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Abstract. The internal structure (the Inonolner density profiles) of weakly charged poly-
electrolyte brushes of different Inorphologies has been analyzed on the basis of the self-consistent-

field approach. In contrast to previous stu§ies based on the local electroneutrality approxiInation
valid for sufficiently strongly charged or densely grafted ("osInotic") brushes we consider the op-

posite liInit of sparse brushes which are unable to retain the counterions inside the brush. We

have shown that an exact analytical solution of the SCF-equations is available in the case of

a planar brush. In contrast to Gaussian Inonomer density profile known for "osInotic" poly-
electrolyte brushes we have found that weakly charged brushes are characterized by constant

Inonomer density. At the saIne tiIne free ends of grafted polyions are distributed throughout the

brush. Thus, the structural cross-over between polyelectrolyte "Inushrooms" and dense brush

regiInes is established.

1. Introduction

Equilibrium structure and properties of polyelectrolyte brushes, I.e. of the monolayers formed

by long polyelectrolyte chains tethered onto interfaces of different geometry and immersed in

solution, have been studied extensively during last 5 years II-?]. Interest to these systems

has been initiated primarily by the aims of colloid stabilization in polar solvents [8], design of

drug-delivery systems [9], etc.

Existing scaling theories ii-?] give us a valuable insight to the large-scale behavior of chains

in the polyelectrolyte brushes and to the dependence of such average characteristics as the brush

thickness, chains gyration radius etc. on the main molecular parameters (chain length, density
of grafting, degree of ionization of monomers). On the other hand, SCF approach made it pos-

sible to consider_internal structure of polyelectrolyte brushes and to calculate numerically the

distributions of monomers and the free chain ends in a planar brush [10-12]. Further progress

in the field manifested itself in the analytical SCF description of polyelectrolyte brushes. An

analytical SCF theory [5] was developed in the frames of the local electroneutrality approxi-

mation (LEA). This approximation assumes local compensation of net charge throughout the
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system. Whereas at high ionic strengths of solution LEA provides adequate description of

polyelectrolyte brushes in a wide range of grafting densities and degrees of ionization (the
so-

called "salted" brushes), at low ionic strengths, LEA is applicable only to relatively dense and

strongly charged brushes, providing high surface density of the immobilized charge [6,12].
As has been discussed in 11, 6,13], the equilibrium distribution of mobile counterions and,

consequently, the electrostatic field and the shape of the monomer density profile in the brush

depend strongly on the density of the immobilized charge.
If the immobilized charge density is sufficiently large (that is the case for comparatively

dense brushes formed by sufficiently strongly charged chains), then most of counterions are

retained inside the brush due to strong Coulomb attraction to the grafted polyions. In this

case the brush is almost electroneutral as a whole. Moreover, the Debye screening length
in the brush appears to be much smaller than the total brush thickness providing the basis

of the LEA. Stretching electrostatic force applied to the grafted polyions is proportional to

osmotic pressure of the counterions inside the brush. As a result, in the scaling approximation
the brush thickness is independent of the grafting density and of the brush geometry and is

equal to H % Naa~/~ where N is the degree of polymerization of grafted chains and a is the

fraction of charged monomers. Simple scaling arguments result in the monomer density profile

cosm IT)
r~

r~~~ More sophisticated SCF-analysis [5] shows that due to strong fluctuations of

stretching of every particular chain in the planar brush and due to the inhomogeneity of this

stretching, the monomer density profile in osmotic planar brush has a Gaussian shape. Recent

experiments [14] confirm this prediction.

In the opposite limit of sparse grafting (which is attainable for planar and cylindrical brushes)
the distance between grafted polyions is so large that the effect of intramolecular interaction

is negligibly weak. We can refer to this regime as to "charged mushrooms" regime. In this

regime each polyion is partially stretched, H
r~

N, due to intramolecular Coulomb repulsion
of charged monomers while counterions are spread in all the available volume of the solution

