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Abstract. Linear and nonlinear issues in the problem of the subcritical transition to turbu-

lence are examined on the basis of a full phase-space analysis of a simplified model that mimics

hydrodynanJics governed by the Navier-Stokes equations. The simplicity of the model, which

involves only two variables and displays both non-normal linear terms and energy conserving
nonlinear terms, allows us to perform a complete study. This study strongly suggests to take

with care conclusions extrapolated from "local" arguments deriving from linear stability the-

ory, since actual stability boundaries can be decided only from the knowledge of the relevant

attraction basins, which is "global" in essence.

1. Introduction

In spite of more than a century of theoretical and experimental efforts, the transition to turbu-

lence in some hydrodynarnical flows of current interest is still far from being fully understood.

This is so mainly because the most useful tools that can be used remain based on linear and

weakly nonlinear concepts. As a matter of fact, much progress has been made for instabili-

ties where the basic state becomes unstable with respect to a new solution that branches off

continuously so that the bifurcated state remains within reach of a weakly nonlinear pertur-
bation theory. Classical examples are Rayleigh-B4nard cells in thermal convection and Taylor
vortices in the Couette flow between differentially rotating cylinders. The cleanest case is then

when subsequent instabilities organize themselves in a cascade where each step can be treated

similarly, leading to a Landau-Ruelle-Takens type of picture [1, 2]. Unfortunately, other flows

of comparable interest behave more wildly and weakly nonlinear analysis tells us very little, or

nothing at all, about their transition to turbulence. Indeed, when the bifurcated state is not

close to the basic state perturbation expansions may not converge, which leaves the door open

to a direct transition to turbulence [1]. This is even the only possible scenario when the flow

is known to remain stable against all infinitesimal perturbations: new relevant solutions then

appear generically "from nothing" making a thorough understanding of the transition more

delicate.

In this context, the plane Couette flow and the Poiseuille pipe flow, both in the latter class of

systems, are of special concern. In practice the natural transition ii. e., from irregularities of the
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basic flow and without any kind of forcing) hardly leads to reproducible results and it turns out

preferable to trigger the transition by generating turbulent spots, as done earlier for the plane
Poiseuille flow or the Blasius boundary layer [3,4]. Results in this vein have been obtained only

recently, either by direct numerical simulations of the Navier-Stokes INS) equations in the plane
Couette flow case [S] or in the laboratory. In particular, a critical perturbation amplitude below

which the flow remains stable was shown to exist first in the plane Couette flow case [6] and later

in the Poiseuille pipe flow case [7]. At about the same time, special finite amplitude solutions

of the NS equations have been obtained by different contorted ways [8-10]. Simultaneously, a

theoretical interpretation of the origin of the nonlinear instability has been put forward in terms

of a "bypass mechanism" [11] resting on the transient linear amplification of the kinetic energy
contained in the perturbations by a non-normal linear stability operator [12]. In this paper,

we intend to clarify some of the issues by setting the problem in the framework of dynamical
systems and studying a simple model that displays such relevant features as energy conservation

by the nonlinearities or a non-normal linearized dynamics. Before presenting the model and

analyzing its phase-space structure in Section 3 we make some general preliminary remarks

about the different concepts of stability in Section 2. Section 4 is devoted to a discussion of the

problem of transient energy growth within our model and somewhat beyond. Section 5 deals

with the determination of nonlinear instability thresholds in case of a subcritical transition

to turbulence under natural conditions or by triggering, taking advantage of the phase-space
analysis in Section 3, and discusses some consequences for experiments. Our conclusions are

summarized in Section 6.

2. Local and Global Stability, Super- and Sub-Criticality, and the Energy

At this stage, let us situate the problem of the transition to turbulence in a sufficiently general
framework and first recall that the stability of a given basic state of a flow controlled by

some parameter r
(usually the Reynolds number) is understood as its ability to recover from

perturbations. Generally speaking stability properties depend on r and, assuming that r

increases with the distance to the rest state, one defines first a global stability threshold rg by
the property that, for

r < rg, perturbations of arbitrary shapes and "amplitudes" all decay
asymptotically as time tends to infinity: the flow returns to the basic state which is therefore

~nconditionaiiy stable. On the other hand, a threshold of ~nconditionai instability, ri, can
be

obtained from linear stability analysis. It is characterized by the fact that for r > ri there

exists at least one
(infinitesimal) perturbation against which the basic state is unstable. Clearly

we must have rg < ri but, whereas ri can be derived from a definite strategy, rg is not easy

to obtain since all possible perturbations have to be tested for, and not only infinitesimal ones

whose initial dynamics are governed by a linear operator.
To fill the gap between rg and ri one then usually tries to determine the possible solutions

in vicinity of ri by means of one or another variant of expansions in powers r ri. This leads

to the concepts of s~percriticai and s~bcriticai bifurcations. Indeed, two situations may occur

generically: either the new solutions appear beyond the critical point and the system bifurcates

continuously toward a stable state (supercritical case, Fig. 1a) or the new solutions already
exist before the critical value is reached (subcritical case, Fig. 1b). In the latter case they

are unstable and nothing stable branches off the linearly unstable solution (~). The quantity
A in ordinate of these figures, which is just the amplitude of the most unstable eigenmode
of the linear stability problem, can be obtained by an expansion at lowest non-trivial order.

