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PACS.61.30.-v Liquid crystals
PACS.61.72.Lk Linear defects: dislocations, disclinations

Abstract. The texture of ferroelectric chiral smectic liquid crystal confined between two

aligning plates is studied in the
case

of thick samples
i-e-

samples whose thickness is higher than

the helical pitch. The helical texture with periodic unwinding discfination lines appears in these

samples. A theoretical elastic calculation is made assuming in the defect lines the melting of the

smectic C phase into the smectic A phase. It allows the calculation of the line positions and the

local helical pitch versus
the sample thickness. In the

case
of the bookshelfgeometry and in that

of the che~ron
our

observations
are

well explained by the model. The pitch measurement allows

an estimation of the defect
core energy and confirms the A melting. We show the existence of

the chevron plane in thick samples, plane which plays the role of an unwinding surface, for the

helical structure.

R4sum4. Nous Atudions la texture du cristal liquide smectique C chiral ferroAlectrique,
confin4 entre deux lames de

verre traitAes, dans le cas
d'un Achantillon 4pais, c'est-I-dire tel que

l'4paisseur soit sup4rieure au pas de l'hAlice. On observe une texture enrou14e accompagnAe de

lignes de disinclinaison dites fignes de ddroulement. Nous prAsentons
un

calcul du minimum de

l'4nergie 41astique
en supposant, dans les lignes de d4faut,

une fusion de la phase smectique C

dans la phase smectique A. Cette hypothAse permet de calculer la position des lignes et le pas

hAlicoidal local
en

fonction de l'Apaisseur de l'4chantillon. Nos rAsultats expArimentaux sont bien

expliquAs par le modAle dans le
cas

de la g40m4trie dite
en bookshelf et dans le cas du chevron.

La
mesure

du pas permet d'4valuer l'4nergie du cceur du d4faut et confirme la fusion en
phase A.

Nous montrons l'existence du plan du chevron dans les 4chantillons 4pais, plan qui joue pour la

structure hAlicoidale le r61e de surface de dAroulement.

Introduction

The chiral smectic C phase [1] (C* phase) is made of layers. In the layers the molecules are

tilted with an angle 90 with respect to the layer normal. The layers pile up while turning with a

spontaneous pitch Zo, it is a liquid (2D) in the layers, a solid (1D) in the direction perpendicular
to the layers. It possesses only a helical symmetry and a twofold axis. This lack of symmetry
allows a spontaneous electrical polarization P. It also gives rise to difficult adjustment between

the spontaneous helical texture and the homogeneous texture often imposed by sample walls.

(*) Author for correspondence (e-mail: brunet©gdpc.univ-mont2.fr)
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This phase has been studied in detail for thin samples because of the possible applications

as displays. In this case the texture is more connected with the surface interactions than with

the bulk properties.
In this paper we study the texture of thick samples. We give an elastic model of the defect

lines that appear between the helical sample bulk and the homogeneous sample part near the

walls. This model allows us to calculate the appearance and the position of these lines. We

compare these predictions with the sample observations.

1. The Thick Sample Textures

In thick samples, prepared with untreated glass plates, it is well-known that the texture of

a chiral smectic C shows more or less regular arrays of lines (Photo 1, p. 1713), first called

stripes, and focal conics. They have been interpreted as the result of the connection between

the helical structure in the bulk and the unwound structure imposed by the bounding surfaces.

First called "dechiralization lines" we now prefer unwinding lines because, on the surfaces, the

structure is unwound and not dechiralized.

These lines are located close to the surfaces but in the bulk. They go in pairs, one line of

the pair is located close to one surface, the other line close to the other surface. The relative

positions of the two lines of a pair change in relation to the relative anchoring direction on

the two surfaces. The two lines of a pair can be superposed when the anchoring directions

are parallel. Figure shows these superposed lines with extinction of the background between

crossed polarizers, indicating parallel anchoring. The observations were made on a mixture

with no smectic A phase, and having a very small spontaneous polarization. A strong planar
anchoring is obtained by SiO evaporation at 60° incidence.

The lines can also be shifted forward a half pitch. Figure 2 shows these shifted lines with

extinction of the background. The angle between polarizers is 50° that is about ~/2 290,
which indicates symmetrical anchoring. The direction of the polarizer, of the analyzer, of

the aligning direction and the anchoring directions on both the glass plates deduced from the

extinction are indicated in Figure 2. The observations were made in a pure chiral smectic C

compound presenting a sniectic A phase and having a medium spontaneous polarization; the

surface treatment is the same as in Figure 1.

The first situation is similar to a uniform molecular orientation parallel to the plates in Sur-

face Stabilized Ferroelectric Liquid Crystal (SSFLC) [2] geometry (thin samples), the electrical

polarization lying along the normal to the plates. The second one is similar to a rotation of

a half turn on the cone for the molecules going from the lo~v-er to the upper surface. This

situation is often called a splayed structure [3]. The interpretation was made assuming the

smectic layers perpendicular to the glass plates, a structure called "bookshelf' geometry. The

topology of the director field for superposed lines described by Brunet et Williams [4] is re-

called in Figure 3a and that for shifted lines described by Glogarova and Pavel [5] recalled in

Figure 3b.

Sometimes we observe lines on the plates as shown in Figure 21 the corresponding texture

is drawn in Figure 22. They are separated on the surface by half a pitch. This configuration
indicates a bistable surface anchoring [6], a quasi degenerated planar anchoring or some surface

hysteresis.
Most of the studies during the last years were made for compounds with the N* -SA transition

and under experimental conditions (surface treatment, spontaneous polarization, etc.) giving
rise to a symmetrical anchoring where the thickness exceeds about 1.5 ~m. We can invoke

two effects to explain the frequent occurrence
of the symmetrical anchoring. The spontaneous

polarization interaction with the surface polarization gives a polar surface energy term. Also
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Fig. I. Regular array of pairs of superposed lines. The extinction of the background between

crossed polarizers (A and P) shows that the anchoring directions on both surfaces
are

parallel to the

aligning direction (D). The distance between two neighbouring lines is about IS ~tm. Compound: a
5%

mixture of cholesteryl cinnamate with bis-(4'-n-decyloxybenzal) 2-chloro-1-4-phenylenediamine. The

cell geometry is cylindrical:
a

cylindrycal lens ill
=

102 mm) is put on a
glass plate. The thickness is

growing from the top to the bottom of the photo.

the molecular chirality creates a spontaneous bend. This spdntaneous bend does not appear in

the bulk elastic energy because it can be integrated, but this integration gives a polar surface

term [7].

2. Calculations of Limited Sample TeXtures

2. I. HYPOTHESIS AND EQUATIONS. To obtain the texture of a limited sample we define the

geometrical conditions and the defect model; we then calculate the involved elastic energies,
and minimize these energies by solving numerically the Euler equations.

2.1.1. Geometrical Conditions. To simplify our study we use the following model:

.
On the surfaces the molecules lie parallel to the plates, the anchoring is very strong. The

distance between the plates is d.

.
The smectic layers in equilibrium are normal to the plates. The z axis is their normal.

(Fig. 4a). 9 is the tilt angle of the molecular director with respect to z, the local normal

to the layer. yJ is the azimuth angle with respect to X, the normal to the plate.

.
The texture has only two dimensions and does not vary along the y direction, parallel to

the plates and to the smectic layers.

. The x axis is the normal to the plates perpendicular to y and
z.
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a)

Top

D(aligning direction)

Polarizer

Bottom

b) Analyzer

Fig. 2. Regular array of pairs of shifted lines. The polarizer (P) and the analyzer (A) make
an

angle of 50° (that is about ~/2 20), when is obtained the extinction of the background; it shows that

the anchoring directions
on

both surfaces (Bottom: B and Top: T)
are

symmetrical with respect to the

layer normal which is parallel to the aligning direction (D). The distance between two neighbouring
lines is about lo ~tm. Compound: a

50% mixture of chiral p-decyloxybenzylidene p'-amino 2-methyl

butyl cinnamate (D.O.B.A.M.B.C.) with the racemic. Cell thickness: about 30 ~tm.