(in the case of the cylindrical brush) or localized in an extended region above the surface (in
the case of a planar brush) within a characteristic Gouy-ChapmJn length. This length is in-

versely proportional to the density of immobilized charge per unit area and exceeds by far the

dimension of grafted polyions. The orientation of polyions is random if they are grafted far

apart from each other. However as the distance between grafted points decreases the inter-

molecular interactions come into play causing orientation of grafted polyions in the direction

perpendicular to the grafting surface (see [6] for details).
As has been shown in [6,13], in pronounced contrast to neutral polymer brushes there is

no cross-over between "charged mushroom" and dense "osmotic brush" regime. Instead of

this, an additional intermediate regime appears where the stretching of polyions is determined

primarily by intramolecular Coulomb interactions while the surface density of immobilized

charge is still too small to retain counterions inside the brush. Thus, the brush is nearly
barely charged here. The corresponding range of grafting densities increases with a decrease

in the degree of ionization of grafted chains. Moreover, this range increases in the row planar
brush cylindrical brush spherical brush. In the case of a spherical brush, the ranges

of the "charged" brush and the "osmotic" brush regimes become comparable [13]. Thus,
for spherical polyelectrolyte brushes which mimic, in particular, polymer stars and star-like

micelles in aqueous solutions, the investigation of the "charged" brush regime becomes of

particular importance.

In our recent paper [13] we examined the equilibrium structure of non-planar (spherical and

cylindrical) polyelectrolyte brushes focusing at the effect of brush curvature and the effect

of charge annealing. This investigation was, however, carried out in the frames of the LEA

and, thus, covered the range of relatively dense grafting and highly charged chains. On the
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Fig. I. Polyelectrolyte brushes: planar (high), cylindrical (bottoIn left), spherical (bottoIn right).

other hand, in many realistic systems-the grafting density is not too high and the chains are

charged rather weakly. Typical example is a very dilute solution of polyelectrolyte stars with

few relatively short branches. In this case, the star cannot retain its counterions and LEA is

not applicable anymore.

The aim of the present paper is to examine the equilibrium structure of weakly charged
(non-osmotic) polyelectrolyte brushes of different morphologies. In order to do this we have to

go beyond LEA and to treat explicitly the Coulomb interactions inside the brush.

2. Model

We consider polyelectrolyte brushes formed by long weakly charged polyelectrolyte chains

grafted at one end onto an impermeable planar or cylindrical or spherical surface and immersed

in a salt-free solution, Figure I. The curvature radius rs of the sphere or of the cylinder is

supposed to be small compared to the brush thickness H.

Let N be the degree of polymerization of grafted chains and o be the fraction of elementary
charged monomer. We assume o to be small (we specify this condition below) and fixed,

a =
const (quenched polyelectrolyte). The total charge of one polyion is Q

"
eNa.

It is convenient to introduce the "effective dimensionality" d of the grafted chains in the

brush; d is equal to 1, 2 and 3 for planar, cylindrical and spherical brushes, respectively.
The density of grafting ad is characterized by the number of grafted chains per surface area

aj =
I/s, per unit length a2 "

1/2xh
or per unit angle a3 "

f/4x. The corresponding
immobilized charge density is qd "

Qad.

We assume that the Bjerrum length lB
"

e~ /kTe is of the order of a monomer unit length a

(e is a dielectric constant of the solvent). The solution contains mobile counterions compen-
sating the brush charge and ensuring total electroneutrality of the system.
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As has been shown in 11, 4,13], the Coulomb attraction cannot retain counterions inside the

brush when the density of grafting ad or the degree of ionization of grafted chains o or both

of them are small.

In the planar brush this is the case at s » N~a~/~alB. The latter condition implies that the

Guoy-Chapman length I G£ es
/QIB which can be interpreted as the thickness of the counterions

cloud above the surface exceeds by far the thickness of the brush. On the other hand, the

density of grafting must be sufficiently large to ensure predominance of intermolecular Coulomb

interaction over intramolecular ones that is the case at s « N~a~/~a~(lBla)~/~ [6].
In the cylindrical case the "counterion condensation" threshold can be estimated from the

condition Q/h % e/lB so that weakly charged brush regime is determined by the condition

aNlB « h « Naa~/~(lBla)~/~ [13].
For spherical polyelectrolyte brush of small curvature radius, rs « H, the intermolecular

Coulomb repulsion predominates over intramolecular one at any f > I while the counterions

remain essentially free if IQ « eH/lB, I.e. at f < a~~/~alj~ [13,15,16].
Hence, the width of the weakly charged brush regime increases as the fraction of charged

monomers decreases and as the morphology is changed from planar to cylindrical and then to

spherical brush.