(~) For simplicity, we omit the case of a transcriticai bifurcation which corresponds to an exchange of

stability between two solutions.
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Fig. 1. Bifurcation diagram in different cases: la) locally supercritical; 16) locally subcritical (at
lowest order); (c) saddle-node arising from locally subcritical (including higher orders); (d) saddle-node

from a general standpoint; (e) globally subcritical; if) globally supercritical. In these figures full lines

represent stable states and dashed lines unstable states. A is the amplitude of the bifurcated state.

D represents the distance to the basic state when no well-defined mode can be identified, e-g-, when

the bifurcated state is turbulent (see text).

Of course in the subcritical case the system can find another stable solution, but only at finite

distance from the initial state and this new solution usually "disappears" through a saddle-

node bif~rcation at some value mm of the control parameter. Accordingly, in the range [mm, ri]
two linearly stable solutions coexist, the old and the new

(Fig. 1c). In principle, the bifurcated

solution can still be obtained by pushing the perturbation expansion at higher orders.

When the basic state is linearly stable for all r, the situation is likely to be as in Figure 1d.

The quantity D in ordinate is now just some convenient measure of the "distance" to the

basic state but the drawing suggests that the new solutions appear through a saddle-node

bifurcation as in Figure 1c. Other cases are also possible, such as that in Figures 1e or 1f,
where the basic state bifurcates supercritically at ri but experiences instability with respect to

finite amplitude perturbations beyond some specific threshold. Cases (d) and (e) or
if) clearly

call for an extension of the strict meaning of super/sub-criticality that should be reserved

for cases (a) and (b). To put things more clearly, one should call cases (a) and (b) "locally
super/subcritical" to emphasize the fact that the search for a bifurcated solution (stable

or

unstable) is performed in the neighborhood of the basic state only. By contrast, the situation

displayed in cases Id) or (e) is characterized by the absence of non-trivial solution in the

immediate vicinity of the basic state for values of the control parameter close enough to the

linear threshold. Accordingly, this search has to be performed in the full phase space, hence

the term "global." So, the system can be said "globally subcritical" as soon as an attractor
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coexists with the stable basic state; otherwise it is "globally supercritical." Subfigure 1e thus

displays the case of a globally subcritical system where the basic state experiences a locally
supercritical bifurcation, whereas subfigure 1f represents a globally supercritical system (~).

By contrast with notations in Figures 1a-c, the ordinate in Figures 1d-f was labeled D to

convey the idea that the "distance" from the basic state could no longer be measured using
the amplitude A of a specific mode in the system, understood as the "order parameter" of the

bifurcation. To be an appropriate distance, D just needs to be zero when the observed state

is indistinguishable from the basic state and strictly positive otherwise. But supplementary
properties would clearly be appreciated, and especially a simple physical interpretation. In

this respect, the simplest, a prtort meaningful, quantity is the "energy" E contained in the

perturbation, formally defined
as half the square of the Euclidian norm of the difference between

the perturbed solution and the basic state. In our
hydroiynamic context, this energy is thus

nothing but the kinetic energy (per unit mass) contained in the perturbation v'
= v vo,

where vo is the basic flow and v the observed solution:

E
=

/
(v')~ d3r, (1)

~ being the domain in physical space where the flow develops.
Working with E is the essence of the energy method (3) in its simplest form [13]. The stability

of the basic state can then be discussed from the evolution of E and a threshold rm can be

defined by the condition that for
r < rm the energy contained in any perturbation decays

initially. This condition implies that it decays all the time, hence the name of monotono~s

stability threshold land the subscript "m" for rm. Thresholds rg and rm relate to the behavior

of arbitrary perturbations to the basic flow in two different limits, "t ~ oo" and "t
~J

0"

respectively, so that monotonous stability implies global stability but not the converse, I.e.,

rm < rg. Indeed, while the perturbation must eventually relax if the system is globally stable,
nothing forbids its energy to grow initially. All what can be said from this general, so far

unspecific, standpoint is summarized in Figure 2 [13,14].
In hydrodynamics, it turns out that the Navier-Stokes nonlinearity conserves (~) energy E

defined by (1) so that rm can be computed from the linear stability problem. Let us denote the

corresponding operator by Lr. Implicit in expression (1) is the definition of a canonical scalar

product that may serve us to determine the adjoint L) of Lr. When L~ is normal with respect

to this scalar product, I.e., L) and Lr commute with each other, the linear instability threshold

ri and the monotonous stability threshold rm coincide (rm
=

ri) and, since rm < rg and rg < ri,

one has rg = ri so that the (primary) bifurcation is globally supercritical [15]. When Lr is

not normal for this scalar product, which is the general case, nothing more can be said on the

basis of this "classical" energy and one is left with the inequalities rm < rg < ri. However the

conditional stability of the basic state can still be discussed in terms of a different, "exotic",

energy E defined as a positive definite quadratic form encoding an appropriately defined scalar

product. While I starts by increasing for some set of (even infinitesimal) initial perturbations,

(~) Note however that the distant solution branch bears, in general, no relation with the instability
mechanism that governs the local bifurcation. The fact that the threshold associated to the distant

branch is below or above the linear threshold is thus likely to be a matter of circumstance. The

question is then rather whether the distant branch may be "dangerous" with respect to the basic state.

Conclusions can be slightly refined in the case of energy-preserving nonlinearities to be examined later.

