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Abstract. We consider
a

sinusoidal undulation of
a

straight~ linear polymer embedded in

a flat membrane exposed to a
lateral tension. We determine the shape of the membrane and

compute the elastic energy associated with the undulation of the polymer. Analysing this energy

at different wavelengths of the undulation, we find the criteria of stability of the straight shape of

the polymer, and show them to be controlled by the difference of moduli of Gaussian curvature,

lhi, of the polymerized and unpolymerized membrane. We also discuss formal analogies and

differences between the behaviour of a
polymer embedded into

a
membrane and

a
charged bilayer

membrane immersed in a
solution of electrolyte.

1. Introduction

Polymerized bilayers provide a useful model to understand the membranes of cells and sub-

cellular organelles. Bilayers containing a polymerizable lipid may be partially polymerized by

exposure to UV radiation [1-6]. Alternatively, polymers may be anchored to the membranes

by either a covalent bonding between the polymer and the head group of the lipid'molecules,

or by the incorporation into the bilayer of hydrophobic side-groups attached to monomers of

the polymer chain. Both cross-linked and linear polymers embedded in membranes have been

obtained [2-5j
Recently [7j, the conformational interaction between fluid membranes and embedded linear

polymers was studied theoretically. The polymer was considered to be a continuous sequence

of loosely linked monomers of fixed spacing, embedded in the same monolayer. These linked

monomers were taken to differ from the neighbouring membrane molecules in their elastic

parameters such as spontaneous curvature and modulus of Gaussian curvature. Owing to the

local spontaneous curvature the monomers constituting the polymer can give rise to a sharp
bend of the membrane along a straight chain. If a lateral tension tends to keep the bilayer
flat, the sharp bend results in the formation of a ridge characterized by a ridge angle #o. The

polymer (and the associated ridge) is free to bend in the plane of the membrane. In the earlier

(*)Author for correspondence. Present address: 72A Blegdamsvej, 2 Th., 2100 Copenhagen,
Denmark.
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study [7j, the effective energy of the in-plane bending of the linear polymer was considered for

uniform curvature and conditions of equilibrium for straight or curved configurations of the

polymer were worked out.

The goal of the present study is to analyze the energetics of lateral fluctuations of the

polymer shape. This is a necessary step in understanding the statistical properties of partially
polymerized membranes. We consider the straight configuration of the polymer to be an

equilibrium state and investigate the energy of sinusoidal undulations.

We will characterize the undulation by the wave vector k and amplitude s, assuming the

latter to be small,
s < k~~ The undulation energy will be calculated up to second order in s

and analyzed as a function of k. To distinguish different regimes of wave vector we make use

of the fact that the lateral tension, ~fo, together with the bending rigidity of the membrane,

~, determine a length scale 1
=

(~/~fo)~/~, which characterizes the elastic behaviour of the

membrane, i-e- the decay length of membrane deformations. This length, referred to as

the screening length, is a macroscopic quantity. It exceeds the molecular dimensions and for

ordinary lipid bilayers with
~ m

10~~~ J has the value of I te 300 nm at ~fo "
10~~ N/m.

Two different limiting cases will be considered: a regime of long waves where the wavelength
exceeds the screening length. k~~ » Ii and a regime of short waves

k~~ < I. We will

show that in the long wavelength regime the energy of undulations is proportional to s~k~

(I,e. to the average square of curvature), which can be interpreted as a bending energy. The

corresponding effective bending rigidity of the polymer will be determined by the ridge angle

~Jo and the elastic parameters of the membrane such as the membrane bending modulus, K,

and the difference of the moduli of Gaussian curvature of the unpolymerized and polymerized
membrane, AK

=
K kp. The latter parameter will be shown to control the sign of the bending

rigidity of the polymer and, thus, the stability of the straight shape.
The energy of the short wave undulations will also be found to change with AR. At ~IK

=
0

this energy is proportional to s~k~, which may be attributed to an effective increase of the

ridge angle due to rippling of the polymer. At AK # 0, the leading term in the energy is

proportional to k~ and, depending on the value of AK, can result in an instability of the

straight configuration of the polymer with respect to the short wave undulations. We discuss

the criteria of stability of the straight shape of the polymer with respect to the long and short

wave undulations.

