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Abstract. We briefly review and re-interpret recent experiInental results on shear-induced

inhoInogeneous flows in coInplex fluids. These are usually explained in terIns of aInechanical

instability of the non-linear flow regiIne. However, in at least two respects, the robustness of

the two-state banded-flow regiIne and the kinetics of band forInation under shear, they present
striking analogies with ordinary field-induced phase transitions in equilibriuIn systeIns. We

propose a phenoInenological explanation of these effects in terIns of an effective non-equilibriuIn
potential that accounts for the free energy stored in a viscoelastic material under steady-shear

conditions. Within this picture, a shear-thinning non-hoInogeneous flow
can be shown to be a

Inanifestation of soIne underlying hidden structural transition.

1. Introduction

A number of publications dealing with solutions of giant micelles under shear [1-9] have re-

ported the existence of shear-banded inhomogeneous stationary flows above some characteristic

shear rate it A mechanical signature of this behaviour is the onset of a stress plateau at it
where the stress a abruptly becomes independent of the shear rate. In some cases [2,3], this

behavior is reported for concentrated solutions close to the domain of stability of an oriented

nematic phase in the absence of flow. But in other cases, similar plateaus were observed at

much lower concentration in the semidilute regime II, 4, 7-9]. Several experimental studies,
involving neutron scattering under shear and flow birefringence, have supported the picture of

bands of strongly oriented micelles coexisting in the plateau regime with bulk regions of weakly
oriented, entangled micelles.

The 1&~ell-known "spurt effect" observed during the extrusion of polymer melts, first reported
by Bagley et al. [10] and subsequently investigated by Vinogradov ill], is believed to origi-

nate from the same basic physical mechanism. Similar onsets of a stress plateau have also

been reported for complex fluids consisting of totally different self-assembling microstructures,
namely the "onion" texture of lamellar lyotropic phases under stationary shear [12-15]. In this
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Fig. 1. Schelnatic representation of a non-monotonic constitutive relation for the shear stress a as

a function of the rate of strain I.

latter case, the plateau takes place at the shear-induced layering transition in a sample with

an initially disordered onions population. Once again, the stress plateau was described in

terms of an inhomogeneous flow consisting of bands of ordered layers of onions coexisting with

disordered regions of the flow. The occurrence of similar mechanical signatures for materials

with such different microstructures indeed demands a unifying description and interpretation.

In the case of unidimensional objects such as giant micelles and polymers, explanations have

been proposed [16-18] which are based on a non-monotonic constitutive relation for the shear

stress a as a function of the rate of strain I (see Fig. I for a schematic picture). If the applied
strain rate I lies in the region of decreasing stress (the dotted part of the curve in Fig. I),

an

initially homogeneous flow becomes mechanically unstable. Such a flow will evolve in time until

some stationary state is reached where bands of highly sheared liquid of low viscosity coexist

with more viscous fluid subjected to a lower shear rate. In this banded regime, the stress is

uniform throughout the material and only the relative volume fraction of the high versus low

shear-rate bands varies, so to adjust to changes in the applied strain rate.

Such models account for the existence of a stress plateau. Note however that in this picture,
all pairs of stable states in the plateau regime lone lying on the low shear stable branch,
the other on the high shear one; for example states a and b in Fig. I)

are equally stable

mechanically. Hence in a strain-rate controlled experiment, the set of possible stationary
banded flows is highly degenerate. As

a result, it seems likely that the final stationary state of

flow will depend strongly on the shear history of the sample. In particular, hysterisis would be

expected when switching from increasing strain rates to decreasing strain rates, an expectation
which is not confirmed by available data.