(~) More sophisticated approaches would involve appropriate generalized energies known as Lyapunov
functionals.

(~) This is true provided that the perturbation fulfills periodic or homogeneous boundary conditions.
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Fig. 2. The asymptotic behavior of perturbations to the basic state as a function of their initial

(classical) energy go and of the value of the control parameter r
leads to the definition of thresholds

for monotonous stability rm, global stability rg, and linear instability n.

quantity E though no longer conserved by nonlinear terms always decreases provided it is

initially sufficiently small, which is another way to express that the basic state is still linearly
stable (see later Fig. 7).

The possibility of transient growth of the classical energy when the linear stability operator
is non-normal has been used to discuss the transition to turbulence in globally subcritical

cases [16]. The argument was that if the departure from normality is large, small perturbations

can be amplified up to a stage where nonlinear interactions trigger a non-trivial response. This

appealing approach has been criticized recently, partly on the basis of the fact that the models

used to demonstrate the phenomenon were of limited hydrodynamical relevance owing to an

insufficient account of the feedback between the basic flow and the perturbation, leading to

an overestimation of the role of non-normality [17]. In this paper, our aim is also to question
this approach, but from a perhaps even more conceptual standpoint of phase-space analysis of

dynamical systems. In this framework, stability properties are analyzed in terms of attractors.

For example, a time-independent basic state is a fixed point and, clearly, global stability

IT < rg) means that the attraction basin spans the full space of accessible states. By contrast,
if the basic state is linearly unstable IT > ri) its attraction basin shrinks to nothing. In the

range rg < r < ri, the attraction basin of the basic state is finite and stability is essentially a

conditional concept that requires knowledge of the structure of the full phase space.

In the general case, local stability properties derive from the tangent dynamics accounting
for the behavior of the system in the immediate vicinity of the basic state, which is faithful as

long as the nonlinearities are truly negligible. On the other hand, global stability of the basic

state can be decided only after trajectories starting everywhere in the phase space have been

studied and the separatrices delineating the attraction basins have been determined, which is

a fully nonlinear highly non-trivial task outside the possibilities of a linearized analysis around
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the basic state. One of the aims of this paper is to illustrate this approach in terms of dynamical

systems using a model containing some features of the problem of the subcritical transition

to turbulence, but sufficiently simplified to be solvable by hand. In light of this study we

shall argue that this transition cannot be approached by extrapolation of linear properties

in the nonlinear domain and further discuss potential risks of misinterpretation of current

experimental procedures to trigger the transition.

3. The Model and its Phase Portrait

To serve our illustrative purpose the chosen model should be both simple and non-trivial, while

keeping some features of the hydrodynamic problem. We take a variant of the two-dimensional

system used in [14] to introduce some elementary concepts of the theory of dynamical systems.
This system of two ordinary differential equations for two variables X

=
(Xi, X2 formally reads

dX/dt
=

F(X). The vector field F
=

(Fi (Xi,-K2),F2(Xi,X2)) expands as a linear part +

quadratic nonlinearities F°) that conserve the (classical) energy defined by E
=

) (Xl + Xl)

ii. e., Xi F)~~ + X2F)~~ e 0). The components of X are understood as the amplitudes of modes

with specific spatial structures. Assuming that this spatial structure has been analyzed in

Fourier modes, we retain the idea that the nonlinear coupling between them results from a

k 2k interaction via an energy-conserving Burgers-like advection term v0xii. Then, assuming

that the primitive field u is truncated as u =
Xi sin(kx) + X2 sin(2kz),

we simply get F)~~
=

)k,KiX2 and F)~~
=

)kX), which indeed fulfill the required energy condition. For the

linear part, we consider two real eigenvalues si and s2 but we do not assume that it is diagonal
in Xi and X2 as done in [14]. After appropriate rescalings of time and the dependent variables,

we thus take:

~(~ =
Fi (Xi, X2)

=
siXi + X2 + Xi X2, (2)

~(~
=

F2 (Xi, X2)
=

s2X~ Xl, (3)

where si and s2 are functions of the control parameter (the Reynolds number in our hydrody-
namical context ). The state Xi

"
X2

=
0 is the basic state of interest and we can assume that

it remains linearly stable for all values of the control parameter (si and s2 always negative),
which would correspond to the plane Couette flow or Poiseuille pipe flow case, or that it can

become unstable with respect to one mode (e.g., si may become positive while s2 remains

negative), which would be appropriate for the plane Poiseuille flow.

Similar phenomenological models have been introduced previously with the same purpose of

testing ideas about the subcritical transition to turbulence. For example, the model introduced

by Trefethen et al. [16] differs from ours only by the nonlinear term which is also quadratic but

is centro-symmetric and non-analytical, and by some specific assumption about the behavior

of the eigenvalues with the control parameter. Its natural extension to three dimensions [18]

~N-as severely criticized in [17] by Waleffe who considered some modifications able to account

for the feedback of the perturbation on the mean flow [19]. Though our model suffers from the

same deficiency as those in [16,18] we keep it since our aim is not to fit with the hydrodynamic
reality but rather to discuss some non-trivial features associated with subcriticality in simple

terms. The model proposed by Gebhardt and Grossmann [20] living in a four-dimensional phase

space is more complicated. Its interest lies in the fact that. like for the three-dimensional model

in [18], parameter sets can easily be found for which the basic state is in competition with a

chaotic regime. A simpler model provides a better insight of the dominant effects which we
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feel are captured in (2-3). For example, one can check ii) that orbits never escape to infinity
provided that the second mode is stable (s2 < 0) and iii) that attractors are always fixed

points, which makes the analysis particularly easy. The first result derives from a mere change
of variable (X~