. The layer deformation is defined by u its displacement along z with respect to its equi-

librium position.

.
The molecular orientation is defined in the layer with respect to a local frame: xiyz~, as

shown in Figure 4b. 9 is the tilt angle of the molecular director with respect to zi the

local normal to the layer. yJ is the azimuth angle with respect to xi, in the layer and

perpendicular to y.

2.1.2. Defect Line Model. In the defect line, topological argument indicates a ~ jump of
~

if

9 is kept constant. To obtain a continuous variation of the molecular orientation, we imagine
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z z

~
X X

a) b)

Fig. 3. Topology of the director in two cases
of planar molecular anchoring

on
the surfaces: a) par-

allel anchoring
,

b) symmetrical anchoring. The distance b between the two families of defects lines is

0 in 3a and Zo/2 in 3b.

a core of the defect where the molecules are normal to the smectic layer (9
=

0, ~ undefined).
The

~ jump of ~ is then transformed in a continuous variation of 9 from -90 to +90 without

~ discontinuity. This corresponds to a second order transition from the C* phase in the bulk

to the A phase in the defect core. Figure 5 shows a drawing of the defect. The A melting
corresponds to an increase of the layer thickness. This induces a displacement ~1 of the layers.
This displacement propagates along the normal to the layer near the plane parallel to the plates
and going through the defect, because a smectic layer is like a sheet of paper it is easy to bend

and difficult to compress [8].

2.1.3. Involved Energies. The infinite sample equilibrium texture is made of constant thick-

ness parallel plane layers. In the layer the molecules are parallel and tilted with 90. They turn

from one layer to the other making a helix of pitch Zo.

In the central part of a sufficiently thick sample the helical equilibrium is reached. The uni-

form boundary conditions imposed by the plates create a distortion, the corresponding energy

density can be separated into nematic energy, smectic tilt energy and smectic compression

energy:
F=Fn+FS@+Fsc

We call nematic energy the energy corresponding to a variation of the director direction [9]. It

is function of the derivative of ~ and 9 and of the second derivative of u. The derivatives of

~ and 9 measure the molecular orientation variation in the layer. The second derivative of u,

measures the molecular orientation variation due to the layer bending. For low displacement
of the layer, in the approximation of only one elastic constant K and if we neglect fourth order

energy terms in 9, we write the nematic energy density Fn as:

K
~ jd~

~

~
d~ 2~ ~ off ~ off ~ ~~lj ~ 2d~~ d(9 cos ~)

~~~ § ~
ox

~~
0z Zo

~
ox

~
0z

~
0x2 0x2 ox
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Plate

'

z

w

a) x

Plate

z

w

b)
~l

Fig. 4. a) In equilibrium the smectic layers
are normal to the plates. The angles which define the

molecular orientation in the layer are the tilt angle 0, with respect to the layer normal z, the azimuthal

angle ~a, with respect to the normal to the plates,
x.

bj The molecular orientation is defined in the

layer with respect to a
local frame, xi, yi, zii the tilt angle 0, in relation with the local normal to the

layer, zi, the azimuthal angle ~a, in relation with xi, in the layer and perpendicular to y.

The smectic tilt energy density Fs@ corresponds to the torque that keeps the molecules at the

equilibrium tilt 90 (10]

Fs@
"

~~ (0~ 9( )~4~

The length ~ gives the ratio between the nematic constant K and the smectic tilt constant.

This energy appears in the defect line when 9 goes to 0.
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Fig. 5. A model of the unwinding line defect. The
t1 displacement propagates along the layer

normal
z. The axis zi is defined in Figure 4b. (p, ~)

are
cylindrical coordinates around the defect. In

the core the molecules
are

normal to the layer. They melt in smectic A phase.

o

o

a

x

Fig. 6. The molecular tilt angle 0 near a
line

~ersus z
and the distance from

one
plate

~.
On the

plate ix
=

0) the equilibrium angle 00
=

o-I radian is obtained. The tilt angle is
zero

in the defect

core
ix

= a,z =
0).
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The smectic compression energy density Fsc is [11,12]

J~ ~~ j@2 @2
2

~~
212

0z
~

2
~

The length I gives the ratio between the nematic elastic constant and the compression energy

constant. This energy appears near the defect line because of the layer thickness increase in

the defect line due to the melting in smectic A. We neglect the layer shear energy in (0~1/0x)~
because of its second order in ~1. Nevertheless, in Fs@ and Fsc, we keep fourth order terms in

9 because the lengths I and ~ are so small that the coefficient of this kind of energy is very

important.
We do not take into account the electrical energy because we are interested in the texture of

samples without any applied field. The only electrical effect is due to the divergence of P, the

spontaneous polarization. The corresponding charges are in the defect line. They are screened

by the ionic impurities. In very pure and chemically stable compounds, charges remain but it

is possible to demonstrate that the corresponding effect only renormalize the nematic constant

in the simple case of one nematic elastic constant we are using.

2.1.4. Euler Equations. The equilibrium configuration minimizes these energies. It is the

solution of the Euler equations obtained by functional derivation of the previous energy den-

sities:

o Ill
+

Ill
+
2t Ii

+ 2 II Ill ii
+ siuvJt

=
o

Ii
+ ((') + ° (((1)~ +

Ill ))~j

~ ~/~ ~
~2

~ ~~~ ~~' ~
2 ~

~ ~°~~~~ ~

~()
+

( ((j
+
°I)

+ $1°~°~~°~ "
°

Because of the non linearity of this system we only compute a numerical solution by
a relaxation

method [13]. In this calculation 9 is kept positive and ~ varies from -~/2 to 3~/2, these

conventions do not change the continuous model indicated in paragraph 2.1.2.

2.2. RESULTS OF THE NUMERICAL CALCULATION AND COMPARISON WITH ANALYTIC

APPROXIMATIONS. The calculations are made for Zo
"

Z
=

d
=

2 ~m when, as we

will see later, the helical structure may exist in some cases but is very constrained by the prox-
imity of the plates. The values ~ =

30 1, 1
=

20 1
are an order of magnitude obtained from

the measures of Galeme [9] near the smectic A
-

C transition (1001 and 501) by dividing
by 3 these values to take into account the saturation of the constants far from the transition.

The positions of the defect lines are fixed. They are superimposed or shifted of half a pitch
depending of the anchoring. The distance

a between the defect line and the neighbouring plate
is fixed as: a =

Zo/4~. These positions will be examined in paragraph 2.3.

2.2.1. The Tilt Angle 9 Variations. In Figure 6 are drawn the values of the tilt angle 9

uersw z and x for 90
"

0.1 radian, in the case of parallel anchoring on the two surfaces

(~2~ = ~22 "
~/2).

We can observe in this drawing that 9 varies only in a cylinder of radius r, the core of the

defect. Outside of this cylinder. 9 is very close to 90. The comparison between 9(a, z) and
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9(x,0) shows the cylindrical symmetry of the defect even in this case of Zo
"

d where the

interaction with the plates may brake the cylindrical symmetry. The calculation made for the

symmetrical anchoring (~i
" -§J2 "

~/2) and for the surface line case (~i
" §J2 "

+~/2)
gives the same result. However, in the last case, the defect is cut along its axis by the sample
plate (Fig. 22).

An approximate simple expression of the 9 variation in the defect core can be obtained if we

take into account the cylindrical symmetry of the computer result. The energy can be written

in cylindrical coordinates (p, ~b) around the defect (Fig. 5) as:

~. m j@2 @2j2 @2 ~@ 2

~ ~~~° + / +
l~l 2~PdP

In this expression we neglect the compression energy because we postulate the defect core as

incompressible and the spontaneous pitch is supposed large enough to be neglected in the defect

core. The nematic energy is very simple because the cylindrical symmetry gives 0~/0p
=

0,

0~/0~b
=

1 and off /0~b
=

0. The corresponding Euler equation for 9 is:

9 (9~ 9]) 9 off 0~9
~~

~~
~

P °P ~°P~

For low p this equation reduces to
~

=

~~
and gives 9 proportional to p.

P °P
For large p, the equation is:

9 9~ ~~ 0~ 9

~ ( 4@ ~

and it has the solution:

~ ~°~~~~~ ~~~~ ~' ~~

The defect core radius
r given by the numerical calculation is plotted in Figure 7 uers~s

90.

r is defined by the derivative of 9 uers~s p near the defect center:

oo do

I " $ ~~ ~ ~
°

The concordance with the analytical approximation r' is good.
The calculation indicates that the 9 distortion is only located in a very small volume of the

sample near the defect lines. This volume increases only near the A
-

C* transition where 90

tends to zero.

2.2.2. Smectic Layer Displacement Variation. In Figure 8 is drawn the layer displacement

~1 uers~s x and
z

for 90
"

0A radian and the parallel anchoring (~i
= ~2 "

~/2). This

displacement is created by the layer thickness increase in the defect core due to the 9 decrease.

We can see as expected that this distortion only stays in a domain parallel to the plates of

thickness close to twice the core radius. In this domain the maximum displacement is reached

at a distance from the defect center larger than the defect core radius (z re 2r). The calculation

gives a linear decrease of
~ uers~s z

for
z > 2r, it corresponds to a uniform compression of the

sample in this region.
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~

w

_~
~

b

o.oi

Tilt angle 0o/rad

Fig. 7. log-log plot of the line
core radius r ~ersus the tilt angle 9. r is divided by p, the charac-

teristic length of the smectic C energy. The calculation is made for Zo
"

d
=

2 ~tm, ~t =
30 ~tm and

1= 20 ~tm. One
can see that r is inversely proportional to 00.

/ 3

x

Fig. 8. Sketch of the layer displacement
t1 ~ersus z

and ~, for 00
=

al radian. The layer thickness

increase in the defect
core

induces
a

layer displacement
u

which propagates in the direction normal to

the layer until the half pitch of the texture.
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o z
z/2 z z/2

z

a /2

o o

~
x

3a /2
3a /2

a /2
~

d ~a /2 ~i ~
~a /2

Fig. 10 Fig. 11

Fig. 10. Azimuthal angle of the molecules, ~a, ~ersus x
and

z
in the case

of parallel anchoring. The

defect line corresponds to a jump of 2~ of this angle. The drawing corresponds to one helical pitch.

Fig. 11. Azimuthal angle of the molecules, ~a, ~ersus x and
z

in the
case

of symmetrical anchoring.

~

~

o z
Zo/4

Fig. 12. The azimuthal angle ~a ~ersus z
for different distances z

from the upper plate near the

defect line. The continuous lines are the result of the computer calculation, the dashed lines are the

constant 0 approximation.

.
for the parallel anchoring, ~i = §J2 "

~/2:

m

cos(2p + 1)~sin(2p + 1)~sinh(2p + 1) j lz
~

~ =

)
+ 4£

~

~
(1)

p=o (2p + 1)sinh(2p + 1)
)



N°12 Si THICK SAMPLES 1699

Eos/K

Eo~/K

) ~°~~

E
8 ~uS/K
]

~°~~
Eu~/K

I
'

iy3

~j
I
~ io-4

io-5

o.oi o-i i

Tilt angle 00/rad

Fig. 13. Energies of the line texture calculated for
one

pitch along z and one unit length along y,

and reported to K, the nematic elastic constant. The computer calculation is made for Z
=

Zo
#

d
=

2 ~m, ~ =
30 pm and 1

=
20 ~m. suN =

layer bend energy, sus "
layer compression energy,

sgN "
nematic tilt energy, sgs "

smectic tilt energy, c~ =
total nematic azimuthal angle energy.

.
for the symmetrical anchoring, ~i "

~/2, ~2 "
-~/2 or

3~/2:

v7 =
+

j j
+ 2

~

~"
~~"~ ~~ "~~~/j

~

z~~~~~~~ ~

~
~~

12)

2d

.
for the surface line case, ~i " §J2 "

+~/2:

~
m

sin(2p+1)isinh(2p+1)I
~g =

+
2fl d 4d j~)

~
p=o (2p + 1)sinh(2p +

1)I

The origin of
x

and
z is on the first plate in the middle between the two defects near this plate.

Z is the pitch of the helix in the middle of the sample. We will see in a following paragraph
that Z can be slightly larger than Zo, the equilibrium helical pitch of the compound.
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The agreement between the values of ~ obtained with the constant 9 approximation and with

the numerical calculation is not surprising if we take into account the 9 stability outside of

the defect core established in the paragraph 2.2.1. This agreement is very interesting because

it allows us to use the constant 9 approximation to interpret the sample texture everywhere
outside of the defect core.

2.2.4. Energy Considerations Existence of the Defect Line Texture. From the computer
calculation, in the case of the line texture, we can obtain the different distortion energies of a

sample. We calculate them for one pitch of the texture in the z direction and one unit length
in the y direction. These energies divided by the elastic constant l~ are plotted in Figure 13

uers~s the tilt angle. The numerical calculation is made for a sample with parallel anchoring.
The sample thickness is 2 ~m and the helical pitch is 2 ~m.

We can see that the different energies are not at all equal. For a given 90, the layer displace-

ment energy su is one order of magnitude lower than the molecular tilt angle energy s~ which

is also one order of magnitude lower than the azimuth angle energy s~. suN, the layer bend

energy is the lowest one; it increases very quickly with 90. sus, the smectic compression energy
is more stable. The 9 and ~ energies vary roughly as 9(. We can see that the ~ energy is not

exactly proportional to 9(.
An estimation of the 9 and ~ energies can be made: for the bulk energy we saw that, out

of the core, the ~ configuration is very close to the one at 9 constant, which follows a Laplace
equation. The electrical analogy allows us to write the term of the out-of-core ~ energy of a

sample pitch as:

E~b =
2~ K91 in1

=
2~ Aoi ml

~ is the defect core radius, or its expression from Section 2.2.1 and R is a given length close

to the sample thickness or the helical pitch Z. R has to be independent of 90. In the bulk,
the two other terms are related to the spontaneous pitch Zo and are proportional to 9(. The

logarithmic term induces the slightly more important variation of s~ with 90.
For the core energies it is possible to calculate an approximate expression from the ap-

proximate expression of the configuration obtained when we assume the cylindrical symmetry
defect:

~ ~° ~~~~
~

~(
~

~

The origin is the defect center. p and ~ are the cylindrical coordinates. The core energies for

the two lines in one pitch and one unit length in y are given by the integral:

£c=2/~ l(~(~))~
+

(())~
+ ~(9~-9(~~) 2~pdp

o P P ~

E~C E@N E@s

The different terms of this integral give

c~~ -~ o.i6~A~oj coN = cos =

~iioj ~ ~(
-~ o.59~A~oj

c~c is numerically calculated, coN and cos are analytically integrated. With these approxima-

tions, the two tilt energies c~N and c~s are equal.
We can compare these analytic results with the computer calculation given in Figure 13.

The tilt nematic energy coN is exactly the same. The tilt smectic energy c~s given by the
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E/K

) E'q/K
mj i

o.I
«

W
z O.

~e
~i
1
~
n

W

Tilt angle oo/tad

Fig. 14. Total distortion energy s for
one pitch along z and

one unit length along the defect line (y)
reported to K

~ersus
the tilt angle 00. s) is the energy of the

same area of the sample in the unwound

state. The computer calculation is made for Z
=

Zo
=

d
=

2 ~m, ~t =
30 ~tm and 1

=
20 ~tm.

computer is 30% higher than the analytic approximation. The analytic approximation of c~ is

questionable because it depends too much on the value of R which is not really defined.

To find the condition for the existence of the defect line texture, we have to compare its

energy with the energy of the unwound state which is exactly:

cj
=

2~~A'9]
j

o

In Figure 14, cj and the total energy of the line texture, c, are reported for d
=

Z
=

Zo
"

2 pm.

We can see that, for this thickness, the two energies are equal for 90 * 0.08 radian, and the

defect line texture is unstable if 90 > 0.08 radian.

2.3. THE POSITION OF THE DEFECT LINES. Near each plate a family of lines exists. The

interaction between these two families and the plates is mainly due to the bulk yJ distortion.

We find the relative positions of the lines by minimizing the ~ energy only, using the constant

9 model. Indeed we saw that outside of the defect core the tilt angle is very close to the

equilibrium tilt angle 90. ~Ve first write the angle ~ with a Fourier series in the general case

when the defect line position is arbitrary. Then we calculate the ~ energy c~ for one pitch in

z and one unit length in y. The relative position of the two families of defect lines b and the

distance a between a family and its neighbouring plate are calculated by minimizing c~ uemw

a
and b.

The determination of the real pitch of the texture is more difficult than the two preceding
calculations. Indeed we have to minimize the energy density uers~s the pitch; in this case the

defect core energy as well as the bulk energy have to be taken into account.

2.3.1. General Expression of ~ in the Constant 9 Model. For ~, the following expression can

be obtained using the Fourier transformation, in the general case where the distance between

the two families of lines in the z direction (Fig. 3) is arbitrary.
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.
b-Z/2<z<Z/2:

~ ~~ ~ ~~~ ~~~
j

m
sin n~ cos

n~sinh n

~
cos