There is a remarkable similarity between the elastic behaviour of a polymer embedded in

a membrane under lateral tension and that of a charged bilayer membrane immersed in an

electrolyte. We will discuss this point at the end.

2. Description of the System

We consider a single polymer embedded on one side of a symmetric bilayer subjected to a

lateral tension ~fo. The elastic properties of the unpolymerized bilayer [8j are characterized by
the bending modulus, ~, and the modulus of Gaussian curvature, K, while the corresponding
elastic moduli of polymerized membrane will be denoted by ~p and kp, respectively.

The initially straight polymer forms a ridge in the bilayer. The angle ~,o at the top of the

ridge is assumed to be constant along the polymer and not to depend on the configuration of

the polymer chain. Far from the ridge, the membrane is kept flat by the l~Lteral tension ~o, the

width of the ridge being of the order of the screening length 1
=

(~/~fo)~/~
To describe the shape of the system we use the orthogonal coordinates x, y, z, so that the flat

part of the bilayer lies in the x-y plane. The shape of the membrane will be given by h(z, y)
determining the deviation of the membrane from the z-y plane in the z-direction and referred

to as the height. The projection of the polymer shape on the ~-y plane will be expressed by
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Fig. I. Schematic representation of the polymer-membrane system. The x-y plane is the plane of

the flat membrane. &lo is the ridge angle, et the tilt angle (the angle made by the polymer ridge with the

vertical z~axis in our
approximation). The polymer makes

a
sinusoidal undulation ~p(y)

= s cos(ky).

zp(y), while the height of the polymer will be denoted as
hp(y). In its undisturbed straight

conformation the polymer is in the y-z plane, obeying zp(y)
=

0.

We define a lateral undulation of the polymer by its projection on the ~-y plane, putting

x~(y)
= s

cos(ky) (1)

Note that (I) does not determine completely the shape of the undulating polymer. Indeed, at

a given projection (1) the polymer can adopt different heights hp(y). Moreover, the top of the

ridge can be tilted with respjct to the z-axis. The tilt angle, illustrated in Figure 1b, will be

denoted as 9t(y). We will find below the functions hp(y) and 9t(y) by minimizing the energy
of the undulation.

3. Statement ofthe Problem

We calculate the energy of the membrane with an embedded polymer exhibiting the undula-

tion (1) and analyse the stability of the straight conformation of the polymer. The polymer is
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assumed to have no backbone elasticity, so that the energy is related to the membrane defor-

mations only. If cl and c2 are the two principal curvatures of the membrane surface, we may

write the elastic energy per unit area of the membrane [8j

~f = ~fo + ~(J Js)~ + KK (2a)
2

where J
= cl +c2 and K

= cic2 denote the total and the Gaussian curvatures ofthe membrane,
respectively, while Js is the spontaneous curvature vanishing in the unpolymerized bilayer but

having a non-zero value at the position of the polymer. The whole energy can in principle be

obtained by integration of (2a)
over the whole area of the membrane, and accounting for the

differences in the elastic constants ~, K and Js between the unpolymerized and polymerized
parts. The spontaneous curvature at the position of the polymer creates the ridge angle

#o (which
we assume to be independent of polymer curvature). As the area occupied by

the polymer is negligible compared to the area of the unpolymerized bilayer, the integrals of

the first two terms of (2a)
over the polymerized area can be neglected. However, the term

proportional to the Gaussian curvature K has to be taken into account because of the Gauss-

Bonnet theorem. As a result, the total energy F of the system is obtained by integrating

1
~

'f ='to + j~J + ARK (2bj

over the area of the bilayer except for a strip of negligible width representing the polymer,
that is

F
=

~fdA (3)

The last term in (2b) is proportional to the difference in the moduli of Gaussian curvature

of the unpolymerized and the polymerized membrane, AK
=

k K~, and accounts for the

Gauss-Bonnet theorem.

To compute the energy (3),
one has to determine the total and the Gaussian curvatures J

and K, respectively, and find an expression for the element of the membrane area, dA. In

other words, we have to find the shape of the membrane with undulating polymer, and then

perform the integration (3)
over the unpolymerized area.