We remark that in spite of comparative weakness of Coulomb interaction in the range of

grafting densities specified above, their effect on the brush structure is stronger than the effect

of excluded volume interactions between uncharged monomers [13] provided the solvent is not

too poor for uncharged monomers. Hereby we neglect the contribution of the excluded volume

interactions to the free energy of the brush.

As most of counterions leave the brush, we can use a simplified "capacitor" model [6] ac-

cording to which the charges of one sign (immobilized charges) are localized in the range of

rs < r < H, where rs is the radial co-ordinate of the grafting surface (rs
=

0 in the planar case

while rs is equal to the curvature radius in other cases) while the opposite charges (counterions)
spread infinitely far above the edge of the brush, I.e. in the range r > H.

In the framework of this capacitor model the conformational-dependent part of the free

energy of the system "brush + counterions" can be presented as a functional of normalized

density, g(r), of the free chain ends and of the local chain stretching E(r, r')
=

dr/dn. This

functional includes two principal terms: the elastic free energy of the chain stretching

~~~'~~~~)j ~~~'~~~~
=

£ /~ g(r') dr' /~' E(r, r') dr (i)
r~ r~

and the free energy of Coulomb interaction

~~~i~~ 8i~kT Iv ~~'~~~ ~~'

Using the Poisson equation Aifi
=

-4xeo#(r) If for the electrostatic potential ~ inside the

brush we can present this interaction term as a functional of the monomer density #(r):
~

Fcouiomb(~(r))
~

~ ~~ji /~ r~~~dr /~ r'~ ~#(r') dr')
~

~ (~d~~~~~~ ~~~kT 2a2
r, rs

where ~ =
(4/3)xlBa~a~ and function 7d(H) is defined as 71(H)

=

-N~H,72(H)
=

N~

In(I/H) and 73(H)
=

N2/H for planar, cylindrical and spherical brushes, respectively. The

monomer density profile d(r) is related to the normalized density of the free ends, g(r), and
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local chain stretching, E(r, r'), via conventional equation

4(r)
= ad

r~~~ /~ ()~ )l' (3)

In the case of a planar brush, d
=

I, equation (2) presents the zero-order term of the expansion
of the Coulomb free energy in powers of the small parameter H/I. The subsequent terms

describe the contribution of mobile counterions partially penetrating the brush. These terms

can be obtained from the self-consistent solution of the Poisson-Boltzmann equation inside and

outside the brush ii?]. Hereby we restrict our consideration to the limit of H/I « I when only

a negligibly small fraction of counterions is retained inside the brush so that we can neglect
their effect on the brush structure.

3. Equal Stretching Approximation

As the problem of minimization of the free energy functional defined by equations (1-3)
can

not be solved in general case analytically, we need some reasonable approximation. As has

been shown in [18], the internal structure of curved nonchargqd polymer brushes can be well-

described on the basis of the "equal stretching" approximation (ESA). According to this ap-

proximation, all the chains in the brush are assumed to be stretched similarly (although inho-

mogeneously in nonplanar geometries), I.e. all the free ends of the chains are assumed to be

localized at the outer edge of the brush, girl
=

dir H). For a planar brush this approxi-
mation is also known as the Alexander-de Gennes model [19, 20]. Though "equal stretching"
approximation underestimates the fluctuations of the free ends of the grafted chains, it pro-

vides correct scaling asymptotics for average brush characteristics and even gives reasonable

description for the polymeric profiles within the internal parts of the neutral brushes [18]. For

charged brushes which are stretched more than neutral ones, the fluctuations of the free ends

are expected to become even less important than for neutral systems. Thus, one can use ESA

as a reasonable approach to consider the charged brushes at least at initial stage.
In the frame of ESA the elastic contribution to the free energy can be expressed as a func-

tional of local monomer density

Feiastic141r)1~ 3
~

/~ r~~~dr
j~~

kT 2a2 ~

~,

#(r)