=
~j + a~; I

=
1, 2). Indeed, the Y-energy ) (Yi~ + ~j~) always decays initially

provided that it is sufficiently large and si + a2 < 0 (even if si > 0, I.e., when the first mode is

unstable) and (1- al )~ 4(s2 (si + a2( < 0, so that a sufficiently large disc centered at jai, a2)
is an "absorbing zone." As to the second property, one easily sees that periodic behavior is

excluded because, according to Bendixon criterion, a limit cycle cannot exist in a phase-space
region where the divergence of the vector flow keeps a constant sign. As a matter of fact, we

have div F
=

0xiFi + 0_y~F2
=

X2 + (si + s2) and, all along the line X2
=

-(si + s2), the

vector field F is directed towards the half-space X2 < -(si + s2) so that all trajectories end

in this domain where div F < 0.

The phase portrait of system (2-3) is then determined from its fixed points and the position
of invariant manifolds attached to them. The fixed points are the roots of

0
" Sl Xl + X2 + XlX2

,
~~~

0
#

82X2 ~~
~~~

Inserting the solution of is), X2
"

X)/s2, into (4) we get:

Xi (Xl + Xi + sis2)
=

0, (6)

which yields either one or three fixed points depending on the value of sis2 The actual control

parameter in the problem is therefore A
=

1- 4sis2 We have one fixed point O
=

(0, 0) when

A < 0 and three fixed points O
=

(0,0), and M(+) with coordinates (X)~~,Xj~') when

A > 0. The coordinates of the nontrivial fixed points are given explicitly by

x)+'
=

(-i
+

4)
,

x)+'
= (x)+1)~ (7)

2 s~

They emerge "from nothing" at finite distance from the basic state for A
=

0 where they

are marginally degenerated (saddle node bifurcation). Figure 3 displays the Xi coordinate of

the fixed points as a function of A, solid (dashed) lines indicating linearly stable (unstable)
solutions as discussed below.

The origin O corresponds to the basic state. It is always a fixed point and, provided that

A < 0 it is the only one. Its local stability properties directly derive from (2-3) after dropping
the nonlinear terms. Eigenvalues are obviously si and s2, which shows that D is stable as

provided that they are both negative. The linear stability study of the non-trivial fixed points

is straightforward and needs not be discussed in detail. Let us just mention that for A > 0,

their local stability is determined from the roots of the eigenvalue equation:

In the most interesting range 0 < A < 1, the sum of the roots is negative while their product

is negative for solution + and positive for solution Solution + is therefore always

a saddle with two real eigenvalues of opposite sign, whereas solution " " is stable but can be

a node or a focus depending on the sign of the discriminant of (8).
The next step is the determination of invariant manifolds that extrapolate the eigendirections

at the different fixed points. We shall return to this problem here and there but, for the
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Fig. 3. Bifurcation diagram of the model: the saddle-node bifurcation takes place at A
=

0. The

basic state experiences a transcritical bifurcation at A
=

1, where it exchanges its stability with the

formerly-unstable nontrivial fixed point.

moment we show the numerically-determined phase portrait of our system in the different

cases of interest in Figure 4.

Subfigure 4a corresponds to A
=

-0.2 < 0 (with si =
-0.3, s2 =

-1),
so that the origin is

the only fixed point. In all the other cases the system has three (marginally two) fixed points
but, as seen in subfigures 4b, 4c, and even 4d, the global aspect of the phase portrait in subfigure
4a is preserved. The most striking feature to be observed is the piling-up of trajectories along

a "slow manifold" that does not vary much in the vicinity of the bifurcation point. Further,

one
has to approach the origin in order to discover the differences, as understood from the

close-ups in Figure S.

Considering more particularly case (c) corresponding to 0 < A < 1, we see that the attraction

basins of the origin O and point M<~l
are separated by the stable manifold of point M(+I

We can also notice that the unstable manifold of M(+I connects O on one side and M(~)
on

the other.

In the marginal case, A
=

0, the non-trivial fixed point M(~~l is degenerated with mixed

characteristics (saddle-node, hence the notation). From the phase portrait given in subfigure b

one
understands that M(~~' attracts trajectories initiated in the outer domain limited by its

stable manifold, while those initiated in the inner region reach the origin.

The difference between cases 0 < A < and < A is understood entirely on the basis of

an exchange of stability between O and M<+I, as seen in subfigure 4d. The origin is now a

saddle and the non-trivial fixed point M<+I is a stable node, the attraction basin of which is

the region inside the loop drawn by the stable manifold of the origin. In fact M<~l is now a

stable focus so that the unstable manifold of the origin now coils up around it, but this is not

visible at the scale of the figure owing to the large damping rate of trajectories in that region
of phase space (at any rate, this is irrelevant to the issues at stake).
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Fig. 4. Phase portrait of the fully nonlinear problem (s2
=
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b)
si =

-0.25, A
=

o-o; c) si =
-0.1875 A

=
0.25; d)

si =
+0.10, A

=
+1.40. Dashed lines limit the

sector where the classical energy is amplified (see 4).

