
HAL Id: jpa-00248429
https://hal.science/jpa-00248429v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice of Passages Connecting Membranes
Thierry Charitat, B. Fourcade

To cite this version:
Thierry Charitat, B. Fourcade. Lattice of Passages Connecting Membranes. Journal de Physique II,
1997, 7 (1), pp.15-35. �10.1051/jp2:1997112�. �jpa-00248429�

https://hal.science/jpa-00248429v1
https://hal.archives-ouvertes.fr


J. Phys. II France 7 (1997) 15-35 JANUARY 1997, PAGE 15

Lattice of Passages Connecting Membranes

T. Charitat and B. Fourcade (*.**)

Institut Laue Langevin, and Maison des MagistAres Jean Perrin, C-N-R-S.,

25 avenue des Martyrs, B-P. 166, 38042 Grenoble, Cedex 09, France

(Received I August 1996, revised 20 September 1996, accepted 7 October1996)

PACS.82.70.-y Disperse systems
PACS.02.40.-k Geometry, differential geometry, and topology
PACS.68.15.+e Liquid thin films

Abstract. Lattices of passages connecting membranes
are frequently observed in

a variety
of membranous systems. i§~e study their elastic properties within the framework of the curvature

energy. Our calculations apply to the vesicle case
where the constraints of constant surface and

volume determine the shape profile. We concentrate on the physically relevant
case

of periodic
boundary conditions for each cell containing passages, where the lattice parameter is set by the

Gaussian bending modulus. It is shown that lattices of passages lack in-plane shear rigidity and

we propose this as the basic reason for the strong fluctuations which are observed in experiments.
Other compression modes couple to the vesicle shape. Our calculations

are
based

on a detailed

analysis of the shape equation. Using the Abrikosov vortex solution we show the analogies
between lattices of passages and topological defects.

Rdsum4. Les r4seaux de passages sont frAquemment observ4s dans les systAmes de mem-

branes. Nous 4tudions leurs propridtds dlastiques dans le cadre d'une dnergie de courbure- Nos

calculs s'appliquent aux cas des vAsicules pour lesquelles les contraintes de surface et de volume

ddterminent la forme d'dquilibre- Nous nous limitons aux conditions aux frontiAres pAriodiques

pour chaque cellule qui sont physiquement pertinentes et dont le parambtre de rAseau d4pend
du module de courbure Gaussien. Nous montrons que ces rdseaux

ne
possbdent pas de constante

Alastique de cisaillement et nous proposons que ceci soit I l'origine des fortes fluctuations ob-

servdes dans les expdriences. Les autres modes sont couplAs I la forme d6quilibre. Nos calculs

font appel I
une

analyse d4taillAe des 4quations de la forme de la v4sicule. Utilisant la solution

d'Abrikosov pour le rdseau de vortex, nous montrons les analogies entre les rAseaux de passages

et les ddfauts topologiques.

1. Introduction

Multilamellar membranes connected by passages or necks are observable in many lyotropic

systems such as bicontinuous or cubic phases in surfactaut-water-oil systems [1-5j, membranes

of amphiphilic molecules swelled in water, e-g- vesicles [6-8j, or even in the structure of pro-

lamellar bodies of etioplasts in plant cells [9j. The typical scale of these passages is system
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dependent, ranging from 100 I to i pm. A common property of all of these systems is that

the membrane seen as a thin surface divides the space into two interwoven compartments with

a large contact surface between the two subvolumes- In these systems the typical radius of a

passage is large with respect to the thickness of the membrane and continuum elasticity theory
is valid. In the vesicle case, multilamellar systems can spontaneously swell in water or they

can be created by the action of optical tweezers [10j- Direct observations by phase contrast

microscopy reveal a simple geometrical picture: The membrane can be schematized as a finite

number of slabs, stacked on top of each other, and connected by a periodic array (lattice) of

passages [6, 7j. In this paper we concentrate on the vesicle case where the equilibrium shapes
result from the interplay of the curvature energy with the constraints of constant surface and

constant volume iii,12].
Passages in lyotropic systems other than vesicles differ in the sense that their thermodynamic

properties depend on curvature energy, on steric interactions and on entropy of mixing 11, 3].
For example, Bruisnma [3j has shown that minimal surfaces [13j with lattices of passages have

vanishing elastic coefficients in the Helfrich energy. In a more recent paper, Gompper and

Goos [14j have demonstrated for two membranes experiencing a
mutual interaction potential

that the shape of the passages experiences strong fluctuations. The case of the vesicle shape
problem is however distinct, since these are closed objects where the constraints of constant

volume and constant surface determine the shape profile of minimum energy. For vesicles of

small topological genus, the constraints lift the conformal degeneracy of the curvature energy

[15-17j and set the elastic constants to non-zero values. This has been demonstrated in the

case of toroidal geometry where the hole experiences a small restoring force when it moves

off the center [18,19j. Moreover, previous works on higher topology have shown that vesicles

of complex topology have distinctive properties. For genus g > i, I-e- a torus with at last

two holes, the ground state can be degenerate, leading to the so-called conformal diffusion

process [20, 21j in a region of the surface-volume phase diagram. A different experimental
observation is that the position of the passages fluctuate more strongly than expected for

vesicles where thermal fluctuations affect smoothly their shape profile [7j. In this paper we

derive from first principles both the shape profile of the passages and the elastic properties
of lattices of passages. We show that the lattice has only, a weak resistance to in-plane shear

stress compared to compression which couples to the shape of the vesicle. In this sense, lattices

of passages are liquid like, since the stress tensor is reduced to a scalar.