~~~~ ~~
sinh n~~~

~
~~

+2£
~z

14)

"~~ '~
"~~ '~

2d

.
-Z/2<z<b-Z/2:

~ ~~ ~ ~~~ ~~ ~~~
j

~~j sin n~ cos
n~sinh n~

cos

~~~~ ~~
sinh n~~~ ~/ ~~

~~~~

~ '~ "~~ '~~~

The origin is on plate 1, in the middle between two defects near this plate. Z is the pitch of

the texture. yJi and ~2 are the azimuth angle on the plates 1 and 2. In this expression the

first part of the Fourier series gives the defect family 1 at the distance a from the plate 1; the

second part gives the defect family 2 at the distance -a
from the plate 2 and shifted by b in

the
z

direction with respect to the family 1.

The azimuth angle energy can be calculated in the form:

Here we take into
account an eventual tilt of the smectic layer (Fig.

2.3.2. Relative Position of the Two Defect Families. The derivation of c~/Z uerms b gives
the force in the

z
direction applied on a unit area of one family of defects by the other family.

This force by unit area is a shear.

ii ~~i~~
1

~~~~~il~[[
~~~~i

~~~

~
~~ ii~ ~~

~
~ ii~j

Pi P2 P3

In Figure 15, the shear between the two line families (pi, the sum of the seriesi is plotted

uersw b and for three different values of the sample thickness. This shear is symmetrical with

respect to b
=

Z/2 and tends to put the two families in alternate position. We can remark
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Fig. is. Force, pi, in the z direction applied by
a

defect line family, close to one plate,
on unit

area of the second line family close to the other plate. This force is calculated
~emus

b for different

thicknesses d of the sample. b is the distance along
z between two lines from different families. The

distance in the x direction from
one

family of line to its neighbouring plate is the equilibrium distance:

a =
Z/4x.

that for thin samples close to b
=

Z/2 the shear is very weak. For thick samples (d » 1.5 Z),
Figure 16 shows that pi can be approximated by a linear law, and the equilibrium equation
gives the value of b in the form:

~
"

l ~~ i~~ ~ ~~~ 6 because z
=

j

The two other shears do not vary with b. One is the effect of the different anchoring on the

two surfaces; this shear vanishes for ~2 §J1 " ~, the symmetrical anchoring, and tends to

increase b if ~2 §J1 > ~.
The last shear is related to the tilt of the layer, it tends to decrease

if 6 > 0. The defects are pushed by the layer tilt. They try to stay in the same layer.
When the layers are perpendicular to the plates (6

=
0), two particular cases are very

common. For the symmetrical anchoring ~2 §J1 " ~ all the three shears vanish for
=

Z/2,
and the two line families are alternate, as drawn in Figure 3b; this alternate position is better

defined in thick samples. For the parallel anchoring ~i " §J2, the anchoring tends to lower b.

The equilibrium is obtained for b
=

0 and the two line families are in phase as drawn in Figure
3a; this position is better defined for thin samples.

When the layers are tilted (6 # 0) in the case of parallel anchoring, the pairs of lines from

the two families are in the same smectic layer (at the foot of Fig. 30, 6 > 0). In the case of

symmetrical anchoring, (at the top of Fig. 30, 6 < 0), the tilt of the layer and the difference

between the two anchoring angles can put the lines of the two families in front of each other.

2.3.3. Position of the Lines with Respect to the Plates. Using the previous energy expression,
we can evaluate the position of the defect lines with respect to the neighbouring plate. We
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Fig. 16. Force, f2, per unit length on a
defect line, due to the interaction with all the other lines

and the plates, in the case of thick samples id > xZ). For comparison the thin line, f( is the force

on
the line due to its image by the neighbouring plate; the interrupted line, Ii is the force per unit

length due to a continuous layer made by the images of the lines of its family. Ii is the force due to

the helix.

derive c~ /2 with respect to a to find the force in the x direction on one unit length of one defect.

la ~~ ~ ~~

with

~~2 J~@2
~f ~

CDS 6 ~~l 20

f~
-

-~~Koi)
~

~°~~~~ l~"~ )~~~j ()~"~ ~

~~2d ~~~

2d

The term fi can be interpreted as a constant force due to the helix. This force tends to repel
the defects toward the plates to obtain a perfect helix throughout the whole sample. The series

term f2 is the force applied on the defect lines by the plates and the other defects. This force

repels the line from the plate. In Figure 16 is plotted f2 uemw a
for a very thick sample

(d
r~

oo). In comparison we have also plotted f( the force applied on one line by its image due

to the neighbouring plate and fl', the force applied on one line by a continuous layer made by
the image lines of its family.

f~
" ~~~° fi

"

~~ )~°

.
If a is smaller than Z/4~, f2 *

f(, this means that the line is close to the plate, the force

on one line is only the force due to its image. This force is proportional to 1la.
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Fig. 17. Force, f2. per unit length
on one

defect line
~emus its distance a from its neighbouring

plate for different values of the sample thickness, d. The calculation is made when the two families of

lines
are in alternate position and at the

same
distance from their neighbouring plates. As

a symmetry

argument allows to predict, when the two families
are

in the same
plane la

=
d /2), f2 vanishes.

Fig. 18. Force, f2, per unit length on one
defect line, ~emus its distance a from its neighbouring

plate, for different values of the sample thickness, d. The calculation is made when the two families

are in front of each other and at the same distance from their neighbouring plates. When the line is

close to that in front of it la
+~

d/2), the force diverges and the two lines vanish.

.
If

a
is larger than Z/~, f2 *

fl', the force on one line is the force due to all the images

of its family, seen as a continuum. This is a constant force equal to 2~~1~9] /Z.
The position of the line corresponds to the equilibrium between these two forces fi et f21

~~)~~ e fi
"

f2 * f~ %

~~~~
so a =

)
o a ~

Indeed we will see that every time the real pitch of the texture is larger than the spon-

taneous pitch, so the condition for the approximation is satisfied la < Z/4~).
For a thin sample, we can see in Figures 17, 18 the effect on f2 of the thickness d in

two cases: the parallel anchoring where the two line families are just in phase and the

symmetrical anchoring where they are alternate.

.
For the symmetrical anchoring, the lines of the other family are far; their influence is

very small. The force f2 vanishes when the line is in the middle of the sample because of

the image line due to the other plate. An equilibrium position exists for every thickness

of the sample, a decreases with d but stays close to a =

Zo/4~.