To address this apparent degeneracy, the formation of shear-banded flows has been theoret-

ically examined using linear stability analysis [18,19]. In these approaches, the Navier-Stokes

equation is written in combination with a phenomenological non-monotonic constitutive re-

lation. An initially homogeneous flow is taken as the starting state onto which a small per-
turbation is added. Those perturbations which are amplified in time indicate the emergence

of inhomogeneous flows. In the absence of coupling to other degrees of freedom, such linear

analysis produces banded flows that have structures at all scales and hence fails to identify

a characteristic length scale for structural inhomogeneity under flow. In particular, this im-

plies the existence of unphysical bands of arbitrarily narrow width. Numerical calculations for

uni-dimensional flows extending this analysis beyond the quasi-uniform linear regime [18] also
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Fig. 2. Plot of a/Go
vs. in for the CPCI-Sal systeIn with 0.5 M Nacl. The critical flow curve

is designated by Tc. The other curves correspond to situations above (plus signs) and below (Ininus
signs) the critical teInperature.

resulted in unphysically narrow bands. The introduction of an additional term into the con-

stitutive equation accounting for the energy cost of band interfacial structure yielded bands of

finite width and a selection mechanism for the viscoelastic portion of the stress in the banded

flow regime [18,20]. On the other hand, phenomenological theories for which the stress is

coupled to a conserved internal order parameter (such as solute concentration [19]) can predict

a characteristic length scale of flow inhomogeneities within the framework of linear stability
analysis. However, such approaches still depend on an assumed form for the non-monotonic

constitutive relation.

On the experimental side, the system CPCI + Na-salicylate in brine (0.5 M Nacl) is certainly
the system for which the most extensive set of rheological data in the non-linear regime have

been reported to date [4]. Shear-banded flows with a well-characterized stress plateau were

reported for a very large concentration range (from 6$l to 31$l at 30 °C). These materials are

nearly perfect Maxwell fluids in the linear regime; the rheological response of a given sample
with surfactant volume fraction # and at temperature T to linear oscillatory shear is well-

characterized by a single elastic modulus Go (#, T) and relaxation time rr II, T). Furthermore,
the (non-linear) steady-state stress response a to a constant imposed strain rate I for all

samples and temperatures could be plotted in dimensionless reduced units a*
=

a/Go versus

I*
=

in, as shown in Figure 8 of reference [4]. In Figure 2, we show a more complete set

of recent data on the same system [5] in which both concentration and temperature have

been systematically varied. As discussed at length in reference [5], for each concentration

# there is a "critical" temperature T~(#) for which the plateau reduces to one flat inflexion

point and above which inhomogeneous flow is no longer observed. For this data, a single
set of mastercurves for all samples at all temperatures is obtained in Figure 2 prm,ided that

the appropriate reduced units (a*, I*, and T*
=

T T~) are used. Note that samples of

different concentrations but at temperatures deviating from T~(#) by the same amount have
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identical flow curves in our reduced units. The analogy of Figure 2 with the phase diagram
of an equilibrium system undergoing a typical phase separation process is quite striking. This

is indeed not in contradiction with the above description of a mechanical instability. Many
bifurcation patterns of dynamical systems follow the same general scheme [21], including the

observed progressive evolution of the order parameter from a discontinuous jump (e.g. the

shear-banded flows below T~ in Fig. 2) to a continuous evolution (the homogeneous flow above

Tc) through a flat critical point (at T~).

The kinetics of formation of the inhomogeneous flows in response to strain rates in the plateau

range were also studied in reference [4]. A sigmoidal evolution of a(t) towards a steady-state
plateau value was found with a characteristic time often much longer than the viscoelastic

time rr. Such kinetics are characteristic of nucleation and growth processes, usually associated

with first order phase transitions. For one particular system (CPCI in hexanol + brine), it has

even been possible to observe the evolution from nucleation and growth kinetics (in response

to the startup of low shear rate flows) to a "spinodal" instability (in response to the startup of

high shear rate flows) [22j. Moreover, the robust character of the plateau in the shear-banded

state was verified with great care and confirmed for all samples: the plateau value of the stress

was found to be remarkably constant and completely independent of the shear history of the

sample [4, 5]. In particular, provided that enough time is allowed for the system to reach its

stationary state, hysteresis was never observed when switching from increasing to decreasing
rates of shear in the plateau regime. Furthermore, for at least one sample we checked carefully
that the measured transition stress is the same in both control stress and controlled strain

rate experiments [23]. This robustness with respect to the variable under control is again a

distinctive feature of usual first order phase transitions. These two characteristics, robustness

of the plateau and slow sigmoidal onset kinetics, are somewhat inconsistent with the above

theoretical description in terms of a mechanical flow unstability. Rather, this behavior is

reminiscent of the thermodynamically driven isotropic-to-nematic transition observed at rest

above 35$l concentration.