Our analysis is based on the Helfrich curvature energy [22,23j for passages connecting stacks

of membranes. The first section defines the problem. l&~e will work with periodic boundary
conditions to mimic the closed shape of a vesicle. In Section 2 we demonstrate from a general

point of vie~r that these boundary conditions are crucial to understanding the curvature energy
of lattices of passages. Our discussion is based on analogies with the Abrikosov vortex lattice

[24, 25j and it is demonstrated that the line of constant current for the superconductor probleius
corresponds to the line of constant height for the membrane case. This vortex analogies is

pushed further by deriving circuit rules for the two types of passages ~ve define. The results

presented in the next two sections show that the curvature energy of lattices can be derived

from a matching analysis between an inside solution, which characterizes the inside core of

a passage, and an outside solution. We show that the Gaussian bending modulus sets the

lattice parameter of the unit cell. We will discuss how the constraints determine precisely the

position and the relatiire diameters. We compute the curvature energy of a passage and we

show that non-trivial logarithmic corrections appear. The latter are crucial to understanding
the elastic properties which we discuss in the last section. It is shown that lattices of passages

have almost no
shear rigidity. We propose this as the basic reason for the strong fluctuations

observed in the experiments. Other fluctuations of the network corresponding to longitudinal
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Fig. 1. Two concentric spherical vesicles with two passages. The shaded area
corresponds to the

interior volume. The inset represents the profile of
a passage. The shape has symmetry of revolution

and the inset corresponds to the core of a passage.

phonons are shown to be coupled to the vesicle shape. Using the constraint of constant volume

for a long cylinder, we show that lattices of passages increase the effective rigidity of a vesicle.

Three Appendices complete this work and contain technical details. We report in this paper

on analytical and numerical results. The latter ones have been obtained using the Evolver

program [26j-

2. The Problem

Let us consider two concentric spherical vesicles as shown in Figure i- Two passages, one on

the north pole and the other one on the south pole, have been opened up. The space is divided

into two compartments. The interior volume is defined as the space included between the two

spheres: The exterior one includes the inside of the smallest sphere and the outside of the

biggest one- One cannot pass from the interior to the exterior without piercing the membrane,

so that the volume of the inside is constant. Obviously, this construction can be generalized

to an arbitrary number of passages and to an arbitrary even number of spheres. In the limit

where the number of passages is large, I- e. where the typical radius
a

of a passage is small with

respect to the radii of the spheres, we can schematize the system as an even number of slabs

connected by passages organized on a "lattice" with arbitrary symmetry and lattice parameter
L To mimic the closed shape of a vesicle of size R, we apply periodic boundary conditions

with R
=

fiQL where iv~eii is the number of cells.

Each cell contains an arbitrary number N of passages, and consider first the case N
=

i

with two slabs. For clarity, we will refer to the shape of a membrane of a unit cell simply as

the unit cell. Figure 2 shows one example of a square lattice symmetry with periodic boundary
conditions in the

x
and y directions. Obviously, the vesicle size is proportional to the number

of unit cells.

As usual for vesicle problems, the constraints of constant surface and constant volume define

the variational problem. The latter can be stated as follows: Given the total surf~ce and the

total volume of the vesicle, find the minimum energy shape al constant L; then, minimize with

respect to L for a given number of passages.

For passages with a finite radius a, the surface and volume of the unit cell depend on the

radius a. However, in the limit where f < i, the leading variation of the reduced volume (see
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Fig- 2. One passage where the unit cell has square symmetry. Periodic boundary conditions
are

applied in the ~ and y directions. The constraint of
a

given volume stabilizes the radius
a to a non-zero

value.

Appendix A for details)

/h
=

ii)
55

comes from the volume which scales as

V
m~

aL~ In
~

(2)
a

Since the surface varies to next order in a as

bS
r~

a~In ()) (3)

we will henceforth study the shape problem at constant L and for a given V.

Concentrating on the simplest model [12j for lipid vesicles, we write the energy per cell as

7i
= ~

/ /(ci + c2)~ dS + k
/ /

cic2 dS (4)
2

where the mean curvature H m
) (ci + c2) is the average of the two principal curvatures. When

working at fixed topology, we will omit the Gaussian curvature term if cl c2 dS. To account

for the constant volume constraint, we introduce a Lagrange multiplier p so that the shape is

computed from the minimization of 7i pV at fixed L- Henceforth, we will refer to p as the

pressure.

Far from the passages, where all derivatives of the height variable z(x, g) are small, the mean

curvature can be approximated by H ci )Az- Thus, to first order in p, we write the Euler

equation as

/hH
=

~ (5)

Equation (5) will be solved later. At this point, it is interesting to rederive the variational

approach of reference iii from
a new and more general point of view. It will be demonstrated

later from first principles that it gives the leading order for the energy per unit cell. However,

this approach first developed in reference [7] misses an important point for the fluctuations if

the reduced volume constraint is not taken into account.
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3. Analogies with Topological Defects

Equation (5) is difficult to solve. Reference [7j has proposed a variational scheme to tackle the

problem: A passage costs an energy cf
gra~ IS and, without the constant volume constraint,

it shrinks to zero. What the volume constraint does is to keep the radius of a passage at a

non-zero value a which depends on the pressure p. Reference [7] has proposed to solve instead

of equation (5)

/hz
=

Ho (6)
2

for a given a- This Ansatz will be justified later in the limit pL~ < 1. The constant Ho can

be interpreted as a background term which is self-consistently determined by two conditions.