4. Shape of the Membrane

The goal of this section is to calculate the membrane shape described by its height h(z, y). All

the local geometrical characteristics of the membrane may be expressed in terms of the height.
The total and the Gaussian curvatures are related to the height by

(I + h()hzz + (I + h()hyy 2hzhyhzy
~

(i + h2 + /~2)3/2

and
h~~hyy h)~

~
l + h( + h(

respectively [9j. The element of membrane area is dA
=

I + h) + h(dxdy and the orientation

of an element of the membrane surface is determined by its normal vector fi, whose ~, y and

z-components are

A
"

l~hX'~hY, iifi
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In the expressions above and everywhere below the subscripts denote differentiation with re-

spect to the corresponding variable.

The shape equation describing the mechanical equilibrium of the membrane [10,11] involves

the curvatures of the membrane surface. Therefore, starting from the shape equation we will

first compute the total curvature of the membrane J and then, making use of the relationships
above, we will determine all the other geometrical characteristics.

We will assume the principal curvatures of the membrane to be small compared to the

inverse screening length, (ci(, (c2( < /fi. Then the shape equation may be written in the

approximate form

V~J(z, y)
=

'~° J (4)
~

where i7~ is the two-dimensional Laplacian in the z-y plane. In (4) we retained only the

contributions linear in the total curvature J and neglected the terms of higher order in J and

those proportional to the Gaussian curvature K. It will be seen below that the total curvature

resulting from (4) is of the order of magnitude of J te #o /fi. Therefore, our approximation
of small curvatures is equivalent to considering small ridge angles, #o < 1, and neglecting in

(4) all the terms of higher than linear order in #o.
There is an additional simplification used in (4). In the exact shape equation the two-

dimensional Laplacian refers to the plane tangent to the membrane rather than to the x-y

plane. However, the unit normal vector to the membrane, fi, is parallel to the z-axis up to

corrections of the order of #(. Therefore, in linear approximation in #o the operator i7~ in (4)

as well as all the differential operators below will be taken in the z-y plane. Moreover, in the

approximations of the first non-vanishing order in #o the exact expressions above relating the

curvatures and the height will be replaced by J
=

h~~ + hyy and K
=

hzzhyy h(~.
A first boundary condition for solutions of (4) is derived from the requirement that there

are no normal forces acting on the ridge. In other words, we are looking for the shape of the

system whose energy is minimized with respect to deviations of the polymer in the normal

direction (z-axis). The normal force fn determined per unit length of the polymer consists of

two contributions. The first contribution is expressed through the two-dimensional derivative

of the bending moment across the surface [8,11,12]. If the coordinate m denotes the direction

perpendicular to the polymer projected in the x-y plane then this force on the two sides of

the ridge may be expressed as K
) and -~

) Here and in the following the subscripts

L and R refer to the membrane
o~

the left- and right-hand sides of the ridge, respectively.
The second contribution to the normal force is determined by the z-component of the lateral

tension ~fo, which in our approximation of small #o is ~fo X, where x =
bh/bm is the gradient

angle of the membrane (Fig. 1). Taking into account that the gradient angle is positive on the

left and negative on the right, the total normal forces on the two sides may be expressed as

fnL
= ~

)
~foxL and fnR

= -K
) + ~foxR. The resulting boundary condition of zero total

normal force on the polymer is:

~

~~~ ~~~
= ~o (~L xR) (5a)

am am

where all values are taken at the polymer (1).
Another boundary condition relates the gradient angles at top of the ridge to the ridge angle,

#o, and the tilt angle, 9t, by the following equations:

XL(X
" Xpj Y) tR(X

" ~p, Y) "
#o (6a)

and

XL(Z
" Tp, Y) + XR(~

" zp. Y)
"

29t (6b)
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To discuss the approximations involved in (6) we need to know the expression for the shape of

the membrane. Therefore, we will return to this question in the Discussion.

Notice that owing to (6a), the equilibrium condition at the ridge, (5a), may be rewritten as

Next, the heights of the membrane at the left- and right-hand sides should match at the top
of the ridge,

hL(z~,y)
=

hR(z~,y)
=

h~(y). (7)

A fourth boundary conditions derives from the requirement that far from the polymer the

membrane remains flat and lies in the x-y plane:

h, hz, hy and J
-

0, as x -
+8 (8)

We shall first solve the differential equation (4) subject to the boundary condition (5b), for the

total curvature, J. Then we will solve for the height h, related to J in our approximation by
the equation

i7~h
=

J (9)

In calculating h(z,y)
we will take into account the remaining boundary conditions.

In solving the boundary value problem for the total curvature J(z,y), defined by (4), (5b)
and (8),

we make use of smallness of the amplitude s of polymer undulations and seek a

perturbative solution based on an expansion in s:

J(z, u)
=

J~°I(z) + J~~~(x,v)E + J~~l(z,9)E~ + eta.

The detailed calculation is presented in Appendix A. Solving order by order up to second order,

we obtain for the curvature of the membrane on the right- and left-hand sides of the ridge

JL R(z,y)
=

~°
qe+~~ ~ sae+Pi~cos(ky) + (10)

2

where q =

)
=

@, p(
=

k~ + q~, p(
=

4k~ + q~,
To solve (9) we take the sum of the particular solution h~~ of (9), accounting for (10), and

of the general solution hm~ of the equation i7~h
=

0, the latter describing the shapes with zero

total curvature (minimal surfaces), I,e., we have h
= h~~ + hm~.

The minimal surface solution has the form h[,f
=

£~~~ a(,~e+~~~ cos(nky).
At this point, to use the boundary condition (6b),

we must specify the functional form of the

tilt angle 9t (§). Since the tilt of the ridge is a consequence of the undulation of the polymer (1)
we may conclude from symmetry considerations that the tilt angle changes along the polymer
with the same wave vector as the undulation. We may express it as 9t

=
(s9t + s~92) cos(ky).

We will find from our treatment below, that the second order term, 92 vanishes.

Again, expressing h as a perturbative expansion in s, and solving by the same procedure as

in the case
of curvature J by making use of the boundary conditions (6a), (6b). (7) and (8),

we may determine all the unknown parameters an's and o (see Appendix). We find that 92

~~~~~~~~ ~~~ ~~~~

~ ~~o q k 91
" ~

2 k pi k pi
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We obtain for the shape of the membrane the following expression:

~~~~~~'~~
(

~~~~ ~
~~~~~~ l~~ ~~ ~~ ~~ ~~~~~ ~ ~~ ~~~ ~~ ~

~~ ~~~~

+
~~ ~f ~i~~~ ~~i~I ~~~ ~ ~~~I ~0~~ ~j

~+qx
2q k pi 2 2

~~~~°~~~~~~
~~~~

)~ ~ ~-
i~

~~
~ ~~

k

~pi

'
~~~~~

~~
/-

Ii ~
k

~pi
~~~~

In the zeroth order in s the height shows no dependence on y, since in this approximation the

undulation of the polymer is completely neglected and the membrane shape is that of a straight
ridge. In the first order in s we obtain a modulation of the membrane height proportional to

the undulation s cos(ky). This contribution does not change the average value of the membrane

height. In the second order we obtain another contribution to h(x,y) independent of y and

therefore changing the average height; in addition, we find
a contribution proportional to the

second harmonic cos(2ky). The character of the dependence of the height on y in all orders

can be understood by symmetry considerations taking into account that h(x, y) must remain

unchanged if we replace s by -s and ky by (ky + ~r).

5. Energy of Undulation and Stability of Straight Shape of Polymer

We compute the energy in (3), neglecting the contributions of the order higher than s~. The

energy per unit length of the polymer may be expressed as:

~
fi

l~
~skx

~~~~ ~
~skx

~~~ ~ ~~~ ~~ ~ ~~
~skx ~~~

i + mS
~~

where Lp is the length of the polymer whose element is given by dLp
=

fidx.~
Making use of (9) and (11), and averaging over a wavelength we obtain in our approximation

where
k~ q~ kq(q pi q~(q k)

~

a 2
~ 2(k pi '

2(L ~pi)

and
q Pi

~ ~k
pi

To determine an equilibrium shape of the membrane at the given undulation of the polymer,
(1). we have to minimize the energy, (12), with respect to the tilt angle 9i As a result we

obtain:
~ ~

~~~
~b

~
~ b~ ~

~'~ ~
~ ~ ~q ~~~

~~~~
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Making use of (12) and (13) we arrive at

The energy (14) consists of two contributions: the first does not depend on the amplitude of

undulation, s, and gives the energy of the straight polymer; the second is proportional to s~

and represents the energy associated with the undulation, fund-
Because there is a screening length I in our problem, it is interesting to examine the be-

haviour at wavelengths longer and shorter than I. For wavelengths longer than I (k « q), the

energy of undulations can be approximated as:

~~~~ ~ ~~
~

~~~~
8~2 2 ~~~ ~

~ ~~ ~~~~

The energy (IS) is proportional to the fourth power of the wave vector, k~. Therefore, it can

be viewed as an elastic energy of the polymer characterized by an effective bending elasticity

11= 211°
~ Ill ~~~ II it'~)~

'~j
(16)

This result is in agreement with the results of [7j, where it was shown that in a straight
configuration a polymer embedded in a membrane acquires an additional rigidity given by
(16). So long as ~1

is positive, the straight configuration remains stable under long wavelength
fluctuations. However, this condition holds only as long as AK /~ falls within the range:

-@+~i~~ilfi~~
(17)

In the special case when AK
=

0, the effective rigidity of the polymer is simply

tt
/~ ~§0 ~

~~~~°
4 ~o 2

In the limiting case of small wavelengths, k » q, the dependence of the undulation energy on

wave vector is controlled again by AK. At ~lk
=

0, the undulation energy is approximately
equal to

~~ 2 ~2 ~2
fund

"
/j (18)

2 4

The k~ term dominates the short wavelength behaviour in this case. The increase in energy
due to short wavelength ripples may be attributed to an increase of the effective ridge angle
by the ripples. For AK # 0 the leading term for the undulation energy is proportional to the

third power of the wave vector being,

This contribution to the undulation energy may be seen to arise from a coupling of the curvature

of the polymer chain to the tilt angle contributed by the Gaussian term. Expression (19) yields
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a criterion of stability of the straight conformation of the polymer with respect to the short

wave undulations. The straight conformation is stable as long as the undulation energy (19)
remains positive, I.e., the parameter AK /~ satisfies

-4 <

~~
< 0 (20)

Comparing the ranges (17) and (20) we find the straight configuration of the polymer to be

stable under deformations of all wavelengths so long as
f~ falls within the range

#fi
<

f~ < 0. This means that, when it is stable with respect to the short wave undulations,
the straight conformation of the polymer is also stable with respect to the long wave ones.

However, if the value of the control parameter lies in the range -4 < )~ <
-fi

the

straight conformation becomes unstable under the long wave undulations but still remains

stable with respect to the short wave and if it lies in the range 0 < f~ <
~fi,

the straight
polymer is stable under the long wave undulations but not the short wave ones. In the range

)~ < -4 and )~ >
4fi

the straight conformation is unstable under the undulations of all

wavelengths.

6. Discussion

We analysed the shape and the energy of a membrane embedding an undulating polymer. The

results provided us with criteria of stability of the straight polymer with respect to the undula-

tions of short and long wavelengths, the parameter controlling the stability being the difference

of the moduli of Gaussian curvature of polymerized and unpolymerized membrane, AK.

There are two independent small parameters in our problem: the ridge angle #o < I and the

amplitude of undulation of the polymer s < k~~ In our description we look for approximate
solutions for the shape of the membrane retaining contributions up to the linear order in #o

and quadratic order in s. We discussed already the simplifications of the shape equation (4)
resulting from the smallness of #o. However, an important approximation using the smallness

of the amplitude s still remains to be discussed. It played a role in the equation for the

boundary condition of the fixed ridge angle (6a). In the exact approach the ridge angle is

constant along the polymer line and is equal to the angle between the normal vectors to the

membrane on the left and right hand sides of the polymer, AL AR- The exact form of the

boundary condition is given by AL AR
=

cos~lo. It can be readily seen that if the height
of the ridge changes (I,e. if the polymer is "sloping" ), this exact condition differs from (6a).
The latter boundary condition is expressed in terms of the gradient angles X and is therefore

approximate. To check the validity of this approximation we write down the v~Lriation of the

height of the ridge as obtained by substituting (13) in (11)

~~~~~
~

~ ~~~
~

~

~ i
~

~
~~ ~