This quasi-thermodynamic behavior is not restricted to this particular giant micelle system.
We also checked the behavior of the system of reference iii, consisting of100 mM CPCL and

60 mM Nasal in salt-free D20 [6]. This system is currently considered as model example
of a complex fluid which undergoes a true mechanical instability in flows iii]. However, we

found evidence for both the robustness of the plateau and the slow onset kinetics in this

system as well. Figure 3 shows an example plot of the onset kinetics of the plateau in a(t)
for this system. The solid curve represents the best fit of the data with a function of the

form a(t)
= apt + ha exp[-(t/rug)~], where rug is the characteristic time for the nucleation

and growth process and ha is the excess stress of the initial homogeneous flow compared to

that of the fully developed inhomogeneous flow in the plateau regime [4]. After a brief elastic

overshoot of duration t ci rr, all data points closely follow the theoretical sigmoidal curve

characteristic of the nucleation and 1D-growth discussed at length in [4]. In contrast, for a

true mechanical instability one would expect relaxation behavior with a
finite relaxation rate

at t
=

0. Furthermore, very recent experimental studies of the layering transition in "onion"

phases also revealed a robust response of the two-state coexistence plateau regime to changes
in shear rate. So, in our opinion, an alternative interpretation of the inhomogeneous flows

is needed which can account for these unexpected features shared in common by such very
different systems.

In the following section, we present a phenomenological "quasi-thermodynamic" treatment of

systems exhibiting banded flows that is based on the free energy stored in a viscoelastic material

in steady shear flows. We will show that, within this framework, the mechanical instability of

viscous flow may be preempted by the metastable response of this internal elastic-like degree of
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Fig. 3. Sigmoidal transient response of giant Inicelle solutions consisting of100 1nM CPCL and

60 1nM NaSaI in salt-free D20 in response to steady shear at a rate I
=

0.5 s~~ 11, 6]. Note the brief

elastic overshoot of duration t
= rr ci 3 s. The solid curve represents the best fit of the data with a

function of the form a(t)
= apt + ha exp[-(t/rn~)~], where rn~ =

lls s » rr is the characteristic tiIne

for the nucleation and growth process and ~ha
=

6.5 Pa is the excess stress of the initial hoInogeneous
flow compared to that of the fully developed inhomogeneous flow in the plateau regiIne (see [4] for

Inore details on the theoretical curve). The inset represents the stationary response of
a versus I.

Note the sharp slope discontinuity at I ci 0.3 s~~ Inarking the beginning of the plateau region.

freedom in the sheared material. This inherent metastability can explain both the robustness

of the stationary banded state and the nucleation and growth kinetics of its formation.

2. Quasi-Thermodynamic Approach

In the case of an equilibrium system, the phase behavior and the associated metastability
barriers may be obtained through the analysis of an appropriate thermodynamic potential.

The difficulty with flow-induced states is that the system is not at equilibrium: in steady-state
conditions, energy is injected in the system and dissipated at a constant rate by the viscous

flow. Hence, there is no fundamental principle that can guarantee the existence of such a

potential in flow conditions. However, the empirical evidence for the robust behavior of these

complex fluid systems in steady flows, both in the homogeneous and in the two-phase banded

regimes, is an indication that the observed stationary flows are indeed true attractors for the

non-equilibrium state of the system. Moreover, the nucleation and growth kinetics show that

the power of attraction expresses itself even when some effective "barrier of metastability"

must be overcome. In these respects, the two coexisting states of flow under constant shear is

strikingly analogous to the two-phase coexistence in an
equilibrium system induced by some

constant applied field.