First, we require the shape to be periodic. Second, the solution of equation (6) must match a

caienoid z =
acosh(r la) as r - a. The latter condition implies that a passage is an almost

zero curvature surface. Applying Gauss theorem for a periodic network with lattice parameter

L gives

~° ~
~~~

with

~~~~ ~ ~~~~~~~' ~ ~~~

Reference [7j has numerically shown for a square lattice that equation (6) yields the correct

result to leading order in a
IL for the problem where

a is function of the volume (see Eq- (5)).
This variational approach can be made more explicit if we remark that equation (6) is

one of the Ginsburg-Landau equations for the dimensionless order parameter fo of a type II

superconductor when the magnetic field is equal to its upper critical value Hc~- Let fo
=

1 in

the superconducting state and fo
=

0 in the normal state. It will be useful for what follows

to write this equation in dimensionless units, since its solution is needed for both the shape

z
(z, g) and the mean curvature H (z, y)- Let ~s be the ratio of the London penetration depth

~to the coherence length, then [25]

il In(f/) + ~(
=

0 (9)

For the shape problem, we look for a solution

zix,v)
=

)inlfliz,v)I (lo)

which matches the shape of a passage located at the origin if

fo(x, g) ci r

where we have used polar coordinates. Equation (10) will be justified later by matching with

an inside solution corresponding to the core of a passage. Thus the problem of passages can

be mapped onto the Abrikosov lattice one by rescaling ~.s as
Ksla. This correspondence can

be made one to one, since the lines of constant height for the equilibrium shape problem
corresponds to the lines of constant current in the superconductor case. It follows also that

the number N of passages per unit cell corresponds to the number of flux lines. This shows

that the rule for the conservation of charges which will be rederived later is equivalent to the

conservation of the magnetic flux through the superconductor sample.
The general solution of equation (6) for an arbitrary lattice is given in reference [25]. We

quote the result without proof (see Appendix A for another useful representation). Let the
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Fig. 3- Top view of
a

lattice where +i is the angle between the ~- and V-directions. Under
a shear

transformation +i varies from m/2 to m/3.

unit cell be a parallelogram of length Li, L2 and of angle
+i as seen in Figure 3- Thus, taking

into account the upper and lower leaflet, the total surface of the unit cell is 2LiL2 sin(M~).
The general solution of equation (9) can be written as

where (X,l~) defines
a new coordinate system as

x =
X + cos(~)l' (12)

y =
sin(7)Y (13)

To show that the constant curvature value Ho in equation (7) comes from the periodic boundary
conditions, let us assume that the function fo is periodic in Y with period L2- For a cell with

N passages, it follows that

K(
=

~~~
(14)

LiL2 sin(~)

where the C~'s are coefficients with

Cn+N
=

C» exp

~~~~~~
cos(~ (15)

Li

The coefficients Cl, C2 give the positions of the passages within the unit cell which correspond

to the zeros of fo. For N
=

i, the C~'s depend on an arbitrary constant Co as

Cn
"

C0e ~ (16)

Taking ~ =
j gives the square lattice symmetry with passages located at translationally

equiYalent point of (0.5,0-5). The triangular lattice is obtained for
M~

=
j where IX, Y)

=

(~, )) gives the locus of one passage. The latter geometry can also be obtained for N
=

2,

since Cl
=

ico corresponds to a rectangular cell with centering translational symmetry of

an equilateral lattice. Equation (14) generalizes equation Ii) for arbitrary lattices and for

an arbitrary number N of passages per unit cell. It shows that the background term Ho is
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Fig. 4. Cut view of three slabs connected by two passages. The right passage has outward pointing
normal but the left one has inward pointing normal. This convention defines the sign of the passages.

independent of the C~, since Ho
=

Ksa~~ where Ns depends only on the boundary conditions

by equation (14). Since Ho is constant, the energy of such a constant curvature surface does

not depend on the actual position ofthe passages.
It is interesting to push this analogy further by considering the following circuit rule. Near

a passage we can approximate

z(r) m
~aIn(~) (ii)

a

~vhere the ~ signs depend on the orientation of the normal with respect to the core of a passage.
Figure 4 shows one elementary example where the left passage has an inward pointing normal

but where the right one has an outward pointing normal. Let us consider the projection of the

normal onto the z =
0 plane which reads as

njj =
~

~

ur (18)
r

Gauss s theorem gives that the integral of njj dl, where dl is taken along the outward pointing
normal of a path enclosing a passage, is

injj di
=

~2gra (19)

The ~ sign in equation (19) depends on the orientation of the normal with respect to the

core of a passage. This circuit rule defines the sign of the passage according to the sign in

equation (19)-
By the same token, we can generalize equation (6) to get the con~tant background term for

a median slab connected to an upper and lower neighbor. Consider a contour which encircles

N+ passages of type + and N- passages of type
-.

