value

of Pascale and Van de Planque [36] and the best agreement ~v.ith the experimental data is
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Fig. 6. Ratio p =
Rein I)/Im(n I) for neon after velocity averaging versus sodium velocity

va (in ms~~). Curve (a): Lennard-Jones 6-12 potential with B
=

l10 (De
=

3.7 x
10~~ a-u.) [47],

curve (b): Lennard-Jones potential with B
=

90. curve (c): Lennard-Jones potential with B
=

71.

obtained with B
=

8, corresponding to the existence of one bound state of the NaHe molecule

la reasonable change of
a

by +I a-u. will not modify this conclusion). The agreement between

the experimental data points and the calculated curve remains ~ather poor. As remarked abo,+

in (it), the measured quantity is the result of a broad velocity averaging (the fact that p is the

ratio of two averaged quantities and not the result of a direct average does not modify this

discussion) and the scatter of the experimental data points around a smooth curve cannot be

explained by an incorrect shape of the theoretical curve but must be due to some experimental
imperfections.

4.3. THE REFRACTIVE INDEX OF NEON FOR SODIUAI ATOMIC WAVES. The case of neon

is ~omewhat similar to the former case. In this case too, the velocity averaging function g

remains very broad and this averaging washes out the first glory oscillations ~v.hich appear on p.

Moreover, although the potential curve is better known through laser spectroscopy [47, 50, 51,59]
and ab imtio calculations [37] no complete potential curve fitting all the available informations

has been published.

As a first step. we have made a series of calculations with Lennard-Jones 6-12 potentials.
One of these potentials was built so as to have the measured D~ and r~ values

(D~
=

3.69 x
10~~

a-u- and r~ =
10.0 a-u.) [47]. The two other potentials used have slightly

different B values and their
a

values were chosen so as to reproduce the calculated long range
C6 coefficient [39]. Figure 6 presents the results of these calculations. The ratio p is reasonably

well-reproduced, especially by the curve corresponding to B
=

90. In this case too, none of

the calculated curves can be in agreement with all the data point. We find it very difficult to

reproduce the first data points (va m 750 m/s) with any" reasonable choice of potential, and

like in the case of helium, the broad velocity average makes it impossible to reproduce well at

the same time the first two set of data points (v~
=

750 m/s and ~~ =
1050 m/s). If we forget

the v~ =
750 m

Is first data points, the three other ones are rather well-represented by the

B
=

90 curve and the agreement would be improi;ed by the choice of a slightly larger B value.

We do not think that this improvement would be meaningful because of the limitations of the

Lennard-Jones potential.
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Fig. 7. Ratio p =
Rein I)/Im(n Ii for argon after velocity averaging versus sodium velocity va

(in ms~~). Curve (a): Leonard-Jones 6-12 potential with B
=

775, curve
(b): HFD potential proposed

by Zimmermann [56], curve (c): potential proposed by Dfiren [33], curve (d): potential proposed by
Tellinghuisen [49] and modified according reference [5].

4.4. THE REFRACTIVE INDEX OF ARGON FOR SODIUM ATOMIC wAvEs. The case of

argon is very different from the previous ones. Because of the larger value of D~ (D~
=

1.84 x10~~ a-u-j 149] and of the reduced mass, the quantum parameter B is considerably
larger (B

m 700) and the potential holds a series of bound states (the estimated value of the

fractional quantum number at dissociation [49] is ~D "
6.67). Before velocity averaging, the

ratio p exhibits a series of glory oscillations as shown in Figure 4.

The spectroscopy of this ground state has been the subject of many efforts and several

potential curves are available 133, 49, 53, 56] which have been deduced from high quality fits

to experimental data. Using these potential curves (for the one of Ref. [49], we have cor-

rected its long range behaviour in a way described in Ref. 15]) and a
Lennard Jones potential

(B
=

775), we have calculated the curves presented in Figure 7. The glory oscillations are

almost completely washed out by the velocity averaging, but the remaining oscillations pat-

terns are very similar for the four different potential curves. and unfortunately they do not

fit the oscillation which appears on the experimental data. As shown in Figure 4, changing
the well depth changes the phase of the glory oscillations. But the change required to fit the

experimental results is considerably larger than the claimed accuracy of the measurements of

the well depth. It is interesting to remark that the curve deduced by us
from reference [49] and

having a correct long range behaviour with r~~, r~~ and r~~° terms gives lower p values than

the other curves which behave like r~~ These lower p values are expected from the asymptotic
behaviour of the phase shifts and they are also in better agreement with the measurements.