The issue of an effective potential governing the behavior of non-equilibrium systems has been

addressed by many authors [24-38]. It has been shown in particular that in the restricted case
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of elongational flows, the viscous forces exerted by the solvent on individual macromolecules

do admit a description in terms of a
potential and are thus indistinguishable from conservative

field forces [24-26]. However, this favourable condition does not apply to shear flows at the

molecular level. Nevertheless, this does not preclude a phenomenological approach based on

a
coarse-grained effective potential that is defined on a mesoscopic scale. To introduce this

potential we proceed as
follows.

First we note that for any viscoelastic medium, some free energy is stored in the material

submitted to a constant strain rate, due to the perturbation of various internal degrees of

freedom. This is simply the total amount of free energy Fs that will be thermalised after

switching off the shear. In principle, it is given by the integral of the total entropy production

over the time interval required for the internal structure of the fluid to go from steady-state

to quiescent conditions. Using this stored energy Fs and the measured shear stress a, one can

introduce a strain-like order parameter is. In analogy with the differential definition of the

entropy in equilibrium thermodynamics (dS
=

dQ/T),
we define the "stored strain" is in a

formal manner as the quantity conjugate to a with respect to Fs: dis
=

dfs la, giving

' "

(~ (l)

This choice reflects the fact that in a quasi-thermodynamic approach the shear stress is an

intensive variable which; for rheological flows without inertial effects, should be spatially uni-

form in multi-phase flow conditions. Note that is is not defined at a microscopic micellar scale

but rather describes the effective state of the medium averaged over mesoscopic scales (in the

same spirit as the thermodynamic limit is used to define thermodynamic variables). A clear

indication that some stationary state of "deformation" is supported by a viscoelastic material

in flow is provided by the steady birefringence measured under constant shear rate. However,

we know of no way to measure is directly in the general case, and so we will regard it as an

internal order parameter which parameterizes Fs.
This is is reminicent of the quasi-hydrodynamic local network strain variable used in recent

two-fluid descriptions of semi-dilute polymer solutions in flow [38]. Moreover, our notion of the

"stored strain" is in much the same spirit as the recoverable elastic strain introduced by Leonov

to derive constitutive equations for polymeric liquids from a non-equilibrium thermodynamics
point of view [27, 28]. In the approach of references [27, 28], the flow properties of a polymer
fluid are determined in part by a "non-equilibrium potential" which depends on the recoverable

elastic strain stored in the material. This "non-equilibrium potential" is roughly analogous to

our effective potential Fs. In our approach, however, Fs also accounts for the changes in

configurational entropy in a structured complex fluid induced by externally imposed flow. As

such, it contains both elastically recoverable and irrecoverable contributions [39]. Note that

when we associate Fs and the measured value of a in order to define is, we implicitly assume

that all the energy injected by the rheometer is ultimately dissipated by the relaxation of the

mesoscopic structure of the complex fluid (thus the small portion dissipated in simply shearing
the neat solvent is ieglected).

Our principle ansatz is that Fs is the effective potential that drives the stationary state and

hence is subject to some minimization principle. There are no fundamental guidelines available

to specify the appropriate form of this non-equilibrium minimization principle. One plausible
candidate is the following variational principle: the integral of Fs over the whole thickness e of

the sheared material must be at its absolute minimum,

) /~ Fslis(z)I dz
=

0 (2)
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subject to the constraint of uniform shear stress a in the gap and a constraint on the average
(macroscopic) strain rate I,

/~ i(z) dz
=

§. (3)
e o

In a controlled stress experiment, we must enforce an imposed shear stress a =
d and determine

it while in a controlled strain rate experiment, we fix § and determine a. In the following, we

will focus on the case of controlled strain rate.

As in the conventional equilibrium thermodynamics approach, the solution is(z) of our

variational problem depends on the shape of the potential Fs as function of is. If the curvature

of the potential is everywhere upward, all solutions are homogeneous (constant is). If on

the other hand the curvature of l~ changes sign two "phase" coexistence may occur. The

important point is that the characteristics of the two flow phases are uniquely determined by
the particular minimization procedure employed. In particular, this procedure gi~.es coexisting
values of is, along with a unique value for the transition stress at For the case of the particular

variational principle introduced above, the solution of equation (2) subject to equation (3) and

the requirement of uniform a =
dfs/d'fs gives these quantities. We note that in this case,

since I is generally a non-linear function of is, the coexistence values of is are not given by

a simple common tangent construction. We will not dwell here on the detailed nature of the

phase selection mechanism, but rather focus on the rheological consequences of this internal

phase transition.