4. Transient Energy Growth

Let us come back to global stability concepts as applied to the basic state. Studying the

evolution of the (classical) energy of a perturbation around the basic state E
=

)(X] + Xl),

we obtain immediately for the full problem the same result as for the linearized problem, I.e.,

((
=

sixj + >"1-K2 + s~xj, (9)

owing to energy conservation by the nonlinear terms. It is readily seen that this quadratic form

is definite negative for all initial conditions (Xi, X2
"

p-ii) provided that the discriminant
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1.40. Stable and unstable manifolds of the different fixed points are

indicated by thick lines.

of si + p + s2p~ is negative, which yields again A < 0. As long as this condition is fulfilled,
the basic state is monotonously stable, otherwise there is a sector in phase space defined bv

p<-) < p < p~+I with

p<+'
=

(1~ /~) /2(s2( (10)

~N.here the energy increases. A slightly- misleading feature of
our model is that the loss of

monotonous stability occurs at the same time as the birth of the pair of nontrivial fixed points
and hence the loss of global stability. This can be shown to be specific of two-dimensional

models with nonlinearities preserving the energy, for which the condition that dE/dt
=

0

has non-trivial solutions implies that the system has non-trivial fixed points (the reciprocal
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is obvious). However this is no longer general in higher dimensions, as one can understand

from the consideration of the celebrated Lorenz model [21]. Indeed, for this well-known three-

dimensional system the origin is not monotonously stable while it remains the only fixed point
for

r < 1, and bifurcates supercritically at r =
1 (~).

The reason for energy growth is easily traced back when considering the phase portrait of the

linear stability operator at the origin since E is just half the squared length of the vector GM

where M represents the state in phase space at a given time. Trajectories can be guessed from

the orientation of the eigenvectors. For eigenvalue si we can choose X)~'
=

1 and ~Kj~~ =
0,

and for eigenvalue s2, X)~'
= -~ with ~ =

1/(si s2) and Xj~~
=

1. When si and s2 are

both negative and ~ is sufficiently large, trajectories may give the impression to run away from

the origin (energy growth) though contravariant coordinates of the linearized system in the

eigenbasis decay exponentially. This is due to the fact that the eigenvectors are not orthogonal
with respect to the canonical scalar product (X(Y)

=
,KiYi +X2Y2, owing to the non-normality

of the linearized operator, as measured by
~.

Figure 6 displays the phase portrait of the linearized problem for A < 0 (a), A
=

0 (b),
0 < A < 1 (c), and 1 < A id). Transient energy growth leaves no apparent trace in subfigures
6a-c and we have to wait for the fixed point to become unstable, I.e., si > 0, A > 1, subfigure

6d, to observe a qualitative change. This is confirmed by constructing an appropriate '"exotic"

energy that always decays, as it should, in the vicinity of
a stable fixed point. Indeed taking

I
=

(i)
+
I])

,

(11)

with

Xi
=

Xi + ~,K2
,

X2
=

X2
:

(12)

one obtains

(
= si

RI + s2Xj
~ (Xl 2~i)X2 + (~~ 1)iiX] + ~ijj (13)

t

Hence dildt is negative provided that si and s2 are negative and iii,12)
are sufficiently small,

so that the quadratic terms dominate the cubic ones. This property reflects the local stability
of the basic state. Transient growth of the classical energy is in fact the trace of secular growth
in the case of degenerate eigenvalues, as accounted for by a non-diagonal Jordan canonical

form (~ ~ oo). But even in this case an appropriate always-decaying exotic energy can be

defined: for our model, assuming si = s2, the quantity E
=

) (Xl + ~X]), will display the

searched property provided that ~ > 1/4s(. This can be easily extended to higher dimensions

and applied, e.g., to the three dimensional model used in [18].
Observable E thus gives a distorted view of the relaxation of small perturbations, which f

does not, as it encodes the stability properties of the basic state (see Fig. 7).
The real problem is whether or not E regains some interest for the complete nonlinear prob-

lem since, as already mentioned, some ambiguity comes from the fact that in hydrodynamics
nonlinearities conserve the "classical" energy contained in the perturbations. We should first

(~) The Lorenz model reads: dXi /dt
=

a(X2 Xi ), d.K2/dt
=

r-Vi X2 -,KiX3, and dx3/dt
=

Xi X2 -b,K3; r is the natural control parameter; a
and b are two parameters usually taken as 10 and 8 /3,

respectively. The classical energy is governed by de /dt
=

-a-K) + (r + a),12,Ki Xl b,K(, which is

definite negative provided that ail jr + a)X2Xi +Xj is definite positive, I. e., for jr +a)~ < 4a. This

is clearly not the case for
r > 0 and a =

10. So the energy is not monotonously decaying for some initial

conditions. In the same time, a fixed point fulfills ii
=

.K2 but in that case de /dt
=

-(1- r).K) bX(,
which is definite negative for

r < 1 as expected.
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Fig. 6. Phase portrait of the linearized problem for s2 "
-1.0: a)

si =
-0.30, A

=
-0.20;

b) si =
-0.25, A

=
o-o; c) si =

-0.1875, A
=

+0.20; d) si =
+0.10, A

=
+1.40. Here we denote

the coordinates as
Xl and Xi instead of Xi and X2 to stress the fact that they are infinitesimal

perturbations living in the tangent plane. Eigendirections are marked by thicker lines. The sectors

where the classical energy is amplified, given by condition (10),
are indicated by dashed lines. They

just open at A
=

0 and widen as A increases up to encompass the Xi direction when A > 1.