4.5. THE REFRACTIi'E INDEX OF KRYPTON FOR SODIUM ATOMIC WAVES. As in the case

of argon, the potential well is deep enough to hold several bound levels. The same number (+ ii
of glory oscillations are then observed in the ratio p before velocity averaging, but although the

velocity averaging function is substaIitially narrower than for argon, only the last two oscilla-

tions survive to the velocity averaging. We have used the potential provided by Zimmermann's

group [54]. We have also built a Lennard-Jones potential using D~ value deduced from the

experimental results (D~
=

3. ii x
10~~

a-u- ). The extra r~~ and r~~° long range terms of the

experimental potential explain the difference between the two asymptotic values of p for small
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Fig. 8. Ratio p =
Rein I /Im(n I for krypton after velocity averaging versus sodium velocity

va (in ms~~). Curve (a): HFD potential proposed by Zimmermann [54], curve 16): Lennard-Jones

6-12 potential with B
=

1732.

incident velocities and the difference of the shape of the curves. Unfortunately, the Cs term

used in reference 154] has a negative unphysical value. The measured values of p also plotted
in Figure 8 are in poor agreement ~v-ith the calculated values. So the used potentials seem

not to describe properly the sodium-krypton interactions on the whole range of internuclear

distance.

4.6. THE REFR.~cTivE INDEX OF XENON FOR SODIUM ATOMIC WAVES. The xenon case

is similar to the two previous ones
(heavier atoms). As in the krypton case, we used the

potential given by Zimmermann [55], and a Lennard Jones potential built on the experimental
results of the same authors (D~

=
5.3 x

10~~ a-u-). In this case, the experimental potential
do not take into account r~S

or
r~~° terms and, as shown in Figure 9, the asymptotic values

of the ratio p for low velocity are the same and are very close to 0.7265 as expected (see
Sect. 3.2). Actually, the two potentials ha,,e the same long range behaviour but differ in short

range since the repulsive wall of the Zimmermann potential is exponential. However the two

corresponding p curves have almost the same shape but they cannot fit all the measurements:

only three out of five data points are close to the calculated curves, and the first point has a

very large error bar. These preliminary results point out the need for more accurate potentials
and index measurements.

5. Conclusion

In this paper, we have further developed the theory of the refractive index of a gas for atomic

waves and we have made an application of this theory to interpret the recently measured values

of the index of helium, neon and argon for sodium waves.

In the theoretical developments, we have considered the effect of the motion of the atom of the

gas on the index. The basic equation describing the atomic analogs of the Doppler and Fizeau

effects has been established. We have also considered the case where the two atoms (the wave

and the component of the gas) both have a spin 1/2. An optically pumped gas thus presents

rotatory power and dichroism for the atomic wave, in analogy with optics. The corresponding
index which has then a simple tensorial character has been evaluated. A generalization to

higher spins seems rather simple, but this will imply a richer tensorial nature.
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Fig. 9. Ratio p =
Rein I) /Im(n I) for xenon after velocity averaging versus sodium velocity

va (in ms~~). Curve (a): Lennard-Jones 6-12 potential with B
=

2566, curve (b): HFD potential
proposed by Zimmermann [55].

The evaluation of the index of helium, neon, argon, krypton and xenon for sodium waves has

shown very clearly the importance of glory scattering: this effect appears exceptionally well

on the quantity of greatest experimental interest, namely the ratio p =
Re(n I) /Im(n I).

This quantity is also highly sensitive to the fact that the thermal averaging effect is taken into

account. Finally, the case of helium differs noticeably from the other cases. The available

potential is not as accurate, but the measured value of the ratio p gives a sensitive test of the

presence or the absence of one bound state for the NaHe molecule.