.
For the parallel anchoring, the line is just in front of a line from the other family. As

shown in Figure 18, the other line pulls the line toward the sample center, increasing f2.
The two lines tend to annihilate because the force f2 tends to infinity when the lines tend
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one to the other. The curve of f2 is symmetrical with respect to a =
d/4. In practice a

stays close to Zo /4~ so long as d is larger than a critical value. This can be calculated

if we take into account only the interaction of the line with its image and the line in

front of it. The critical value of d corresponds to the case where the helical force is just

opposite to the lower value of the line force.

~~~~
~

~
d

2a~
~~~~~ ~~~ ~

give the critical thickness value:

d~
=

~~°

~

The computer calculation takes into account all the lines and gives: d~ re
Zo/2. So for this

anchoring, the line texture cannot appear for a thin sample Id < Zo/2).

2.3.4. Real Pitch of the Line Texture. We will make the calculation when the molecules lie

parallel on the two plates and when the smectic layers are perpendicular to the plates; this will

allow us to compare the calculation with an experimental result.

The equilibrium equation for the pitch Z is:

(ii
=

~~N + ii + ~~C
+
£

i~i~ =
o

For the defect core energies c~N c~s and c~~ we postulate that they are independent of the

pitch Z and of the sample thickness d. This is realistic because Z and d are much larger than

the core radius r in every case except very close to the A-C transition. For these energies, we

will use the computer calculation.

The bulk energy is only the azimuth angle energy. We take for yJ expression (1) and for £~
expression (5), but, to keep only the bulk energy and avoid the series divergence, we integrate

for -Z/2 + r < z < Z/2
~. We then obtain:

~ ~ m
cos~ (2p + 1)

~°
sinh(2p + 1)

~~~

~

~~~
~~ d ~ z~ ~~ d

~b
~

~ 4d
+ j6t)

~~~~~ ~
p=o (2p + 1)sinh~(2p + 1)

( ~°~ ~~

The derivative of this expression inserted in the pitch equilibrium equation gives the equation
which links d, Z and Zo ~v.ith the core energies:

m

cos~(2p + 1)
~°

(2p + 1)
I

+ sinh(2p + 1)
~~~ ~~~

2~d
~

c~N + £@s + c~c
~ ~ j~ 4d d d

~° ~~~~i
p=o (2p + ljsinh~(2p +

1)I

In this form the equation can be solved by a relaxation method: we fix a value for Z/d and

inject in the series the same value for Zo Id, the equation gives a new value for Zo Id that is

re-injected.
The core energies have been obtained in paragraph 2.2.4.

~~~ ~ ~~~ ~~~
m 0.97 m 1.08 m 1.16

2~K°o
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Fig. lg. Real pitch Z ~ersus
the sample thickness d reported to the spontaneous pitch Zo for

different tilt angle in radian. The rectangles
are measured values for 00

"
0.78 radian.

The first value corresponds to the analytical approximation, the computer gives the two fol-

lowing values for 90
"

0.1 and 0.4 radian; the values are the same for Z
=

Zo
"

d
=

2 ~m or

Z
=

Zo
"

2 ~m and d
=

3.14 ~m. We take as a realistic value for this expression.
In Figure 19 the pitch Z is plotted uers~s the sample thickness d. The different

curves

correspond to six values of the tilt angle 90. When d » Zo, Z
=

Zo, the central part of the

sample is in its minimum energy state. If the sample thickness decreases, the pitch increases

to lower the energy by lowering the number of defects. We can notice for example that for

90
"

0.8 radian and d
=

5Zo the pitch is 20% higher than the spontaneous pitch. For thin

samples the pitch diverges because the energy of the defects is higher than the energy gain due

to a helical central part: the sample is unwound.

In Figure 20 the critical thickness dc is plotted uers~s 90, for Zo
"

2 ~m and Zo
"

12 ~m; the

calculation is made with the series equation. d~ increases with 90 because of the r logarithmic

term in the bulk ~ energy that increases the energy of the line texture more than the unwound

one. In the pitch equilibrium equation, if Z tends towards infinity the series can be integrated;
in addition if we consider 4~r < Zo < 4d, we obtain for d~ the equation:

?
2 in

t
-

+
~~~ lilio) ~~~

+ in ~j~ + in °o

The difference between the result of this equation and d~ plotted in Figure 20 is only one per

cent.

We can compare the minimum thickness of the helical texture obtained here, by divergence
of the pitch, with the two other determinations. In paragraph 2.3.3, for the parallel anchoring,
the lines annihilate if d < Zo/2: this gives a lower limit of the helical texture critical thickness:

d~ > Zo/2. In paragraph 2.2A, we saw that if d
=

Z
=

Zo
"

2 ~m and 90
"

0.08 rad,

the helical texture and the unwound one have equal energies; for this thickness the energy
density of the structure can be lowered by increasing its real pitch and the structure remains

stable. This gives an upper limit for the helical texture thickness: d~ < Zo The equation gives
d~

=
0.9Zo if 90

"
0.08 rad and Zo

"
2 pm. This value is close to its upper limit.

In Figure 19 the experimental measurements (Sect. 3.1.2) of the real pitch of
an edge sample

are reported uers~s its thickness. For this sample 90
"

45° re 0.8 radian and the spontaneous
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Fig. 20. Critical sample thickness de reported to the spontaneous pitch Zo ~ersus
the molecular

tilt angle 90 in radian, for two spontaneous pitches.

pitch measured by the Grandjean-Cano method is 15 pm. The error rectangles correspond to

the dispersion in the sample. For the theoretical curves the only adjustable parameter used is

the spontaneous pitch and the best fit corresponds to Zo
"

12 pm. If we take into account the

uncertainty about the smectic elastic constants, we can say that the experiment confirms our

calculation of the defect core energy and thus the hypothesis of an A C* transition in the

defect line.

3. Experimental Situation in Limited Sample Textures

3.I. LINE POSITION. Surface lines are very uncommon but, when they exist, they are very
often connected to a bulk line. Photo 2 (p. 1713) shows an unwinding volume line becoming
two surface lines. In the Figure 21 the area located between the two surface lines is black with

crossed polarizers while the other part of the background is black when the angle between the

polarizer and the analyser is about 60°. This difference shows that the anchoring directions on

the glasses are different on each side of a line. Figure 22 shows the distribution of the director

in this case.

Generally unwinding lines are not surface lines and in reference [4] it has been said that the

distance between the glass plate and the line is about half the spontaneous pitch Zo. Here we

report the results of measurements of this distance in relation to the spontaneous pitch.

3.I.I. Line-Plate Distance uersw Sample Thickness: Measurement Method. The method

of measurement requires a wedge-shaped geometry for the sample. Straight sharp ink lines

perpendicular to the edge are drawn on the glass plates. In this way it is possible to measure

the thickness of the sample in a given place, by focusing ~v.ith a large magnification on the

upper mark and then on the lower one. The slow displacement of the stage, which gives fine

focusing, is graduated, so vertical distances can be measured. The difference between the two
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Fig. 21. a) The
area

located between the two surface lines is black with crossed polarizers. b) The

part of the background located out of the surface lines is black when the angle between the polarizer
and the analyzer is about 60°. This difference shows that the anchoring directions

on
the glasses

are

different between
a couple of surface lines and outside. Same experimental conditions as in Photo 2

(p. 1713), except polarizer positions.
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(a)

Fig. 22. The director distribution in the
case

where one
volume lines becomes two surface lines.

readings indicates the apparent thickness, d~. The true thickness, d, is d~ i1, n being the

average refractive index. d can be calculated from the shape of the wedge as a function of

the distance between the zero thickness point and the point where the measurement is made,

or can be measured when the cell is empty. d/d~ gives a good estimation of n. Then, in the

place where the unwinding lines are located, the apparent distance between the surface and the

unwinding lines is measured, focusing on it or on ink lines, and multiplying by i1, the situation

of the unwinding lines in the sample is deduced. The best accuracy of the measurement is only

one to two microns.