So far we have introduced the quasi-thermodynamic potential Fs and the internal order

parameter is However, a complex fluid cannot sustain a steady value of the order parameter
unless energy is constantly injected into the system by steady applied shear. So, in order to

describe the flow pattern, the potential must be supplemented by some expression for the rate

of dissipation. This aspect can be introduced in a very conventional manner. Consider first the

relaxation of the material immediately after the steady shear has been switched off. We are

interested in the initial decay rate is of the order parameter. For the purposes of illustration,

we choose the simplest possible form for the dynamics of our non-conserved order parameter,
namely

is
"

-Pl'fs) (~ (4)

where p(is) is a mobility factor which in principle depends on the internal state of the system,
and where dfs/dis plays the role of the driving force. Since Fs depends only on the order

parameter is, its initial rate of dissipation l~s is simply

Fs
=

-p(is) ~~~) (5)
d'fs

~

Under applied shear, Fs also includes the rate of energy density ai injected into the material by
the motor of the rheometer. Hence for the case of externally driven rheological flows, we have

ts
"

~Pl'fs) ~(~ + ~i. (6)

When writing equation (6), we again assume that all the energy injected by the rheometer is

ultimately dissipated by the relaxation of the mesoscopic structure of the complex fluid (so that

we ignore the portion dissipated in simply shearing the neat solvent). In stationary conditions,

Fs is zero and the relation between the stress a
and the potential Fs given by equation (Ii is
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Fig. 4. A plot of a(is)
us. is obtained froIn the Fs(is) in the two-phase region.

valid. Thus, in steady state conditions equation (6) yields the generalized viscous constitutive

equation

a =
11(is)I 17)

where the effective viscosity ~(is) is simply the inverse of the mobility factor pl'fs). Hence,

using our phenomenological mesoscopic description in terms of Fsl'fs), we recover the usual

macroscopic continuum description of flow based on viscous dissipation in a non-Newtonian

liquid subjected to steady shear. Note however that the effective viscosity we obtain depends on

the internal state of deformation is of the material. This is consistent with common intuition.

For instance, a solution of giant micelles in a strongly oriented state is much more fluid than

in the disordered, entangled state. Hence, the viscosity ~ is taken to depend explicitly on the

internal order parameter is, which in turn depends implicitly on the local shear rate 'i.

3. Inhomogeneous Flow Patterns

In the present framework, the flow pattern depends strongly on the shape of the potential
Fs(is). If Fs is concave upwards at all is, then a(is) from equation (I) remains monotonic.

If, on
the other hand, the concavity of Fs(is) changes sign in some range of is, then a(is) is

no longer monotonic [Fig. 4] and the sheared material will undergo an "internal transition"

at a unique characteristic stress at, determined by the solution of equation (2) subject to

equation (3) and the requirement of uniform
a =

dfs /dis.
The consequences for the state of flo~v. depend on

specific features of the effective viscosity
~(i~). We distinguish two qualitatively different cases: shear-thinning and shear-thickening
fluids. The case of shear-thinning is the most relevant to shear-banded flows of giant micelle

solutions and also provides the cleanest illustration of the non-equilibrium phase transition

phenomena that we wish to highlight. The case of shear-thickening is rather complex and our

analysis can only touch on a few qualitative aspects of the inhomogeneous flow behavior in

this limit. -Each case is discussed separately in the following.

3.I. SHEAR-THINNING Viscous LAW. Consider our two equivalent expressions, equa-

tion (I) and equation (7), describing the shear stress in steady flow conditions. By dif-

ferentiating each equation with respect to § using the implicit relation between § and is,
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Fig. 5. a) A generic non-monotonic a(I) for shear-thinning fluids obtained froIn equation (8); b)
an

analogous non-Inonotonic a(I) for shear-thickening fluids.

one obtains
_~

(~ =
1J(is)

) () I)j
(8)

For situations where the effective viscosity ~(is) is a monotonically decreasing function of is
("shear-thinning": d~/dis < 0), equation (8) immediately indicates that a non-monotonic

constitutive relation between a and I is recovered whenever the associated mesoscopic al'fs)
is non-monotonic. Figure 5a shows a plot of such a resulting non-monotonic a(I).