Assume for simplicity that the radii of the

passages are a+ and
a-. In this case, the flux of the njj gives 2gr (-AT+a+ N-a- so that it

suffices to replace iva by (iV+a+ iV_a- in equation (7) to account for both types of passages.
As a result, surfaces having both type of passages have less curvature energy than the ones for

which there is only one type. The case of periodic minimal surfaces [13j corresponds precisely
to a geometry where the sum of all signed radii of passages per unit cell is equal to zero.
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Fig. 5- Plot of the bending energy as a
function of the reduced volume for cells with

one and four

passages. The bending Gaussian modulus is negative so that the 4 passages solution has the lowest

energy at large reduced volumes. The value of the bending Gaussian modulus has been chosen so that

a
IL « 1.

According to this approach the stationary shape profile is a constant curvature surface where

Ho is only determined by the condition of periodic boundary conditions. Equation (14) shows

that Ho is independent of the positions of the passages in the unit cell, which are specified by
the set of Cn's. Following this variational argument, the passages can be considered as "free

particles" with hard-core interaction. The range of this repulsion corresponds to the domain

where the curvature cannot be approximated by the Laplacian. We will refer to it as the

inside domain and we will show that the size of this domain scales with the radius a in a non

trivial way.

However, restoring forces in vesicle problems come both from the variation of the bending
energy and from the constant surface-volume constraints. Obviously, moving one passage
around the unit cell changes the volume and a restoring force results from this. This point

will be demonstrated later, since the distance between the passages is shown to be volume

dependent. Thus the concept of isolated passages must be abandoned. Henceforth, we return to

the problem with the constraint of constant volume and we show that lattices of passages share

another important property with the Abrikosov lattice: Namely, they lack shear rigidity [27j.

4. Constant Volume Problem at Fixed L

In the following
we will concentrate on the case where passages connect two slabs (see Fig. 2).

Adding a small handle to a slab changes the topology. However, we have numerically checked by
adding one handle to a unit cell that the minimum bending solution converges to the simplest
configuration of two slabs connected by two passages. Handles whose size is of the order of the

mesh size cannot be studied and we will discard them.

For the systems we study here, the number of passages per unit cell is determined by the

curvature Hamiltonian and by the volume constraint. A positive value for the Gaussian bending
modulus means that the minimum energy solution is the one with two parallel slabs. However,

it is clear that a negative value of the Gaussian bending modulus cannot create an infinite

number of passages because of the volume constraint. This is examplified in Figure 5. The

cell with 4 passages has lower energy than the one-passage one at large reduced volumes. We

shall see later. so that the triangular and square lattice have almost the same energy for the
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same reduced volume so that the threshold value does not depend on the geometry of the unit

cell in the small aL~~ limit la rectangular unit cell with centering translational symmetry of

an equilateral lattice gives the triangular symmetry. Dividing the rectangle into 4 gives the

triangular symmetry again). Therefore, for periodic boundary conditions, the value of the

Gaussian bending rigidity sets the lattice parameter and, henceforth, ~v~e will work at fixed L.

4.I. THE PERTURBATiVE DOMAiN. For small volume or for small pressure, i-e- pL3 <1,
the solution of equation (5) gives a reasonable solution to the shape problem. We have found

useful to work also with the representation given in Appendix A. For a square or a triangular
lattice with one hole per cell we have, using equation (5) and equation (9) (see Appendix A

for details)

~~~'~~
(~~~a)

~~~~~~~'~~~ ~ ~° ~~~~

where fo(x, g) can be expressed in terms of the
a

function of Weierstrass. The constant Ho

is determined by matching with the inside solution. We will demonstrate later that it yields
back equation (7) so that our notation is consistent.

Henceforth, each time we
specify a lattice symmetry we will drop the subscript. For example,

we will write f~ instead of fo for a triangular lattice where f~ reaches its maximum value

on the apex of a hexagon and vanishes at point translationally equivalent of the origin. Since

we will demonstrate that pL~ < Ho, equation (20) implies that the shape mix, y) is given by
equ~tion (10) with corrections to order p- It turns out that these corrections are small when

we calculate the volume as in Appendix A-

The two constants a and fl in equation (20) are lattice dependent. For a square or a triangular
lattice, we have a =

-fl
=

( or fi, respectively. This solution is valid for a lattice where all

passages are of the sami type. It can be generalized to more general situations. For example,
the solution

H(z. g)
=

~~~~ ln( f((x, y)) + In f((x ~, ))
+ Ho Iii)

8~ 2

describes two triangular networks of opposite type, translated in the x direction. The cell

contains two passages of opposite type separated by L /2. Therefore, this surface has the same

symmetry as the Schwartz's H-surface [13j-
As usual the Lagrange multiplier p is adjusted to satisfy the constraint of constant volume.

In the following we determine p and Ho as a function of the radius a-

4.2- THE ASYMPTOTIC SOLUTION. It is shown in Appendix A that the square and trian-

gular lattices are the only ones for which the mean curvature of equation (20) is axisymmetric
for [ < i. Therefore, the curvature in the inside domain is an axisymmetric solution of

the shape equations. An asymptotic matching between an inside and an outside solution has

already been derived for the budding problem [28j- However, in the present case, the Euler

equations do not correspond to the Helfrich-Deuling equations for axisymmetric shapes. This

is explicitly shown in Appendix B. The problem is that an axisymmetric stationary shape is

generated by revolving a curve around the
z axis (see Fig. 6). If the surface has the same

topology as a sphere, this curYe intersects the
z axis at a right angle. For case of the passages

we study here, this constraint does not exist any more and there is an arbitrary constant c
left

undetermined in the asymptotic analysis. This constant has to be determined by matching
with the perturbative solution.

In Appendix C the asymptotic solution is worked out and it reads as

H ci

-I(In (2~) 1) +
~ ~

+ d (221
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fi
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Fig. 6. Cut view of
a

surface with symmetry of revolution. The surface is obtained by revolving
a

curve around the
z axis. The angle between the tangent with respect to the symmetry axis defines

the two curvatures of Appendix B.

for [ m i. For a solution with reflection symmetry z - -z, we have d
=

0 and c is the above

mentioned constant which has to be determined by matching.

4.3. THE MATCHING PROBLEM

4.3.1. T~.o Slabs. Let us consider the simplest situation where a periodic array of passages

connects two slabs. Assuming that the latter are centered at points translationally equivalent

to the origin, the pertubative solution behaves as

~ ~ ~° ~
K/~~-

o)

~~
~~~ ~° ~~i~ ~~~~