~~~q ~~~

+
~~~ ~ ~~ ~

+
~ ~~

+
~'~ ~~~~~'~ ~ ~~~'~ ~~~~'~~~~ os(2k~)j (21)

4p2 4 4 2 /@ 4qp2

Variation of the height of the ridge in the vertical direction is a way for the membrane-polymer

system to relax when the polymer ridge makes sinusoidal undulations in the plane of the

membrane. Notice that these variations occur only in the second order of s and that the
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energy remains unchanged to this order when the undulating height is replaced by the average

height.
A simple estimation based on (21) shows that the correction to (6a) related to the change

of height is of order s~ and, therefore, can be neglected in the approximation used.

It is, finally, useful to discuss the formal similarities and differences between undulations

of a polymer embedded in a membrane and those of a charged membrane immersed in an

electrolyte [13j.
A charged membrane with a constant surface charge density ao and immersed in an elec-

trolyte (of Debye length, x~~
=

fi$ (~)) is characterized by a potential that satisfies in a
P0q

linear approximation the Debye-Hiickel equation [14j:

V~#
"

K~~' (22)

This equation is similar to equation (4) for total curvature of the membrane. Since the effect of

the electric charge is not felt far from the membrane, we have the following boundary condition

for the potential, which is similar to the boundary condition (8) for the curvature

#, ~lz -
0, for

z -
+cc (23)

(we have taken the charged membrane to coincide with the x-y plane).
In addition, if fi is the normal to the membrane in the positive z direction, the potential has

a normal derivative discontinuity at any point on the membrane:

l~~~
~'~~

=

~~~°
(24)

off
~

off
~ s

This condition seems analogous to the condition (5b) expressing the balance of forces on the

polymer. We may conclude that there is a formal analogy between the total curvature, J,
and the electric potential, #, the screening length, I

=

fi, and the Debye length, ~~~,
the ridge angle, #o, and the surface charge density, ao. In an insulated membrane, the total

surface charge density ao remains constant; however the distribution of charges on the two

sides is not be the same. The normal derivative of the potential at any point on the membrane

determines the surface charge density at that point. The difference of the normal derivative

of the potential on the two sides (excess charge)
seems analogous to the tilt angle 9t in our

problem.
However, the problem of the embedded polymer is richer than that of the charged membrane,

as there are no electrostatic analogies for the Gaussian curvature, K, and the modulus of

Gaussian curvature, k. Therefore, the instability of the polymer shape produced by ~lk, does

not come into play in the case of charged membrane.

Appendix A

Determination of Curvature

We determine the curvature by solving the boundary value problem comprising of equation (4)
and the boundary conditions (5b) and (8). We assume a Fourier series expansion as a solution

for J
cc

JL,R(x,~)
=

~j (al'~(x)cos(nk~) + bl'~(x)sin(nky))

n=0

(1) here kB is the Boltzmann constant, s is the dielectric constant of the electrolyte, po is the bulk

charge density of the electrolyte, and q is the charge of each ion.
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However, since the shape of the undulating polymer (1) is given by an even function of ~, we

may assume that J also is even in y, I.e.

cc

JL~R(~,~)
=

~j a(~~(x)cos(nky) (A.I)

n=0

Inserting in (4) subject to the boundary condition (8), we may further find the form of the

functions an(x). The result is

cc

JL,R(~,y)
=

~j A(.~cos(nky)exp(+pn~) (A.2)

n=0

where p(
= q~ + n~k~, and the An's are unknown constants which will be determined from the

boundary condition (5b).
The derivatives of curvature (A.2) entering the boundary condition (5b) may be written as