Now, the threshold of the "thermodynamic" instability [the spinodal point M in Fig. 4] is

characterized by:
~~

~' ~~~

In steady-state conditions, this point cannot be reached since the first order metastable regime
described above [the binodal transition point I in Fig. 4] will be met before. On the other

hand, the threshold of the "viscous flow" instability [the point M in Fig. 5a] is given by:

~~
=

o. (lo)
di

It is clear from equation (8) that, since d~/dis < 0, the two elastic and viscous instability
conditions, equations (9) and (10), must occur

together. This feature has an important con-

sequence: since the binodal transition point of Fs is always met before the spinodal point,
the viscous flow instability is always preempted by the first order "thermodynamic" transition

for shear-thinning fluids (except of course at the critical point where the first-order charac-

ter of the transition vanishes). Thus, the inhomogeneous flow regime of coexisting states for

shear-thinning fluids is uniquely defined by the value of the transition stress at selected above

by the effective potential. In case of an experiment at controlled strain rate, the constraint

on the macroscopic imposed shear rate is expressed by equation (3), which gives the relative

proportions ~ and 1 ~ of the high and low shear-rate bands (sketched by the classical lever

rule in Fig. 5a)
as

~ii + (1 ~)12
"

I (Iii
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us. is for an elastically stable shear-thickening fluid; b) the mechanical

flow instability resulting from this ails).

where the implicit relation I
=

ills is used to obtain ii and 12 from 'fsi and 7s2 Furthermore,

nucleation and slow growth kinetics are in all cases expected at the plateau in connection with

the "potential" barrier to be overcome in the metastable regime [cf. Fig. 4], in agreement with

the experimental results discussed in the introduction.

3.2. SHEAR-THiCKENiNG Viscous LAW. Consider now an effective viscosity ~l'fs) that

is a monotonically increasing function of is. In this case, the resulting picture of the flow

behavior is completely different from the shear-thinning case. The constitutive evolution of a

versus I is still given by equation (8), but with d~/dis > 0. This situation gives rise to the

generic pattern drawn in Figure 5b. There is a range of I for which a is not singled-valued
but triple-valued at a given value of I. To understand this situation, imagine progressively
increasing I in a strain-controlled experiment. Below ii, we remain on the lower branch and

the homogeneous flow is stable. At ii, at is reached and the first order elastic transition takes

place: germs of the viscous phase nucleate, sheared at a rate12 < ii However, since the total

imposed shear rate is fixed, the growth of the viscous "phase" accelerates the effective shear

in the more fluid "phase", forcing an increasingly rapid phase transformation. Due to this

feedback effect, the resulting stationary state is point 3 directly above point I on the upper

branch. Once above ii, we recover a stationary homogeneous flow on the upper branch. Thus,

upon increasing the shear rate, we only expect a discontinuous jump of the measured stress

from a, to a3 as 'i Passes through ii
When switching to decreasing imposed shear rates, just the opposite behavior is expected

for the stationary state, with no hysteresis. As soon as a
decreases below a3 on the upper

branch, we enter a metastable state since the corresponding point at the same shear rate but

on the lower branch stores less elastic energy Fs. The less viscous phase will therefore nucleate

and grow until the stationary homogeneous flow represented by point I is obtained.