when r -
0. We assume that equation (22) and equation (23) agree for [ m 1 and f < 1.

The f(
term is automatically matched since it appears in both solutions. Matching the

logarithmic term gives
~

~ 4K)~- fl) ~~~~

Since the constant is the same in both solutions, we get

~ ~ ~~~ln~)~~ ~ ~~~~

Finally, matching the radii of curvature gives the constant background term as in equation (6).
The same calculation shows that the leading correction to the pressure given by equation

(25) is of order

~

~
126)

l'n if))

which is indeed negligible only in the limit of Yery small ratio aL~~. From the point of view

of numerical simulations, only reasonably small values of this ratio can be reliably considered

(aL~~ > 0.05). In this regime, these corrections are not that small and it is necessary to adjust
numerically the value of p to compare numerical and analytical results. Figure 7 shows an

example where p has been optimized so that the asymptotic and perturbative solutions fit the

mean curvature obtained with the program Evolver. The numerical value of p differs by 9%

from the asymptotic expression given in Appendix C. This shows clearly the existence of an

inside domain where the curvature varies rapidly from positive to negative values. The outer
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Fig. 7. Plot of the mean curvature H
as a

function of the radial distance from the origin. The

lattice is
a square (L

=
2). The curve corresponds to the asymptotic analysis of Appendix C. The

meaning of the other symbols
are as

follows: Circles
are

the numerical data, diamonds correspond to

the perturbative expansion. According to equation (26) the matching region is centered at r =
0.32.

Note that the curvature is slightly non-axisymmetric.

core radius rc is defined as the distance from the passage above which the next order terms in

the asymptotic solution are negligible. From the results of Appendix C, the first correction to

equation (22) is fi In (~) so that we get

r~ =

~
@(27)

~r a

As shown in Figure 7 such a value for the overlap domain is again in reasonable agreement
with numerical data.

4.3.2. Many Slabs Problem. Lattices of passages with periodic stacks of membranes in

the z-direction give triply periodic minimal surfaces for which the space is divided into two

subvolumes Ii and %. For symmetric networks where the numbers of both types of passages

are equal N+
=

N-. we have Vi
"

V2. However, for N+ # N-, the symmetry 1
-

2 does not

hold any more and Vi # II

The shape profile is uniquely determined by a set of three parameters. These are L (which
gives the periodicity in the x- y direction) and d (which gives the periodicity in the z

direction).
Finally, the third one gives the position of the passages in the unit cell.

To construct such a family of minimal solutions, let us consider the one parameter family of

solutions where one passage of type + is centered at the origin with 4 passages of type The

latter are at a distance ro of the origin on the diagonal of a square cell (see Fig. 8) so that the

shape profile is

~~~~ ~~ ~~
fl

l/~~~~~.~~Y
~ ro)

~~~~

Whatever the distance between the two types of passages, the surface is minimal since ~hz
=

0.

To demonstrate that the constant background Ho
"

0, we can expand fz near one of its zeros

so that the strength of the singular part of
z is aln (r) near the passage located at the center

of the cell: a+ = a. However, one finds -( In (r) for the passages located along the diagonals,

so that a- =
-(. Summing all contributions gives Ho

"
0. It should be noted, however, that

the radii a+, a- and the relative distance ro are not independent parameters. Naive matching
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Fig. 8. a) Top view of
a

high topology surface where
a passage of type + is centered at the origin.

The other passages oi type are located on the principal diagonals of the square. The shaded
area

corresponds to the actual part of the cell which is minimized. b) Varying the relative volume of the two

compartments moves
the smallest passage off the center and decreases its radius. By definition, the

volume encloses the space outside the centered hole. For cases b, c, d one has A
=

0.097, 0.091, 0.079.
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Fig. 9. Plot of the curvature energy in units of ~c as a
function of

a
IL. The dashed line corresponds

to the first order solution where the curvature is constant (Ho
=

@). The full line corresponds to

the logarithmic corrections given by equation (29). Circles correspond to numerical minimization for

a
triangular lattice.

with a catenoid for the passages yields that the radii decrease as the distance ro increases.

There is, therefore, a one-parameter family of minimal surfaces of this type.

This degen/racy is broken if we introduce the constraint of a given volume. Figure 8 shows the

effect of applying a pressure. It gives an almost constant curvature surface with Ho
~ a+ -4a-

and it selects the distance ro. As for the minimal case, the small passages move away from the

center with decreasing a-.