3.1.2. Superimposed Lines, Parallel Ancllorifig

3.1.2.1. Line Plate Distance. Generally the spontaneous pitch of pure compounds is

about 2 ~tm to 5 ~tm. To do significant measurements, it is necessary to use compounds
the pitch of which is larger than the average pitch of pure compounds. In reference [1j, we

had used a mixture of a non-chiral smectic C (bis-4'-n-decyloxybenzal-2-chloro-1-4-phenylene
diamine-D.O.B.C.P.) with cholesteryl cinnamate, a cholesteric liquid crystal. This mixture for

a concentration of SK in cholesteryl cinnamate has a pitch of IS ~lm and a tilt anile 90
=

45°

it gives superposed lines [4j. In the present lvork, we have used the same mixture, at several

concentrations it presents the same 90 but as expected the pitch varies. The pitch measurements

by the Grandjean-Cano method give for the different concentrations: 6%, Zo
=

12.5 ~lm, 3%,
Zo

"
25 ~lm, 1.77%. Zo

=
42 ~lm.

The plate-line distances, a, calculated from measurements with n =
1.5 are respectively

about 1- 2 ~tm, 3 ~lm, 5 ~lm. These values, because of the weak precision of the measurements.

indicate essentially that the line-plate distance is proportional to the spontaneous pitch and

the order of magnitude is about Zo/6 to Zo/10. lforeover the distance line-plate does not vary

when the sample thickness varies. It is independent of d, and is the same for the two glass
plates.
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Fig. 23. Where the cell thickness is of the order of the pitch Zo the two lines of a pair collapse
(arrow n°I)

or sometimes the upper line of
a

pair collapses with the lower line of the neighhouring
pair (arrow n°2). Compound:

a
SK mixture of cholesteryl cinnamate with bis-(4'-n~decyloxybenzal)

2~chloro~l-4~phenylenediamine. The anchoring direction induced by the SiO evaporation makes an

angle 45° with the edges of the photo. Polarizer is perpendicular to the anchoring direction. No

analyser.

When two superposed lines come closer to another they collapse~ as implied by the theory.

In this case a loop made by such a pair of lines vanishes when their distance becomes of the

order of the pitch Zo (Fig. 23).

Thus for superposed lines, that is to say when bounding molecules are parallel, the distance

a is not dependent on the sample thickness, d, but is dependent on the pitch Zo and is of the

order of Zo /8. This is not to far from the value a =
Zo /4~r given by the theoretical calculation

of Section 2.3.3.

3.1.2.2. Relative Position of the Two Lines of a Pair. The relative position of the lines is

dependent of the anchoring directions on the surfaces. Using a topological argument we have

already described the parallel anchoring as giving superposed lines [4j. In Figure I the polarizer
and analyser are crossed, parallel and perpendicular to the anchoring direction on the surface.

Between the lines the background is really black. That is a proof of the parallel anchoring. In

this case, as we can see in Photo 3 (p. 1713), the lines forming two families near both plates

are superposed. Only some accidents like dust introduce
a

slight shift. As in the previous

paragraph this result is consistent with the elastic theory which predicts that the two lines of

a pair are located one in front of the other in the same smectic layer.

3.1.2.3. Distance Between Two Lines of the Same Family: The Helical Pitch. The distance

between two lines of the same family is said to give the value of the pitch of the helix. Very
often in the same sample, this distance is not a constant [16j. It would be better to say that
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p~.

Fig. 24. Superposed lines in
a

cylindrical geometry. Compound:
a

5% mixture of cholesteryl cin~

narrate with bis~(4'-n~decyloxybenzal) 2-chloro~L4~phenylenediamine. Aligning layer: 60° evaporated
SiO. Polarizer is parallel to the aligning direction and makes

an angle 45° with the edge of the photo.
No analyzer. In the part noted a), d is £ Zo, there is no

line at all. In the part noted c), d is j~ 5Zo, the

distance between two neighbouring lines is the normal pitch, Zo. In the part noted b), Zo < d £ 5Zo,
the distance between two neighbouring lines, always > Zo, is called the local pitch, Z.

the value deduced from the distance measurement gives the local pitch. To determine the

equilibrium pitch we have measured the helical pitch for the mixture of cholesteryl cinnamate

in DOBCP (5%) by the Grandjean~cano method. The spontaneous pitch of the S[ structure

Zo, far from the transition N* S[ is found by this method to be 15 pm.

Photo 1. The texture of
a

chiral smectic C between two untreated glass plates: the direction of

the fines indicates the direction of the smectic layers. Compound: 4-methyl hexyloxyphenyl decyloxy~
benzoate. Cell thickness: about 30 ~lm. Crossed polarizers.

Photo 2. Superposed lines where each line situated
near one

of the surfaces is transformed into

two neighbouring surface lines (arrow n°I) which
are

sharp in the photo. The lines situated
near the

other surface
are

blurred (arrow n°2). Compound: ZLI 3488 from llerck. The pitch is about 12 ~lm.

Polarizers are in any position. Scale: I
cm =

50 ~lm.

Photo 3. Superposed lines. Some ~'accidents" produce
a

slight shift of the lines. The focus is made

on the upper lines (arrow n°1). Focal conics (arrow n°2) indicating some variation in the direction

of the layers
are

locatgd in the bulk. The cell thickness is about 50 pm. Compound:
a

3% mixture

of cholesteryl cinnamate with bis~(4'-n~decyloxybenzal) 2~chloro-L4~phenylenediamine. Polarizers in

any position. Aligning layer: 60° evaporated SiO. Scale: I
cm =

25 ~lm.
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Photo 3
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To evaluate the relation between the cell thickness, d, and the local pitch we have observed

the unwinding lines in the cylindrical geometry (between
a flat glass and a cylindrical lens).

The Figure 24 shows that:

.
where d ~ Zo there is no line at all;

.
where d ~ 5Zo the distance along z

between two neighbouring lines gives the equilibrium
pitch Zo;

.
where Zo ~ d < 5Zo, the z distance is always > Zo. We call this distance the local

pitch Z. In this region we have measured Z with respect to d. The results of these

measurements are the rectangles in Figure 19 giving Z/Zo
as a function of d/Zo. Here

too our experimental results are close to the results given by the calculation (Sect. 2.3.4):
the best fit corresponds to a spontaneous pitch of12 ~lm and the measurements by the

Grandjean~cano method give Zo
=

15 ~lm.

In conclusion, for parallel anchoring, the measured values of the line~plate distance of the

pitch Z in relation with d and the relative position of the two families of lines are in good
agreement with the values deduced from the theory.

3.1.3. Shifted Lines, Symmetrical Anchoring

3.1.3.1. Line Plate Distance. To measure this distance we also had to use mixtures in order

to increase the pitch. But because of the weak precision, we thought unnecessary to do several

concentrations.

Measurements have been made with a mixture of DOBAMBC and its racemic (50To) the

pitch of which, measured by the Grandjean-Cano method, is equal to 10 pm. The texture is

dependent on the sample thickness.

.
When the thickness is smaller than about twice the spontaneous pitch one lattice (Photo 4,

p. 1715) of shifted lines is in place. In this case the space between the upper and the

lower line does not occupy the whole sample thickness. Only one line is located near

the glass plate, with a distance a which is of the order of1 to 2 pm. It can be located

either near the upper glass plate or near the lower one. The distance between the other

line and the surface is variable. For example, in a place where the sample thickness is

21 pm, the distance between the line and the plate is about I pm the distance between

both lines about 12 ~lm. So, the distance between the second line and the second plate

is 8 ~1iJi. Why does a pair of lines not occupy the whole sample thickness? According to

the elastic theory we have found (Sect. 2.3.3) that the equilibrium position of the two

lines of a pair is located at the distance a te Zo/12 from the nearest plate. It seems as

though there was a rigid wall in the cell which prevents one line from going close to the

plate.