Before closing this quick analysis of the shear-thickening situation, let us note in addition

that an abrupt stress jump at finite shear rate may well occur even in absence of true elastic

singularity. This is clear from equation (8), in which the denominator might vanish at some rate

io even
if da /dis always remains positive. In such a case, the a(I)

curve would asymptotically
become vertical at io as shown in Figure 6 and a stress jump should be observed. In this case

the viscous flow discontinuity takes place with no elastic singular counterpart.
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In all cases of shear-thickening fluids discussed above, stationary inhomogeneous banded

flows are suppressed. However, since we have restricted our analysis to flows with inhomo-

geneities in the shear gradient direction, we are unable to comment on the possible formation

of shear-banded flows with inhomogeneities in the velocity
or vorticity directions. Recent the-

oretical studies of flow instabilities in complex fluids based on the phenomenological coupling
of solution flow and solute concentration dynamics [19] have predicted a class of banded-flow

instabilities for shear-thickening fluids in simple shear geometries which consist of concentra-

tion and flow inhomogeneities in the vorticity direction. It is plausible that a more elaborate

multi-dimensional analysis of our approach could also produce such banded structures for

shear-thickening fluids, due either to viscous or elastic instabilities.

4. Discussion and Conclusion

Our work was motivated by widespread observations of unexpected features in shear-banded

inhomogeneous flows of complex liquids, particularly in solutions of giant micelles. These are

the robustness of the two-state banded regime and the slow nucleation and growth kinetics

of these banded phases at the onset of shear. Such features of the coexisting banded states

under shear are quite analogous to those of two-phase coexistence at an equilibrium first order

phase transition. In analogy with the equilibrium thermodynamics of driven systems, we

have proposed a phenomenological "quasi-thermodynamic" analysis of complex fluid systems
in steady shear conditions. This approach is based on a effective potential whose origin is

in the free energy stored in a viscoelastic material in steady shear flows. This coarse-grained
potential Fs is defined on a mesoscopic scale as a function of a strain-like order parameter is

describing the effective deformation state of the medium in steady flow conditions.

This notion of an effective non-equilibrium potential which determines the multi-phase flow

behavior of viscoelastic fluids is certainly not new. In particular, our approach shares many

features in common with quasi-thermodynamic theories of polymer rheology based on the

recoverable elastic strain stored in a deformed material [27, 28]. Since our description is based

on the notion of the stored free energy, the question arises of its applicability to complex fluid

systems which are not intrinsically elastic (as for the case of concentrated solutions of rigid
rods, for example ). However, as emphasized earlier, our non-equilibrium potential includes the

changes in configurational entropy that are induced in a structured complex fluid by flow. In

principle, it may contain both elastically recoverable and irrecoverable contributions. In the

case of rigid rods under high shear, for instance, excess free energy is stored in the entropy

reduction associated with the alignment of the rods in flow.

In our approach, we have assumed the existence a "non-equilibrium potential" and have

focused our attention on the general phenomenological consequences of this ansatz on the

flow behavior of complex fluid systems in steady-state flows. In this picture, a macroscopic
non-Newtonian constitutive law a(I) is slaved to an internal mesoscopic "non-equilibrium"

potential. In a shear-thinning situation, this implies that a non-monotonic a(I) necessarily
reveals a hidden "internal" transition. This point of view appears fruitful at least when com-

pared to the extensive data available for the CPSaI + brine system under shear [4,5]. In

particular it predicts that for such shear-thinning systems, mechanical flow instabilities are

preempted by a first-order (internal) transition. This first-order character is certainly one of

the most frequently observed features of our data. On the other hand, the consequences of

our quasi-thermodynamical picture in the case of shear-thickening systems are less sure and

certainly deserve further consideration.

The connection between our quasi-thermodynamic formalism and the conventional rheolog-
ical formulation in terms of a constitutive equation deserves to be highlighted. In principle, by
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eliminating the internal order parameter is between equations (I) and equation (7),
one does

obtain a relation directly connecting the measurable quantities, a
and 'i. This specifies the

constitutive equation of the material under consideration and in this respect the two descrip-

tions are indeed equivalent. Figures 5a and b are illustrations of non-monotonic constitutive

equations built up on the basis of a quasi-thermodynamic potential which admits two-phase

coexistence. If we further assume that the dependence of is on I is regular and monoton-

ically increasing (dis/di > 0), the equivalence of the shear-thinning instabilities described

by both approaches is apparent [since da/di
"

(da/dis)(dis/di)]. Conversely, the purely
viscous shear-thickening instability (without a "quasi thermodynamic transition" discussed

above would arise if is changes discontinuously as a function of I. Nevertheless, in spite of

these analogies with the classical constitutive equation approach, an essential ingredient of

our point of view is'absent in the classical approach, namely that the minimization principle
provides a consistent mechanism of state selection from the inherently degenerate set of me-

chanically stable steady-state banded flow patterns. Furthermore, through equations (I) and

Ii), is Provides a useful parametrisation of a and I. In some cases, a appears in the end as a

single valued function of I as in Figure 5a. But our approach can also handle cases in which

the dependence of
a on I is not single valued.