Let us introduce the "trajectory" Tin), specifying the position r of the n-th monomer above

the surface as
~

n(r)
=

aj~ / #(I')r'~~~ dr' (5)

r~

where n(rs)
=

0 (the ends are grafted onto the surface) and n(H)
=

N (the free ends are fixed

at the outer edge of the brush). In terms of "trajectory" r(n), the free energy functional for

the brush with fixed free ends transforms into

~ ~2 ~ ~~i~~
~'~~~~~ ~~~~ ~~i~

~~
~~ ~

~2'~~~~~~~~'
~~~

Introducing the rescaled variables

~ N' ~ (~adN3)1/d'
~~

3(~adN3)2/d kT ~~~
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we represent equation (6) in the following form

~d
=

C°nst +
j

~) +
l-i II d~

+ °d (8)

where pi
"

-y(1), G2
"

-logy(1), G3
"

1/y(I) and y(I)
=

H/(~adN~)~/~ Variation of 4~d

provides the rescaled trajectory y(~) described by the differential equation

~ d~2
~ ~ ~ ~~~

with the two boundary conditions, y(0)
= rs

/(~adN~)~/~ and y(I)
=

HI (~adN~)~/~
As follows from the structure of 4~d and equation (9), the minimum of the functional 4ld is

attained at some certain value of y(I). Thus, the equilibrium thickness Ho of a free, undeformed

brush should scale as

Ho Cf
(~adN~)~/~ (10)

This result is consistent with earlier scaling predictions 11, 6,13]. The numerical coefficient in

the dependence (10) depends on the model and geometry of the brush. For brushes with fixed

free ends, analytical solution of equation (9) is available only in the planar case, d
=

I. Here

we have rs =
0 and

~3 1
~~~~

6
~ ~

6
~ ~~~~

~~~~

Returning to the r, n variables, one has

and the corresponding profile of monomer units,

Ho
"

'~~
"

~~N~a~lBa~s~~, d
=

1 (14)
s~

9

and the corresponding chain trajectory

r(n)
=

'~ n~ +
~~

n
(15)

6s

s~

resulting in the equilibrium monomer density profile

4(r)
=

2~t~~(N~ n~(r))~~ (16)

is follows from equations (13) and (16), the monomer density is an increasing function of the

distance r
from the grafting surface. If the brush is free to acquire the equilibrium thickness

Ho, then the density diverges at the edge of the brush, I.e. at r =
Ho, that is related to the

zero tension at the free chain ends and their imposed localization at the edge of the brush. In

the case H > Ho corresponding to the situation when the chains in the brush are stretched
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Fig. 2. Profiles of polymer units #/#o in the undeforIned brushes as function of the reduced distance

t
=

r/Ho froIn the grafting surface.

additionally by applied external force the density remains finite at r =
H because now the

tension does not vanish at the ends of the chains.

For cylindrical and spherical brushes, d
=

2 and 3, only numerical solutions of equation (9)

are available. Numerical minimization of the free energy functional 4~d gives Ho la(~a2)~/~ N~/~

rd 0.628 for a cylindrical brush (d
=

2) and Hola(~a3)~/~N
rd 0.779 for a spherical brush

(d
=

3).
Figure 2 demonstrates the profile8 of polymer units #/jo

as functions of the reduced distance

t
=

r/Ho calculated according to equations (5), (7) and (9). Here jo
"

(dadNa~)/Hj is the

average concentration of polymer units and the profiles are normalized as

d
~~~~ t~~~dt

=
1. (17)

~
lo

As seen from Figure 2, in the internal region of the brush the monomer concentration decreases

with r in the cases of cylindrical and spherical brushes or weakly increases in the case of a

planar brush. Figure 3 shows the density profiles for cylindrical and spherical brushes in log-log
co-ordinates. We find that the decay rate of the profiles corresponds approximately to I/r and

I/r~ laws, respectively.
All the equilibrium density profiles in undeformed brushes presented at Figures 2 and 3

demonstrate the divergence near the upper boundary of the brush, I.e. at r =
Ho- As we

discuss below, this is related to the imposed fixation of all chain ends at the edge of the brush.

If the brush is stretched with respect to its equilibrium height, I.e. if H > Ho, the monomer

density remains finite at r =
H and decreases with increase in H. This situation takes place if

any additional stretching force is applied to the free ends of grafted chains.

4. Fluctuating Free Ends: Exact Solution

We now take off the ESA, I.e. we assume that free ends of the chains are distributed throughout
the layer so that the elastic and the Coulomb contributions to the free energy are described by
equations (I) and (2), respectively.

Since the interaction energy described by equation (2), is presented as a functional of the

monomer density only, we can apply the same procedure of minimization of the full free energy
functional as we used before (see for example [21, 22]) for neutral polymer brushes.
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Fig. 3. Profiles of polyIner units for cylindrical (a) and spherical (b) brushes from Figure 2 plotted
in log-log coordinates.