Acknowledgments

Funding of
our laboratories by the "RAgion Midi-PyrAnAes" is gratefully ackno~v.ledged.

G. P<aach and D. Zimmermann have kindly given us information on the potentials. We thank

J. Schmiedmayer for the communication of reference [6] prior to publication.

Appendix

Potentials Used in the Index Calculations (Values in Atomic Unit)

A-I- NaHe

A.I.I. Tang and Toennies [62j Potentials Based on the Jleasurements of Reference [58j and on

Calculated Long Range Cn Coellicients (Re£ [39j)

I) curve (c) in Figure 5:

~'jrj
=

Ae~~~
I

f61r) ji fslT) ))if°kl

with
2n jb~jk

~~~~~~

O

~~

~
~~
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it) modified potential, curve (a) in Figure 5:

Ae~~~ is replaced by A exp(-br c(r To )~ for
r > To

Constant Value Value modified pot. Ref.

C6 24.4 24.4 [39]

Cs 1329 1329 139]

CID 87 538
8i

538 [39]

A 0.278 16 0.278 16 [58]

b 0.799 0.785 [58j

c 0.15

To 6

D~ 9.70 x
10~~ 1.46 x

10~~

A.1.2. Lennard-Jones 6-12 Potential (Curi-e (b) in Fig. 5)

Constant lialue Ref.

B 8

a 10.02 136]

D~ 6.~ x10~~

A.2. NaNe

-4.2.I. Lennard-Jones 6-12 Potential (cf. Fig. 6)

Constant B
a D~

Curve (a) l10 8.9 3.7 x10~~ 14?]

Curve (b) 90 8.5 3.I x
10~~

Curve (c) 71 8.3 139j 2.6 x
10~~

A.3. NaAr

A.3.I. Lennard-Jones 6-12 Potential (Cun.e (a) in Fig. 7)

Constant lfalue

B 775

a 8.4

D~ 2.0 x10~~

A.3.2. Potential Fitted by Zimmermann et at. [56j to Spectroscopic Results (Curve (b) in

Fig. 7)

~~~~~ ~~ ~~ ~~~~
~~

~
~

~
~~~

2

fir
= exp

(- ((~~)~ l)
r < rc

T

fir)
=

I r>rc:
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~&>ith the following values of the parameters

C6 Cs Cio -4 b m rc D~ r~

194 l19 215 0 3.58 x 10~ 0.468 19.98 1.91 x 10~ 9.48

A.3.3. Potential Proposed bj~ Dfiren et al. [33j (Curve (c) in Fig. 7)

The potential equation is expressed in reference [33]. The values of the well depth and equi-
librium distance are D~

=
1.95 x

10~~ and r~ =
9.54.

-4.3.4. Potential Used in our Previous ~%ik [5j (Curve (d) in Fig. [7j). This potential is the

one proposed by Tellinghuisen [49j slightly modified for the long range behaviour according to

reference 15] (De
=

1.84 x 10~~).

A.4. NaKr

A.4.I. HFD Potential Proposed bj~ Zimmermann et al. [56j: (Curve (a) in Fig. 8)

Same equations as in 3.2 with following parameters:

C6 Cs Cio A b m rc D~ r~

772.6 -71384 31 269 560 6.306 1.278 2 12.042 3.ll x
10~~ 9.29

A.4.2. Lennard Jones 6-12 Potential (CunE (b) in Fig. 8)

Constant Value Ref.

B 1732

a
9.2

D~ 3.I x
10~~ 154]

A.5. NaXe

A.5.i. Lennard Jones 6-12 Potential (Curie (a) in Fig. 9)

Constant Value Ref.

B 2566

a 8.2

De 5.3 x
10~~ 155j

A.5.2. HFD-Potential Proposed by Zimmermann et al. [55j: (Curve 16 in Fig. 9)

Same equations as in 3.2 ~&.ith the following values of the parameters

C6 C8 Cio A b m rc D~ r~

662.4 0 0 26.853 1.446 2 12.36 5.29 x
10~~ 9.37
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