There is another principle that is sometimes employed for state selection in non-equilibrium
conditions, namely the principle of minimum entropy production. In case of a mechanical

instability represented by a non-monotonic constitutive equation (such as shown in Fig. I), this

principle provides an alternative rule for selection amongst the degenerate set of mechanically
stable two-state banded flows: the pair of states with the lowest value for a

(I.e. the horizontal

line with point b located at m in Fig 1) corresponds to minimum entropy production and hence

will be selected. It is clear that the principle of minimum entropy production gives different

predictions from ours and hence these two approaches are mutually exclusive. Furthermore,
it is plausible that a phenomenological model based on a minimum entropy production ansatz

could be constructed to explain both the observed robustness of the two-state banded flows

and the transient kinetics as well as our approach.
There are a number of limitations to our approach. For the sake of simplicity, we have

deliberately neglected the tensorial character of shear stresses and strains in this paper. Thus

our consideration is limited to uni-dimensional flow instabilities in the shear gradient direction.

In order to comment upon the nature of possible flow inhomogeneities in the velocity or vorticity
directions [19], our formalism must be extended to account for the multi-dimensional nature

of the flows. Moreover, in order to emphasize the phenomenological consequences of a non-

equilibrium effective potential, we have defined our "elastic potential" Fs and its conjugate
variable, the "stored shear strain" is, in a very general manner. This general framework in

principle incorporates many specific internal degrees of freedom, such as the average length of

the micelles and their local composition and orientation, which are usually not associated with

the intuitive mechanical notion of a shear strain. A disadvantage of this generality is that we

are unable to provide any guidelines for constructing Fs from first principles.
A recent hydrodynamic analysis of the shear-induced isotropic-nematic transition in ther-

motropic liquid crystalline fluids described an interface method for determining two-phase
coexistence under flow [29]. In this approach, the structure of an interface between two bulk

non-equilibrium phases is analyzed by including in the free energy appropriate gradient terms

of the order parameter. At a given temperature, the selected coexistence shear stress is that

for which the interface separating an isotropic phase and a nematic phase is stationary. This

approach has recently been extended to analyze flow-induced transitions in lyotropic liquid

crystalline fluids [40]. For the case of entangled wormlike micelles in shear flows, hydrodynamic
approaches based on non-monotonic constitutive relations for stress as a function of shear rate
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are also capable of predicting banded-flows of low and high shear rate fluid phases [18]. When

these constitutive models are supplemented by phenomenological interfacial terms penalizing
sharp spatial gradients in the viscoelastic portion of the shear stress, finite width bands at a se-

lected value of the viscoelastic shear stress are obtained [18,20], in accordance with experiments.
However, such analysis seems to predict the occurrence of a large, kink-like stress overshoot

prior to achieving the coexistence stress level, a feature not observed in experiments. This be-

havior is presumably due in part to the lack of a nucleation mechanism in such a flow instability
approach to banding. Nevertheless, this interfacial stability approach seems to be a very useful

paradym for understanding flow-induced non-equilibrium phase transitions in complex fluids.

In particular, we note that in the case of field-induced phase transitions in equilibrium sys-

tems (e.g. an Ising-like system in an external magnetic field), the interface approach outlined

above is equivalent to a variational analysis based on a bulk thermodynamic potential. We

hope that future studies will demonstrate some link between the mesoscopic description of the

quasi-thermodynamic approach and such kinetic approaches to the supramolecular structure

under flow of model systems such as living polymers or giant micelles.
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