The variation of the total free energy with respect to the average local chain stretching
E(r,r') with the account of the condition of vanishing stretching at the free end, E(r',r')

=
0,

results in the universal dependence

E(r, r')
=

lx /2N)(r'~ r~)~/~

and in the following implicit equation for the monomer density profile:

~Fcouiombi4lr)1 =
A ~jj~)/r~ l18)

~

where the Lagrange multiplier A is to be determined using conservation condition. Substituting
equation (2) into equation (18), we obtain

/H r' ~2
r'~~~dr' #(r")r"~~~dr"

=

A'
~

r~. (19)
r

8N ~

Since parabolic potential is known to provide the dead zones (regions without the free ends)
in non-planar geometries [23], we restrict ourselves here only to the planar case d

=
I.

As follows from equation (19) at d
=

I, a weakly charged polyelectrolyte brush is character-

ized by the step-wise density profile

#
=

~~
(N~a~lBa~)~~,

r j H. (20)

This result is in pronounced contrast to previously obtained Gaussian density profile in strongly
charged, "osmotic" polyelectrolyte brushes. Since the "osmotic" and the "charged" brushes

correspond to two opposite limits of the counterions screening (the system is electroneutal in

the "osmotic brush" limit and is barely charged in the "charged brush" limit),
one expects

that in the intermediate case of partial screening, the polymeric profile will incorporate the

features of both, step-wise and Gaussian profiles. We shall focus at this case in our forthcoming
publication iii].
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It should be noted that constant density inside the charged brush does not mean that all the

chain ends reach the edge of the brush. Inverting equation (3) as integral equation for g(r),

we obtain the normalized density of the free ends

~
~2 ~l/2

~~~~ @
~ @) (~~)

0 0

which increases monotonically with r increasing.

The equilibrium height of the brush is equal Ho
=

(16/3x)N~s~~a~lBa~ that coincides with

the accuracy of the numerical prefactor with the value obtained above in the frames of ESA.

Comparing numerical prefactors in the expressions for the equilibrium brush thickness Ho
obtained under the constraint of ESA and in the case when the ends are really free to fluctuate,

we find that the brush thickness is larger in the latter case. The similar relationship has

been found for the thickness of neutral brushes in Alexander-de Gennes [19, 20] and SCF-

models [21, 22], respectively.

5. Discussion

The main common feature of all the density profiles obtained under the constraint of equal
chain stretching and presented at Figures 2 and 3, is an increase (divergence) of density at the

edge of a free (non-stretched) brush, H
=

Ho This divergence is, of course, a straightforward

consequence of the approximation g(r)
=

d(H r). Really, the force applied to the ends

of the chains in the free brush is zero and, consequently, the local stretching E(H,H) at

the ends is equal to zero as well. However, if all the ends reach the edge of the layer, the

monomer concentration at r =
H must diverge as +~

I/E(H,H). Physically, this means

that real equilibrium corresponds to a non-delta-functional distribution of the free chain ends:

due to the fluctuations in the stretching of particular chains in the brush only a negligibly
small fraction of chain ends reach the edge of the brush ensuring monotonous behavior of the

concentration profile.

It follows from equation (21) that if the ends of the chains are not localized at the brush

edge (at r =
H), but are free to fluctuate, they are found to be distributed all over the brush

thickness, 0 < r < H, although the maximum of the distribution (divergence in g(r)) is still

near the edge of the brush. However, as the fraction of the free ends localized at r =
H is

zero, the density profile remains finite and does not demonstrate any growth near the edge of

the brush.

As follows from equation (16), in frames of ESA the profile of polymer units near the grafting
surface is given by a constant value, #(r)

ci
I/~N~. This is in accordance with the exact

result given by equation (20). Thus, in the planar case one finds the consistency between the

approximate consideration based on the ESA and the exact solution: the profile of polymer
units #(r) scales as

r° in the internal part of a planar charged brush. One can expect the

similar tendency in the curved brushes: a decay in #(r) in the internal parts of cylindrical and

spherical brushes as shown in Figure 3.

Let us also mention, that constant monomer density in a planar weakly charged polyelec-
trolyte brush corresponds to a parabolic profile of the electrostatic potential ifi(r) which coin-

cides (in the absence of excluded volume interactions and with the accuracy of the factor o)
with a chemical potential of a monomer. This makes the result #(r)

=
const obtained in the

frame of SCF approach more transparent.
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