4.4. CURVATURE ENERGY. For the simplest case where two slabs are connected by a lattice

of passages we obtain the energy per unit cell as

~~
(2~)~ ~

~~(~~
(l injj)

where c is a numerical constant which depends on the lattice (co
=

0.60 and c~ =
0.68 for a

square and a triangular lattice, respectively). To obtain this expression, we have used equation
(20) as well as the asymptotic value of the pressure p given by equation (25). For small radii

equation (29) plotted as fuiiction of
a

fits well the numerical data (see Fig. 9). The logarithmic
term gives the first correction to the asymptotic regime of equation Ii) which is valid in the

limit of very small radii. For larger radii, ( > 0.i the scaling regime is no more valid and

n<e hat,e numerically obseri<ed that the radius of the passage saturates to f m 0.15 for large

pressures.

It is interesting to compare different lattice symmetries for the same number of passages
and for the same total surface. The square and triangular lattices have the same area if their

lattice parameters are such that

j

~°
"

(ij
~~ ~~°~

Since the volume of each cell depends on the r~dius a, we use the results of Appendix A to

compute an and a~ so that both cells haYe the same reduced volume il
=

S~~/~V. Taking
into account the logarithmic corrections given by equation (29), the energy of the square is
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Fig. 10. Plot of the curvature energy as a
function of the reduced volume for the triangular (Zi)

and square symmetry (D).

just above the one with triangular symmetry for the same reduced volume

lo.16 j31)E~
=

E~ 1+
~'~

(d)

This result is valid in the regime aL~~ < i where the surface of the unit cell is almost

independent of a.. For a larger reduced volume, the variation of the surface with the radius a

must be taken into account and we have numerically computed the exact reduced volume

~
V ia)

~

S ia)1 ~~~~

for both types of networks. Figure lo shows a plot of the curvature energy as a function of

the reduced volume where the dependence of the surface on a is taken into account. This

shows that the almost degeneracy between the triangular and square symmetry holds even in

a regime where aL~~ is not small. Such a degeneracy anticipates also the small resistance of

these lattices to shear deformations which will be analysed later.

5. Elasticity

As usual linear elasticity theory follows from the long wavelength collective modes. A two-

dimensional square lattice has three independent elastic constants but a triangular lattice being

more symmetric has only two [24j. They correspond respectively to shear and compression
deformations of the lattice.

5. I. SHEAR ELASTICITY. Let us consider first a pure shear deformation where each lattice

site experiences a relative displacement u~ = ey and uy = fix. Such a transformation leads

continuously from a square lattice to a triangular one. In the geometry depicted in Figure 3,

this amounts to varying the angle
M~

with a concomitant rescaling of the lattice parameter L

to keep the surface constant. There is however a lower bound for the domain of variation of
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the rhombus angle. Its value corresponds precisely to +i =
(, since the triangular lattice is the

lattice of unit surface for which the distance between neighboring sites is maximum.

Since the lengths of each side of the rhombus are kept equal under shear deformations, the

volume of an elementary cell can be approximated as

V(~)
=

2a~L( sin(M~) In l~~ c~ (33)
~~

where the constant c~ has to be determined by matching with the inside solution. As shown in

Appendix A, the triangular and the square lattice are the only lattices for which the passages

have symmetry of revolution. In these cases, c~ =
0.61, 0.68 for

M~
=

[, j. With a passage

centered at z =
0, the arbitrary constant zo for the shape profile z

(x, y)
- z

(x, y) + zo can only
be determined if one assumes that the leading term for the shape corresponds to the catenoid

z ct In (2r) for all
M~.

In this case, we can numerically determine the unknown constant and

compute the volume from c =
aln( fo). Monte Carlo integrations give that c~ sin

(M~)
is almost

constant for the ten values of
M~

we have computed between ) and [ (c~ sin
(M~)

varies smoothly
from 1.17 for

M~
=

) to 1.22 for
M~

=
[).

From equation (33) it can be shown the radius a~ can always be rescaled to maintain the

volume constant under shear deformation. Breathing modes are therefore coupled to shear

deformations to maintain the volume constraint. As an interesting example, consider the

square lattice for which
+i =

]. Small shear deformations change
M~

as
M~

=
] + e so that

the lattice parameter L increases for the surface to be constant L~
=

L (1+ ~). By the

same token, the radius a of the passage experiences a shift a~ = a
(1+ ea) to keep the volume

constant. In the very small aL~~ limit, one finds using equation (33)

~2
~~

4 In f

Taking into account the logarithmic corrections to the energy (see Eq. (29)), the shift in energy

for the square lattice is computed as

~2~2~2
~~ ~ ~~'~ ~L2 in (j) ~~~~

Therefore, the square lattice is stable with respect to shear deformation.