.
When the sample thickness is larger than twice the spontaneous pitch, one always observes

lines located in three different levels:

*
one family near the upper glass plate (Photo 5a, p. 1716);

* another family located on an intermediate level, whose lines are put closer together
(Photo 5b, p. 1716);

*
a third family, similar to the first one, near the lower glass plate (Photo 5c, p. 1716).

However with a strong magnification, the intermediate level can be separated into

two levels, the distance of which, along x, is of the order of twice the distance
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a)

b)

Photo 4. Pairs of shifted lines when the cell thickness is less than twice the pitch: a) Focus on the

fines located
near the upper plate. b) Focus

on
the lines located in the bulk of the cell, approximately

in the middle. Compound:
a

50% mixture of chiral p-decyloxybenzylidene p'~amino 2~methyl butyl

cinnamate (D.O.B.A.M.B.C.) with the racemic. Polarizers
are

in any position. Scale: I cm =
20 ~lm.

between one line and the plate. For example in a place where the sample thickness

is 40 ~lm:

.
distance plate 1 line is about 1 ~lm,

.
line I line 2, about 19 ~lm,

.
line 2 line 3, about 2 ~lm,

.
line 3 line 4, about 16 ~lm,

.
line 3 plate 2, about 1 ~lm.

We can conclude that two lattices of pairs of lines are superposed. Tsuchiya et at. ii?] also

observed more than two families oflines they described as bulk lines and surface lines. Nothing
in the theory can explain this phenomena. We have seen that in the case of parallel anchoring
the equilibrium state for the position of the lines with respect to the plates is only dependent

on Zo (a
r~

Zo/12).
Everything happens as if a wall was dividing the sample into independent parts. What is the
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a)

b)

C)

,

Photo 5. Shifted lines when the cell thickness is
more

than twice the pitch: a) One family near

the upper glass plate. b) Another family located
on an

intermediate level, the distance between the

lines is divided in half. c) A third family, similar to the first one, near the lower glass plate. Same

mixture as
for the Photo 4 (p. 1715). Polarizers

are in any position. Scale: I
cm =

25 ~lm.
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Fig. 25. Director distribution in the
case

where the pair of lines does not occupy the whole thickness.

nature of this wall? To try to answer this question we have accurately observed a wedge shaped
sample with a strong magnification. Photo 6 (p. 1723) shows that for thickness d t 3Zo, in

the region located between the part where only one pair of shifted lines is observed and the

part where two superposed pairs of lines are observed, one pair adds to the shifted pair in the

empty space. What is the nature of this new pair?
Even observing very accurately the position of every line does not allow us to see if it is a

shifted or a superposed pair. The only clear features of this texture are:

.
in the intermediate level, the

z
distance between the lines is very constant and equal to

Zo/2;

.
the background is almost black when the angle between the polarizer and the analyser is

r~
(~r/2 + 29), typical angle for a symmetrical anchoring.

Moreover, for this compound the position of the molecules is well defined on both plates
treated with SiO (-9

on the upper plate, +9 on the lower one) that is for the polarization
P oriented toward the bulk. This is due to the interaction between P and the polar surfaces

[18~19j.

3.1.3.2. Topological Interpretations. Starting from this information we can try to give the

distribution of the director in every case. The topology of the shifted lines given in the Section 1

is that of one pair of lines occupying the whole sample thickness.

.
Figure 25 gives the topology when the pair of lines does not occupy the whole thickness.

We include a wall close to the line far from the plate. Between this wall and the plate ~

is constant. the director distribution is uniform.

.
When a new pair adds we know that, in the intermediate level, the z distance is Zo/2; it

determines the position of the intermediate level line of the second pair.

.
Figure 26 gives the topology if we suppose that the two lines of this second pair are

shifted, with symmetrical anchoring. A rotation of ~ = ~r is to be added bet~veen the two

pairs. What could justify such a rotation in so short a space?

.
Figure 27 gives the topology if we suppose that the two lines of, the second pair are

superposed, with parallel anchoring. In this case at the wall level between the two pairs

~ is constant. This topological interpretation is more convincing. In reference [16j,
Tsuchiya et at. were obliged to create several rotations to interpret the texture. In uur
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Fig. 26. Director distribution if both pairs of lines
are

shifted lines:
a 7r

rotation is necessary at

the level situated between the pairs.

Fig. 27. Director distribution if one pair of lines is
a

shifted one
and the other pair

a
superposed

one.
This distribution does not imply

a 7r rotation at the level situated between the pairs.

interpretation. the ~r rotation occurs in one of the two parts. The pair of shifted lines,

connected to symmetrical anchoring, is more stable for small thickness than a pair of

superposed lines which collapses easily in this case. When the thickness of the second

part of the sample is large enough to allow a pair of superposed lines to be stable, the

second helix forms and tvio kinds of pairs coexist. In this case, the distance between the

other plate and the nearest line is also about Zo/8.

At this point we can conclude that, from a topological point of view the best probability for

the nature of the second pair is that of the superposed with parallel anchoring kind. But

elastic considerations cannot give an account of this separation into two almost independent
cells; there is between them a kind of grain boundary.

3.2. INTERPRETATION WITH THE HELP OF THE CHEVRON. What is the nature of this wall

dividing the sample into two parts? It seems as rigid as a plate since, while the theory gives

the stable distance a equal to Zo /12 in all cases, the lines can stay far from the plate, beyond

this wall. It is obvious that these two parts in the same sample are equivalent to both sides of

the chevron in thin cells: the ~'chevron texture" described by Rieker et at. [20j and Ouchi et

at. [21j which explains typical defects called "zigzags". We can at once suggest that, in spite

of the '~bookshelf geometry", we get the "chevron" due to the shrinking of the smectic layers

at the SA
-

S[ transition.

The observations and the measurements previously explained prove that the chevron texture

described for thin samples is also the texture of the thick samples. However, the plane of the

chevron in thin cells is proposed [19j to be located closer to one plate than to the other. For

thick samples several measurements, similar to that of paragraph 3.1.3.1, give no significant
difference between the thickness values of the two parts.

We think that for thin cells the ~r rotation pushes away the wall and brings it closer to the

plate situated near the uniform part. For thick cells this wall can be at equilibrium about in

the middle between the two plates.
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/

Aq
a

n/4

Aq=

Fig. 28. Intersection in the chevron plane of the cones belonging to the layers located
on

both sides

of this plane. This intersection is due to the fact that the tilt of the layer b is smaller than the cone

angle 6. On one
side of the chevron plane

~9
varies and on the other side it is constant.

3.2.1. Consequence of the Chevron Texture on the Line Positions. We have now to see in

more detail what is involved for the chevron for the situation of the defects and for the director

field and whether it is in agreement with the theory. The model of the chevron given with many

details by Clark et at. [22j based on X~rays experiments indicates a tilt of the layers b < 90

and an orientation of the molecules along the intersection of the cones on the chevron plane
(Fig. 28). If we continue to suppose no pretilt at all on the bounding surfaces, the anchoring

directions are parallel to the intersections of the cones by these surfaces. On one side of the

chevron plane, the director turns on the cone when one goes from the plate to the plane, but

the variation of ~ due to this rotation is different from ~r, the rotation angle for .~bookshelf'

geometry. On the other side of the chevron plane the director stays parallel to the plane of the

second plate. With tilted layers the two senses of rotation of the director in the layer which

connect symmetrical positions are not equivalent. Due to the tilt there is a component of the

helix along x.
Only one sense of the rotation on the cone gives the right sense of rotation for

the helix for this component (Fig. 29). So the rotation is more probable with this sense.