insist on the fact that considerations about transient energy growth derived from the analysis
of the linearized problem are mostly misleading from a concept~al point of view. In the study
of complicated realistic problems, technicalities obscure the fact that, in a temporal setting,
all modes are damped in the absence of eigenvalues with positive real part (as further evi-

denced by using the appropriate "exotic" energy). But one should not attribute any special

role to initial states with maximum initial energy growth or at the origin of trajectories with

maximum overall energy growth. In our simplistic model such states have obvious geometrical
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1-o

"exotic"

0 2 4 6

Fig. 7. a) Evolution of the "classical" and "exotic" energies E and I
as a function of time for

infinitesimal perturbations and A
=

0.20 (dashed line), A
=

0.36 (long dashed), and A
=

0.9 (solid
line).

interpretations: as already pointed out, condition de /dt
=

0 in (9) determines sectors in phase
plane limited by rays p =

X2/Xi
=

P~~~, given by (10), which implies that trajectories enter

and leave these sectors orthogonally to the corresponding rays (~). Maximum instantaneous

amplification of E occurs along some intermediate ray and "optimal" states belong to the en-

trance rays, the overall amplification being measured by the ratio of the distance at the exit

of the sector to the distance at the entrance.

Clearly, even though the amplification ratio may be very large, there is nothing special about

these trajectories in a strictly linear context (Figs. 6a-c). This fact has no connection with the

amount of energy they contain at the beginning, that is to say the initial distance to the origin,
since linearity implies similarity along rays. Furthermore other trajectories may or may not

experience analogous transient linear growth depending on the sector in which they start. At

any rate, energy growth can take place only at the expense of the basic state, which in general
tends to decrease the effective non-normality of the linear stability operator [17] as soon as the

energy contained in the perturbation is not infinitesimal in the mathematical sense. Stated in

the words of dynamical systems theory, it is not legitimate to extrapolate the tangent dynamics

at the origin to the full phase space. Indeed, comparing Figure 4a with the corresponding linear

portrait in Figure 6a, we see that nonlinearities already have marked effects, even below the

threshold for monotonous stability.
In fact, the idea of optimal states corresponding to "dangerous" initial conditions relates to

the nonlinear exploitation of these linear results. However, one can readily solidify this idea

in our case by considering the trajectory that starts at the intersection of the stable manifold

of the unstable fixed point M(+) and the ray p(+) with Xi < 0, see Figure Sc. Trajectories
starting along the same ray but with a smaller energy decay to the origin, whereas those with

a larger energy go directly to M(-) While it is clear that this state is "optimal" in the desired

(~) Since dE/dt
=

Xifi + X2F2, condition dE/dt
=

0 means that the vector field (Fi, F2) at point
(Xi, X2 is perpendicular to the rays X2/Xi

= p~*~
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sense, from the comparison between linear and nonlinear phase portraits in Figures 6 and 4,
it is also clear that this has little to do with linear properties but much more with the fact

that nonlinearities allow for -multiple solutions, which in turn puts severe constraints on the

dynamics via the stable and unstable manifolds attached to them (~). It can also be noted

in passing that trajectories starting along the ray p(+) but with Xi > 0 do not go directly to

M(~) but always experience a period of decay when they leave the energy-amplification sector.

Their ultimate fate depends also on their initial energy but it cannot be determined so easily
since it rests on the precise position of the same manifold but at a

"large" distance of its fixed

point.
To conclude this discussion, let us remark that the very term of "mode" is not all-purpose but

should be reserved to states that preserve themselves in some sense. The special trajectories
exhibited above should therefore not be called "modes" by contrast with eigenmodes of the

linearized problem that genuinely preserve their shape. In a nonlinear context the term is

most appropriately fitted to "states belonging to the slow manifold" of the origin (conspicuous
in Fig. 4). Self-preservation would then be accounted for by a nonlinear relation that could

be obtained by "adiabatic elimination" of fast variables so that the corresponding manifold

naturally arrives at the origin along its least stable eigendirection (here Xi with si < 0 and

(si( < (s2(). Such nonlinear modes are therefore not special combinations of linear modes

governed by the linear operator and cannot be obtained by a linear calculation but the idea

gets reinforced that the most slowly relaxing linear modes are of fundamental importance to

the transition problem.

5. Implications for Experiments

In this section we attempt to make a connection between the output of simple models such

as
(2-3) and the nature of the transition to turbulence in globally subcritical hydrodynamical

systems such as Couette/Poiseuille flows.

In that our perspective rests on the qualitative theory of dynamical systems, the global
ii. e., nonlinear) stability of the basic state thus depends on whether allowed perturbations can

be outside its attraction basin, which is therefore the relevant object to explore. This usually
amounts to determining the separatrices, I. e., the stable manifolds of unstable limit sets, a fully
nonlinear problem difficult to grasp empirically from laboratory experiments. In order to clarify

this issue, let us make a fundamental distinction between "natural" and "triggered" transition.