It is also interesting to estimate the energy barrier between both solutions. Taking m~max =

) ([ + () for the angle where the energy is maximal gives

~2 ~2 ~2
~~~ ~ ~

L~ In (f) ~~~~

For reasonable value of aL~~, /hE is small with respect to the thermal energy kBT. This

shows, therefore, that low energy excitations corresponding to longitudinal phonons are easily

thermally excited.

5.2. COMPRESSiON ELASTiCiTY. Other modes corresponding to longitudinal phonons are

coupled to the shape of the vesicle. The simplest geometry is the one of an infinite cylinder of

radius Ro. Consider first the case of a simple cylinder experiencing longitudinal fluctuations

of its radius

R
=

Ro + bo + 2bn cos(nqRo Z) (36)
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Fig. 11. Schematic illustration of
a

cylindrical vesicle where a
lattice of passages is wrapped around

the symmetry axis. We assume that the passages can
flow

so
that the lattice parameter does not change

for
a

sinusoidal deformation of the cylinder.

where the amplitude of the breathing mode bo is chosen so that the inside volume of the

cylinder is constant under deformation bo "
-)b(. The other constraint of constant surface

for the cylinder is usually taken into account by introducing an effective surface tension for the

long wavelength deformations [29,30]. To keep our discussion as simple as possible, we will

not address this point and we will consider the problem of a cylinder oflength L~yi at constant

volume. This constraint is nevertheless necessary to make the cylinder stable in the curvature

energy [31]. One finds that the energy per unit length in the Z direction increases as

/h£~
=

~((~ ~n~q~ + n~q~)b$ (37)
R~ 2 2

Imagine now that a
lattice of passages is wrapped around the cylinder. We assume that the

lattice parameter L is such that L < Ro, such that the results obtained for a periodic lattice

with up-down symmetry are valid. Because the shape of the cylinder is deformed, the lattice

of passages experiences local deformations including shear and compression of the elementary
cell. According to the previous discussion. shear deformations cost very little energy, and we

discard them. To evaluate the contribution of the coinpression modes, we assume that the

lattice parameter L scales in the same way as the averaged radius of the cylinder (see Fig. 11).
On average, Ro decreases because of the breathing deformation. Because Ro

"
NL, the lattice

parameter becomes L(i + fi). Therefore, the shift in energy per unit length in the Z

direction is "

~ ~

/hE
=

6~~Kj (38)
o

In the limit L < Ro both energies (Eqs. (38) and (37))
are of the same order. Therefore,

the lattice of passages makes the membrane more rigid. As a result, long wavelength defor-

mations for multilamellar vesicles connected by passages should be less pronounced than for

non-connected ones.

6. Conclusion

Usual shape fluctuations usually affect the vesicle shape profile smoothly. In this paper, we

have shown that lattices of passages lack shear rigidity so that thermal fluctuations will strongly
affect the lattice. It is known that long range order is destroyed in two dimensions when forces
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are short range. By nature, curvature elasticity is long range and the fluctuations observed in

experiments show up on the micrometer scale. The mechanism we have proposed here seems

more appropriate to the physics of vesicles.

We have based our analysis on the non-axisymmetric shape equations. The analogies we

have drawn with the Abrikosov vortex lattice have shown that passages c~n be considered as

topological defects with a strength equal to the radius of a passage. However, the concept of

isolated passages has to be abandoned, since their radii and their distance are not independent

parameters. Two passages can differ by the orientation of their normal and we have shown

that the curvature depends on the difference between their radii. All these results depend on

the periodic boundary conditions which define the unit cell. For the vesicle case, the lattice

paraiueter depends on the Gaussian bending rigidity and on the constraints. However, the

symmetry of the unit cell by itself has little influence.
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Appendix A

In this Appendix
we give the details for the perturbative solution. For all lattice geometries

the solution of equation (6) can be expressed in terms of the Weierstrass a function [32j where

the zeros are located at the lattice sites. Using tabulated properties, it can be shown that

In f(x, y)]
=

ln ([a(z)[~e~~~~~~l~+~~~+"~lj (A.1)

is doubly periodic with lattice parameter L, where z e
@,

d a
@. The two constants

a and fl enter into the definition of
a and are lattice dependent. Two cases are of interest: For

a square lattice o =
-fl

=
( and for a triangular lattice o =

-fl
=

@ In all other cases,

a
# fl. This is important if we look for the leading behavior of f near a vanishing point of

a

we will take to be translationally equivalent to the origin. In this case, one finds that

in [fix, v)1 ~ 'n12)) lo fl)1))~ + ~l))~ COs120) lA.2)

where r and 0 are polar variables. As a result, the square and triangular ones are the only
lattices with axisymmetric passages (for a square and for a hexagonal lattice, the first terms

which breaks this symmetry are
r~ cos(40) and r~ cos(60), respectively).

To compute the volume of the unit cell we have found useful to work with Fourier series.

We quote the result without proof

e~~ ~~Yi
=

da ~i-1)~+"+~"e- %~~~+"~i
cos l~)~ x + ~]~

)
iA.3)

~,~

and

~~~~~~~~ ~~ ~~ ~~~~~~~
~~~~~~~ ~~~

~°~ ~~i~~ ~ ~i~~ ~~
~~'~~

n-m c

As before, the new coordinates system X, Y is defined as

x =
X +

~Y
y =

~Y (A.5)
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where da
=

0.348 and d~
=

0.292 are two normalization constants such that the leading

term of In f (x,y)) is In (2f). Since the convergence of these series is very rapid, it is easy to

compute the volume of each unit cell. Using the leading order for the shape profile

z
lx, v)

= a

'n
lfo lx, v)) + in ()) lA.6)

we find that the volume is given by

Vz ci
2aL~(In (~ co) IA.?)

~

V~ m
V5aL~ (In

~
c~) (A.8)

~

where Monte Carlo integration gives co =
0.61~1 and c~ =

0.68 ~ l. These constants enter

into the logarithmic corrections to the curvature energy if the pressure p is given by equation
(25).

Finally, the total area can be estimated for a circular cell of radius L for a circular cell of

radius L. One finds
~

S la)
=

4~L~
1

+
)

'n )j lA.9)

so that it varies with the next power of a than the volume.

Appendix B

In this Appendix we generalize the axisymmetric shape equations of Helfrich and Deuling for

the general case where the revolving curve is not constrained to intersect the symmetry axis.

These equations are first integrals of the variational problem and they depend on an arbitrary
constant.

Let us consider a curve which, under rotation around the z-axis, generates an axisymmetric
surface. If # (see Fig. 6) is the angle between the normal and oz, the mean curvature at a

point at a distance
r

from the symmetry axis is

d~§ si (4)
~~'~i~

=

cos
Ii) p +

r

By geometry we have

~
~~~~~~ ~~'~~