3.2.1.1. Line Plate Distance. In wedge shaped cells when the thickness increases the first

pair of lines formed is located closer to one of the plates than to the other. This empty space

cannot be explained by the theory of uniform layer structure. It is evident that this pair is

situated on one side of the chevron plane, the empty part is on the other side. We saw in the

Section 3.2.3.1 which the part of the chevron is occupied by this first pair of lines and lye noted

that the distance of one line to the plate for the mixture 50% DOBAMBC in its racemic is
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left-handed right-handed

helix helix

a) b)

left-handed

helix helix

c) d)

Fig. 29. The anchoring directions are the same on
each diagram: they are anti~parallel. a) The

director rotates on the large part of the
cone to go from the lower plate to the upper one. This rotation

creates a
left~handed helix whose axis is perpendicular to the smectic layers. b) With the

same
tilt of

the layers, the director rotates on the small part of the cone. The helix is right~handed. c) The smectic

layers tilt in the opposite direction. In this
case

when the director rotates on
the large part of the

cone

the helix is right~handed. d) With the
same tilt of the layers, when the director rotates on

the small

part of the
cone the helix is left~handed. If the intrinsic helix of I,he compound is right~handed: e) On

both parts of
a

zigzag wall, the helix due to the rotation has the correct sense
but the director rotates

on
the large part of the

cone.
f) The helix also has the correct sense and the director rotates on the

small part of the cone. This situation is the most probable. To choose this favorable distribution of

the director the rotation takes place on
the correct side of the chevron.

approximately ~lm. The thickness of the empty part is several microns. The theory accounts

for the short distance, but not for the empty part, which can be explained by the chevron

texture: each side of the plane is like a single cell and the distance of the second line to the

chevron plane is of the order of the distance of the line to the plate: ~lm.

3.2.1.2. Relative Position. We have described the relative position of the lines as superposed
for parallel anchoring and with a half-pitch shift for symmetrical anchoring. But we supposed

a ~'bookshelf' geometry, that is to say the smectic layers perpendicular to the plates. We have

now to transform the topology described for a bookshelf geometry into a topology involving
the chevron texture. We propose the field of the director in the thick chevron texture as in

Figure 30. To build this topography we took as a basis that:

.
the line is located in the smectic layer where on both sides of the disclination q7 has

changed by ~r;

.
the helix is right~handed;
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e)

right-handed
helix

right-handed
helix

f)

Fig. 29. (Contm~ed. )

.
the apparent distance along z at the chevron level between one line on one side of the

plane and the following line on the other side is half the pitch, what is deduced from

accurate observations.

The first remark to be made about this topology is that the z distance between the two lines

of a shifted pair is no longer Zo/2 but alternately less and more than this value and that the

two lines of a superposed pair are no longer one in front of the other.

3.2.2. Observed Line Positions. What about the relative line positions observed in the cells?

The situation is more complicated in the case of symmetrical anchoring than in the case of

parallel anchoring, because of the superposition of two pairs. However, some points are clear:

.
In the part where there is only one pair of lines, that is where the thickness is not

large e_nough to allow two helices, we have seen that the pitch can be larger than the

spontaneous pitch. The distance along z between two lines located at the same level gives
the value of the local pitch. Photo 5 (p. 1716) shows that the distance along

z
between

two shifted lines of the same pair is smaller than half the local pitch. This difference is

explained by the chevron texture as we can see in Figure 30.
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b

Fig. 30. Distribution of the director with "shifted lines"
on one

side of the chevron plane and

~'superposed lines" on
the other side. Due to the tilt of the layers and the planar anchoring of the

molecules on
the plates, the distance along x of two lines of the

same
"shifted" pair is

no more
Z/2,

and the lines of the same "superposed" pair are
shifted

a lot~ when they are
observed from the direction

of the normal to the glass plates.

.
In the part where the second pair begins to form, while by topological considerations we

have estimated that it is a superposed pair of lines, it is very difficult to see the position
of the lines because there are four lines in the whole thickness (Photo 6. p. 1723).

Where the pairs are superposed, at the first and the third levels (Photos 5a~5b, p. 1716) the

period of the lattice is the pitch Zo and at the second level (Photo 5c, p. 1716), the distance

between two lines along z is Zo/2. As it was indicated before, with a very large magnification
two sub~levels can be observed where the distance between two lines is Zo. Here it is also very

hard to note precisely the relative position of two lines of the same pair because four lines are

located in the same place at several levels in the cell. Here the chevron also accounts for this

situation.

We have to underline that the wall acts like a very rigid surface since the lines cannot cross it.

3.2.3. Some Comments. Both pairs of lines now look like shifted lines. One of them is a

shifted pair with symmetrical anchoring but the distance along z
between two neighbouring

lines is successively less and more than the half-pitch, as previously observed. The other pair is

of a superposed kind. with parallel anchoring. but can seem shifted due to the tilt of the layers.
However, with symmetrical anchoring we never observe superposed lines alone. We have seen

in the Section 3.1.2 that these lines collapse more easily than shifted lines. That is why they

appear when the thickness is larger, and the first lines to appear in the wedge-shaped cell are

shifted lines.

In this interpretation we have considered the chevron plane as a rigid wall playing the same

role as the glass plate. However, the fact that the distance along z between two lines on

either side of the plane is the half-pitch suggests that there is an interaction bet~v~een both
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Photo 6

Photo 7

Photo 6. Where the cell thickness is about twice the pitch, the first pairs (arrow n°I) adding to

the shifted
ones

(arrow n°2) appear. They
are not on

the
same

level. Compound:
a

50% mixture of

chiral p-decyloxybenzylidene p
'-amino 2-methyl butyl cinnamate (D.O.B.A.M.B.C.) with the racemic.

Polarizers are in any position. Thickness: about 20 ~lm. Pitch: 10 ~lm.

Photo 7. Even for thick cells, zigzags are observable (arrow n°1). The lines (arrow n°2) do not

cross
the zigzag defects which

are
decorated by small loops (arrow n°3). These loops occupy the whole

thickness, because in the zigzags, the layers
are in a bookshelf situation.

pairs through the chevron plane. The nature of this planar discontinuity is not completely

understood.

To complete this interpretation we can give the slightly different topography in the case

where, due to the interaction with the glass plates, as it has often been proposed, the molecules

make an angle with them (Fig. 31). For the same tilt of the layers, the relative position of the

lines is different.
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b

Fig. 31. Distribution of the director if the molecules are no more
planar but have

a
pretilt on the

plates. The situation is slightly different from the previous figure. The lines of the "superposed" pair

are not on
the same layer and they also are

shifted.

Another important observation is to be made: in thick cells there is the equivalent situation

of the zigzag. When the two possible directions of the chevron meet, the zigzag wall is obvious.

The lines do not cross the zigzag. The structure of this defect proposed by Clark shows clearly
layers perpendicular to the plates. In Photo 7 (p. 1723) in this part we can see small loops
decorating the wall. Their distance is the pitch. They exist where the thickness is too small to

allow the other kinds of lines. This is a proof that this part of the zigzag wall is not divided by
the chevron into two more narrow parts and this confirms the Clark's structure of the zigzag
defect.

All these observations confirm the structure of the cell given in the thin cell case and show

that the structure is similar in the thick cell case; they are in good agreement with the theory.

Conclusion

The symmetry of the chiral smectic C structure induces complicated textures when the com-

pound is confined between two glass plates treated to give definite anchoring. We have observed

the thick sample textures to understand the orientation of the layers and the distribution of

the director. The locations of the unwinding lines between the bounding surfaces have been

evaluated: the distance between the glass and the line, the number of line-pairs in the whole

thickness and the local distance between two pairs which gives the local pitch. The calculation

of the involved energies in limited sample textures allows us to account for the experimental
results for the line-plate distance, for the relative position of the two defect families and for the

real pitch in the line texture. Furthermore, it gives the tilt angle variation around the defect,

the smectic layer displacement variation, and the azimuthal angle variation. Everything has

been calculated assuming the "bookshelf geometry".
The presence of two pairs of lines between both glass plates implies another geometry for

the smectic layers than that of the "bookshelf'. Starting from the "chevron" texture, proved
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in thin samples, we can justify these two pairs in thick samples, which show that the chevron

plane plays a role identical to a bounding surface: linear defects cannot cross this plane. In

this plane the molecular orientation seems to be uniform. The sample looks like two individual

samples upon over the other. Each one can be interpreted by the calculation made in the case

of the simple "bookshelf' geometry.
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