In the case of a natural transition, uncontrolled perturbations (either due to imperfections of

the experimental set-up or to residual turbulence) play the essential role in instability, with

statistically reproducible results obtained only at constant noise statistics. By contrast, in

the triggered case, artificial perturbations are introduced and, as long as the experimental
procedure is not changed, reproducible results can be recorded as a function of the "intensity"

of these perturbations. Triggering turbulent spots is a long-standing practice in Poiseuille or

boundary layer flows [3,4]. It has been mastered only more recently in plane Couette flow [6]

or Poiseuille pipe flow iii.
No specific perturbations are assumed in case of a natural transition, only their average

level. In phase space, supposing that the noise level can be measured by the energy of its

perturbations, the corresponding domain is a disk of radius e
centered at the origin and the

bifurcation has a finite probability to take place as soon as this disk is no longer entirely

(~)In this respect the best imprint of nonlinearities on the system is the shape of the invariant

manifold tangent to the most stable eigendirection at the origin (especially since system (2-3) displays

no spurious symmetry obscuring the problem).
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contained in the attraction basin of the basic state. Here, the corresponding threshold can be

computed from the condition that the disk is tangent to the separatrix at M(+) (the optimal

state defined above lies on the disk boundary). The noise in the experimental set-up being
measured by e, this threshold is then obtained by solving this condition for A. Assuming a

specific behavior of A as a function of the actual physical control parameter r, one can then

determine explicitly how this threshold varies with r.
Assuming for example sj ~J

1IT (see below

(14) for a concrete application of such a premise often used in simplified models [16,18,19] ), one

readily obtains from (7) that the distance between the origin and the stable manifold of M(+)

varies as
1/r~ in the limit of large

r.
An examination of Figure Sc indeed shows that, at lowest

order in 1/r, this distance behaves as the length of vector OM(+)
~J

1/r~ after (7)] times

the tangent of the angle between the Xi-axis and the stable eigendirection at M(+)
~J

1IT

as obtained from a straightforward computation using Is)]. It is interesting to compare this

estimate to the sufficient stability condition derived from (13) by finding the maximum f for

which dildt remains negative at given (si, s2). Under the same assumptions, cubic terms are

easily seen to be of the same order as the quadratic terms for ii
~J

1/r~
so that stability of the

origin is guaranteed under an asymptotically more stringent condition. This again illustrates

the fact that global stability conditions from energy methods are only s~jJicient conditions

for stability and generally yield deceptively "conservative" bounds. For the plane Couette

flow, the threshold Reynolds number for monotonous stability is Rem ct 20.7 [13] whereas

global stability apparently holds up to Re m 300 and current best bounds for the perturbation
amplitude varies as

Re~~~/~
at large Re, which is much more severe than what is actually

observed, I.e.,
~J

Re~~
as determined from numerical experiments [22]. Note however that

such criteria are of limited relevance since, after all, the subcritical transition to turbulence

takes place at large but not asymptotically large values of the Reynolds number in flows such

as the plane Couette flow or the Poiseuille pipe flow.

The situation is different for a triggered transition. As a matter of fact, introducing a specific
perturbation comes to choosing a special initial condition in phase space. It is only when this

initial condition is on the "wrong" side of the separatrix (8) that one becomes aware of the

fact that the bifurcation has taken place. Now, if we assume that, in the absence of noise, the

"intensity" of the perturbation can be varied while keeping its "shape", this amounts [o saying
that initial conditions can be chosen along a specific continuous path in phase space, with the

intensity of the perturbation serving as a curvilinear coordinate along this path. The threshold

obtained by performing this particular experiment is then expressed as the condition that the

corresponding path intersects the separatrix. By varying r, a specific threshold curve is then

obtained. It should first be noted that, since in our model the basin of attraction of the origin
extends to infinity in the form of a narrow strip (the narrower, the smaller the eigenvalues), if

one were "unlucky" the applied perturbation might never cross the separatrix in some range of

r, which would lead one back to a situation where the natural transition may become relevant

again. Second and more importantly, one should stress the fact that another experimental
perturbation design will presumably yield a different threshold curve (also possibly truncated

by natural-transition effects), which explains the dispersion of experimental results found in

the literature for the transition to turbulence in the plane Couette flow (see [9] for references).
So, a given experimental protocol does not leave one with the freedom to select perturbations
optimally fitted to the expected transition.

To illustrate these aspects of a triggered transition using (2-3), we now examine the evolution

of the energy of perturbations in parallel with the corresponding phase space trajectories for

some well-chosen initial conditions mimicking laboratory experiments. To stick to this point of

(8) I.e., no longer relaxes towards the trivial fixed point.
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Fig. 8. a) Initial evolution of the energy for trajectories starting at Xi
=

o-S and X2
=

0.1

for r =
1.2 Ii), 1.45 (2), 3.0 (3). b) Long term evolution of the energy for the same trajectories.

c) Corresponding orbits and sectors of amplified energy: r =
1.2 (dashed line), 1.45 (long dashed), 3.0

(solid line). d) Corresponding orbits situated with respect to the separatrices (thick lines following

the same conventions).

view, we also assume a specific behavior for the dissipation coefficients si and s2 as a function

of the physical control parameter r, namely,

si =

-)
and s2 "

,

(14)
r r

so that rm = rg =
1. (By the way, let us recall that by "threshold" we mean "condition for

the detection of the global bifurcation" and that, due to a
misfortunate feature of our model,

the conditions for monotonous and global stability merge together.)
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Fig. 9. a) Evolution of the energy for trajectories with increasing initial perturbation intensity for

r =
2 and Xi(0)

=
X2(0) with Xi

=
+0.05 (1), +0.10 (2), +0.20 (3), +0.5 (4), -0.02 (5), -0.04 (6),

-0.16 (7). b) Corresponding orbits in phase space (the thick line represents the stable manifold at

point M~+~).