Including two Lagrange multipliers
a and p for the constraints of constant surface and constant

volume, the functional we want to make stationary is given by

L
=

/ ~

£ dr
~a

where

~ ~2 c~(#) ~~~~~ ~ co~)#)
~~~~ ~~~ ~~~ ~~'~~

In this equation we have chosen the sign of the pressure p in order it coincides with the definition

given in the text, and L has been renormalized bj~ 2~. tinder variation z - z + e
(z), where

e

and I (z) vanish at both end points, # varies as

< ir)
-

< ir) cos1<)~
)

iB.4)



N°i LATTICE OF PASSAGES CONNECTING MEMBRANES 33

Therefore, the first order variation bL is identically zero if

) cos(#)~ (~j )~i)j
=

0 (B.5)
~ ~ fill

And, as a result, a first integral for the Euler Equations is

3£ d 3£
c

~~ ~3# dr aj
CDs

(j)~

where c is an arbitrary constant. As shown by Zheng and Liu [33j, the condition for the curve

to be regular at the intersection point with the symmetry axis implies that c =
0. To see this,

approximate z E£
£

near this point where R is the radius of curvature on the symmetry axis.

We have # Gt jj as r -
o. Expanding equation (B.6) in the limit

r -
0 demonstrates that

c =
0.

However, for a solution which does not intersect the z-axis, such
as for the passages we study

here, the constant c is arbitrary. Noticing that the curvature cp and cm along the parallel and

meridian cross-section are respectively

dj
(~'~~~~

~~/l~~
cm " C°~~l~~

dr

equation (B.6) can be rewritten as

~~~ ~ ~~°~
2 (1

r~c() ~~
~~~ ~~~ ~ ~~ ~

°~~~~
~

r (1

r~c()
~~'~~

with

equation (B.8) and equation
B.9)

eralize

the elfrich-Deuling quations for
xisymmetric

vesicle shapes. In general, c # 0 and its

Appendix C

In this Appendix we derive the asymptotic expansion to leading order in the pressure. This

solution is valid near the core of a passage and it is independent of the symmetry of the lattice.

Let us consider the axis-symmetric shape equations ~&.e have derived in the preceding Ap-
pendix. To match with the perturbative expansion, we take

a =
0 but p # 0. For a passage

with radius a, we look for
a solution of the type

CPII~) + Cmll~)
"

~j ())~fi~Jll~) lC'~)

n>1

where all coordinates have been scaled as r - ~t e ) Since the sign of the mean curvature

has to agree with the one given for the perturbative regime we have

H
=

icpi») + CmiU)) iC.2)

For a catenoid
I I

cp = j cm = -j,
all au



34 JOURNAL DE PHYSIQUE II N°1

so that the first n =
0 term does not appear in equation (C.I). As a result, the curvature

along the parallel cross-section can be expressed as

cj(u)
=

~
+

~j (~)" /~ xe(~J(x) dx (C.3)
au

~~~
~ u 1

where, by definition, acp(u
=

I)
=

I. Because cp scales as
) » I, we can linearize the Euler

equation (B.8) to first order in p as

~

here we have assumed ~j < p.

In eneral the unknown constant c has to be evaluated by ith the outside solution

obtained by
traight

nticipating with what
follows,

one has c r~ p so that the

last term is of the
canfill

f~~~lu)
=

with
~

Bit)

=

i(t
-

t))

P 4 ~2

u =
cosh(t)

For a solution symmetric with respect to the
z =

0 plane, we have d
=

0. To demonstrate

this, recall that by equations (B.2) and (B.7)

dz fi
T ~~~~~~ ~

q~2

(C.7)

Therefore,
fit

gives in equation (C.5) the odd term d
= c3 in the expansion of the mean curvature His)

=

c2s~ + c3s~ as a function of s
Is

=
0 refers to the core of the passage). For a symmetric

equilibrium shape, His) is invariant under the change s - -s, so that d
=

0.

When u » I, one moves away from the core of the passage and the mean curvature His)
behaves as

~ ~
~~~

~~~~ ~~ ~ ~ ~ ~~ ~~'~~

It is also of interest to know the asymptotic behavior of the shape z(r). Using equation (C.3)

we get

rcp(r) ct
~

+
~

r In (~ (C.9)
r 2~ a

Integrating again equation (B.2) gives the result

z(r)
ct aln (~ +

~~
ln (~ (C.10)

a a

This asymptotic behavior is used in the text to match the inside solution of equations (C.5)
and (C.6) with the one obtained by perturbation.
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