follows

~~~~
0

~~~~~~~~~~~~~~~ Ii
~~~~~~(ky)

f
nkA(,~sin(nky) ~~~~~~~~~~~~~~~~~~

(A.3)

n=o
Ii

+ s2k~sin~ (ky)

Here use has been made of the fact that the projection of the normal to the polymer on the

z-y plane is

~ ~'~~ ~~~~ ~~ ~/l
+

2~2sin~ky

and that
dj dj 1

~
dJ Eksin(kY)

$ dX
~/~ ~ ~2 ~2~i~2(ky) ~~ II

+ 6~k~Sln~(k#)

We may further make a perturbative expansion of J (valid for the case of small amplitudes of

polyiiier undulation) and solve the problem described above order by order up to second order

in s. Therefore, if we write

J(x, y)
=

J~°I(x) + sJl~l(x) + s~J~~l(x) + (A.4)

we must also consider a corresponding expansion of the coefficients An's as defined in (A.2)

A
=

A(oj ~ ~
~(ij ~ ~2 ~(2j

~ ~ ~~

In the zeroth order J
=

J(°~ (~), and is not a function of y, so that the only coefficient in (A.3)
which is different from zero is A(°I

We may thus write

J)°(
=

A)~~~°~exp(+qx)

The constants A)~~~°~ are determined from the boundary condition (5b) whose form in the

zeroth order in s gives A)~°~ + A)~°~
=

q#o.
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Since, in the zeroth order we expect the profile of the membrane to be symmetric on the two

sides of the ridge, we have A)~°~ =
A)~°~

=
ijQ and

J/~
=

~~°exp(+qx) (A.6)

Moving next to the first order, we have

cc

J)~((x,y)
=

~j A(?~(~lcos(nky)exp(+pax)

n=0

In this order (5b) may be written as ~j~~ =

j
Again using (A.3) at x = xp =

scos(ky),

we have

A)~°~q~cos(ky) + ~j A(~~lpncos(nky)
=

A)~°~q~cos(ky) ~jAf(~)pncos(nky)

This gives us
Afl~~

=

-Af~~~.
Solving finally in the second order, we assume solutions of the form

cc

J)~~(x,y)
=

~j Al'~~~~cos(nky)exp(+pn~)

n=0

The boundary condition (5b) is expressed as

$
=

$
Substituting

x = xp = E cos(ky) in (A.3) we obtain in this order

-qA)~°~
~~

sin~ (ky + qA)@1~~ cos~ (ky ~j A((~l p$cos(ky)cos(nky) + ~j Af(~~ pncos(nky)
2 2

+k~sin(ky) ~j nA((~lsin(nky)
=

qA)@~
~

sin~ (ky) qA)~°~
~ cos~(ky)

+
~j A((~)p(cos(ky)cos(nky) ~j A(l~lpncos(nky) k~sin(ky) ~j nAf~~Jsin(nky)

We may first deduce from this expression that A)~~l
=

-A)~~l
e -o, while all All's with

n # I vanish, so that we may write

J)~((x,y)
=

~acoskyexp(~pix). (A.7)

Here a is an undetermined parameter which will be identified on solving the problem for h.

The only second order coefficients that do not vanish are those of
n =

0 and 2, with Af~~l
=

Af~~~ e
Ail and

Al~~~ + Al~~~ + 2Al~~ = aq + (° lk~ q~l

and
~ ~ ~ ~

~~~~~ ~ ~~~~~ ~~~~ °~~ ) ~

i~2
We may thus write

~~~~~~'~~
°~

~
~~~ ~~~ ~~~~~~~~ ~

a~~ ~ ~~ ~° ~~~~ exp(+p2z)cos(2ky) (A.8)
p2 2 2p2
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Appendix B

Determination of Height

The height is given by the following 2nd order inhomogeneous differential equation

hxx + hyy =
J

As mentioned in the main text, solutions to such an equation are of two kinds: the particular
solution, hp~ which may be derived directly from integrating (10), and the general solution of

the homogeneous equation i7~h
=

0. We shall call this the minimal surface solution, hms, as

it corresponds to vanishing total curvature J
=

0. Again, by a similar reasoning as for J, we

assume the following forms for the two kinds of solutions:

cc cc

hbf
=

~jc(~~e+~~~cos(nky) and h)j~
=

~j dl'~e+P"~cos(nky)

n=I n=0

The height functions must also satisfy boundary conditions (6a), (6b) and (7). In particular,

we shall make use of (7), (10) and the following combination of the equations (6a) and (6b ):

,[
=

(hL)( + (hL)~
=

~°
+ 9t

~

(B.1a)
~ 2

and
~

,(
=

(hR)( + (hR)(
=

~°
9t (B.1b)

2

with the derivatives taken at the polymer. As mentioned in the Discussion, there is an approx-

imation of the order s~ involved when we express the boundary conditions (6) in terms of the

gradient angles...
As in the case of determination of J, in order to determine the above coefficients c(,~ and

d(~~ for all orders (upto 2nd order in s), we expand the height function in powers of s

h(x, y)
=

h(°i(y) + sh(i)(x, y) + s2h(2~(x, y) + (B.2)

for both right and left hand sides and we introduce a corresponding expansion of the coefficients

cn =
c(°~ + sc(~l + s~c(~l + and dn

=
d(°J + sd(~~ + s~d(~~ +

We further express the boundary condition (7) as

h~(xp, y)
=

h~(xp, y)
=

hp(y)
= h1°~ + shl~i + s~hl~i + (B.3)