Let us begin with an experiment where the initial perturbation is fixed and the control

parameter is varied. As shown in Figure 8a, for trajectories initiated at Xi
"

0.S and X2
"

0.1,
initial energy growth manifests itself only when

r > ri "
1.45. Considering now the long term

evolution of the energy displayed in Figure 8b, one discovers another critical value r2 t 1.848

below which the energy decays to zero whereas for larger values it reaches some finite value. On

the basis of this sole experiment one should however not conclude that rm = ri and rg = r2.

This is obvious since as mentioned earlier, all possible perturbations have to be tested for

before determining global thresholds, but this is more easily understood when looking at the

corresponding orbits in phase space. When varying r, Ii. e., A) one progressively changes the

width of the sector of amplified energy and initial energy growth depends on whether the initial

condition is in this sector (Fig. 8c), whereas the final energy level depends on the position of

the initial condition with respect to the separatrix at given r
(Fig. 8d).

The second kind of experiment at fixed control parameter and variable perturbation intensity

can be modeled by a definite relation between the two coordinates of the initial condition. In

Figure 9a, we display the behavior of E for increasing values of E It
=

0), using X2(0)
=

pXi (0)
with p(~) < p < p(+), for both Xi,2 > 0 and Xi,2 < 0. Energy growth is always observed at the

beginning since we start from appropriate sectors in phase space but, while small perturbations

are eventually damped, large enough perturbations may evolve toward the stable nontrivial

fixed point. This behavior is at the origin of the misunderstanding expressed in the literature

that perturbations experiencing large enough transient growth are able to trigger nonlinear

effects and thus lead to a transition. As a matter of fact, the consideration of the corresponding
phase portraits (Fig. 9b) clearly indicates that the situation of the initial condition with respect

to the separatrix is the only critical issue controlling the long time behavior.
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6. Conclusion

In this article, a simplified nonlinear model involving two real variables has been analyzed in

detail in order to illustrate some problems arising in the theory of the transition to t.urbulence

in hydrodynamical flows without linearly unstable modes. In such cases, the processes involved

are fully nonlinear and the bifurcation can be termed "globally subcritical" to distinguish it

from the "locally subcritical" case where the bifurcated state can be obtained by a power series

expansion around the basic state. The plane Couette flow and the Poiseuille pipe flow offer

classical experimental examples of globally subcritical transitions to turbulence. Our model

mimics the hydrodynamical problem in the sense that nonlinearities conserve the energy of

perturbations and the linear dynamics is non-normal. This last feature is important since it

implies that, even for perturbations that ultimately decay to zero, energy can be observed to

grow transiently and that this transient growth is often recognized as a crucial ingredient for

the transition to take place. The study is situated in the framework of the theory of dynamical

systems. This approach is preferable, since it yields a pictorial interpretation of the transition

in terms of phase portraits, fixed points, stable and unstable manifolds, and attraction basins

(§ 3). From this model, we find that linear features, and especially transient energy growth, are

less important than specifically nonlinear properties, such as the presence of several solutions

and the partitioning of the phase space by teparatrices. Strikingly, but not surprisingly, the

most relevant nonlinear modes appeared to live on a slow manifold emanating from the basic

state along the least stable eigendirection and bearing all the interesting stable and unstable

steady states.

The key question thus seems to be the determination of other nonlinear solutions when they
exist (hence a loss of global stability). Unfortunately, for Navier-Stokes equations this is by
far not as simple as solving a quadratic equation as with our model! Triggering experiments
in the spirit of the "initial value" approach followed here have helped the identification of

relevant slowly varying structures involved in turbulent spots, either computationally [S] or

experimentally [6]. Such experiments do not however allow one to isolate these structures in

order to study their stability. Several strategies have thus been developed to find them by a

"continuous deformation" of the primitive problem: for example the plane Couette flow can be

reached from the circular Taylor-Couette by decreasing curvature effect progressively [8], from

the Couette-Poiseuille plane channel flow by decreasing the applied pressure gradient [9], or

by adding a Rayleigh-BAnard convection mechanism of variable strength [10]. Experimentally,
the flow profile can also be slightly modified by introducing a wire in the middle plane [23]
but the effect of such a forcing may be more

difficult to interpret (while leading to an inter-

esting phenomenology [24]) than the addition of an appropriate periodic external perturbation

to the Navier-Stokes equations [25]. Of course the continuous deformation approach can be

implemented in over-simplified models such as (2-3) by adding a small constant term to (2)
and looking for the modified phase portraits but this is not expected to be enlightening, while

tackling the hydrodynamical problem at a more realistic level may be more rewarding. Finding
nonlinear solutions in different contexts is thus the first step in an analysis of the transition to

turbulence parallel to that developed for supercritical flows. The main difficulty comes from

the fact that this transition take place at intermediate values of the Reynolds number, I.e.,

much larger than those sufficient for monotonous stability but not asymptotically large so that

viscous effects cannot be neglected.

Finally, the main merit of this work is to provide a better understanding of which issues can

and, above all, cannot be extrapolated from a linear framework to a nonlinear one in an
easily

tractable setting.
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