In lowest order (s°), since the solutions do not show any y dependence, the hm~ solutions of

zeroth order do not contribute and we have

/~L,R(0) ~L,R~+qz
0

satisfying the boundary conditions for both right-hand and left-hand sides, and

hL(oj(~
~

~)
~

/~Rjoj(~
~

~)
~

/~(oj

We get

~L~R(0)(~) ~0~+qz (~ ~)
2q
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The zeroth order contribution to the height of the ridge is

hloj
~

#0,
~~_~)

P 2q

Let us next consider solutions offirst order, namely

cc cc

h~~~l~~
=

~j d(~~~~le+P"~cos(nky) +
£ c(~~~~le+~~~cos(nky).

n=0 n=i

The function h~~l satisfies the following boundary conditions representing (B.1a), (B.1b) and

(B.3), respectively:

(d)1°1)~q~cos(ky) + d)~°~q ~j pad(~~lcos(nky) + d)~°~q ~j nkc(~~lcos(nky)
=

~°
91cos(ky)

2

-(d)~°l)~q~cos(ky) +d)~°~q ~jpndf~~~cos(nky) +d)~°lq~jnkc(l~~cos(nky)
=

~°91cos(ky)
2

~j
(c((~l + d(~~l) cos(nky) + qd)~°~cos(ky)

=

~j
(c$~~l +

$~~~) cos(nky) qd)~°~cos(ky)

=

hli)

It is straightforward to get the following expressions for h(~l.

h~~~~
-

1°
(~ k)

11 ~~l~°11»~
+ ll° (Pi q) +

1) ~l~°~ll»~
and

~~~~~
~~/

~~ ~~ ~~
~ /~~~~~~~

~~~ ~~ ~ ~~
~

~~~~~~ ~~'~~

First order contribution to the height of the ridge:

hli)
~

~ ~~ ~~

Equations of second order in s may be written as:

cc cc

h~(~~~~
=

~j d(~~(~~e+P"~cos(nky) +
~j cl'~l~~e+~~~cos(nky)

n=0 n=i

The coefficients in this equation are obtained from the boundary conditions (B.1a) and (B.1b),
expressed as

~~~~~~~~
(q2d[~~~°~)~

+ q~ (dl'~~°~)

+2COs~(kY) q~d~'~~~~
)~~~~~~ ~

~~~~~~~

~ ~~~~~~~~ ~~~~~~~ ~
~~~~~~~~~

~ j~jRiii~ + diR(iipij + k2sin21k») Ci~~~~
+ dl'~~~~

+2qcos(ky)dl'~l°~ ~j
(nkcl'~~~l + pndl'~l~~j

=
9)cos~(ky) +

2~° 92cos(ky)
2
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and from the boundary condition (B.5)

~j ~f~~~
+ df~~i) ~°~(kll) + ~°~~(kv) C)~~~k

+ d)~~~Pl) +
~~~)~~~~~d)~~~

=

~j (cfl~l + dfl~l) cos(ky) + cos~(ky) (c)~~~k + d)~~~ pi +
°~~~~~~q~d)~°~

=
h~~)

2 P

Straightforward calculations lead to:

))jj~~~
)j) /()jj~~)~~~j~+

~[ ~)) ~~~~

~l~
~

~

~'~~~~

and 92
"

0.

For thq second order contribution to the height of the ridge, we get

~ ~~ ~~
~~ ~~

i lfio
(J']

+ ~~
+

~~~~ / ~

pi

~~
~~

~
~

~

~~

g~ qfio
j

hi~~Y~
2q 2 ~

~2p~ + q~
P(kj 91~

p~
~

2 2 4
~~~~ ~~~~

_ ~ j/ ~~
~~ ~ ~

~ ~~

Collecting the contributions of different orders, we arrive at the shape of the membrane (11).

Taking the Laplacian of (11),
we find

a =

-q~ (~° ~ fi).
This gives us a complete

-Pi -Pi
solution for J.
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