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Abstract. Topological characterization is important in understanding the subtleties of

chaotic behaviour. Unfortunately it is based
on

the knot theory which is only efficiently de-

veloped in 3D spaces (namely IR~
or

in its one-point compactification S~). Consequently, to

achieve topological characterization, phase portraits must be embedded in 3D spaces, i.e. in a

lower dimension than the one prescribed by Takens' theorem. Investigating embedding in low-

dimensional spaces is, therefore, particularly meaningful. This paper is devoted to tridimensional

systems which
are

reconstructed in a state space whose dimension is also 3. In particular,
an

important case is when the system studied exhibits symmetry properties, because topological
properties of the attractor reconstructed from

a
scalar time series may then crucially depend

on

the variable used. Consequently, special attention is paid to systems with symmetry properties
in which specific procedures for topological characterization are developed. In these procedures,
all the dynamics

are projected onto a so-called fundamental domain, leading us to the intro-

duction of the concept of restricted topological equivalence,
i-e- two attractors are topologically

equivalent in the restricted sense, if the topological properties of their fundamental domains
are

the same. In other words, the symmetries
are

moded out by projecting the whole phase space

onto a
fundamental domain.

1. Introduction

State space reconstruction is the creation of multidimensional state space from a scalar time

series. It is a prerequisite step for analyzing the behaviour of a dynamical system of which

only one time series is known. A pioneering paper by Packard et al. ill proposed two ways of

reconstructing a state space, I.e. by using time delay or time derivative coordinates. Another

kind of coordinate, namely principal components [2], is now commonly used. Gibson et al. [3]
showed that the relationship between delays, derivatives and principal components consists in

a rotation and a rescaling. Consequently, from Gibson's point of view, statements about the

nature of the equivalence between the original phase portrait and the reconstructed one would

be independent of the coordinate system. They may however depend on the reconstruction

parameters. For instance, if one uses delay coordinates, it may be observed that the shape
of a bounded manifold changes as the delay is changed [4], and at some point this manifold
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undergoes self intersections in the interior of which the flow appears to be constrained. Never-

theless, it is expected that there must exist a delay range for which a reconstructed attractor

with delay coordinates is topologically equivalent to a reconstructed attractor with derivative

coordinates. A study of this issue, although useful, will be postponed to future work.

Initially, only the phase portrait was reconstructed, allowing the study of the topological
structure of the strange attractor and the determination of important global parameters such

as fractal dimensions, Lyapunov exponents, etc. Another way of reconstructing state spaces is

by using global vector field reconstructions. Indeed, for experimental systems, given a scalar

time series for an observable, an important problem is to provide a set of ordinary differential

equations equivalent to the original underlying system. There is a great deal of interest in this

problem [4-12]. An equivalent reconstructed vector field may be an important step in gaining

a better understanding of the underlying physical processes responsible for the chaos observed.

When a state space or a vector field is reconstructed, a question arises: is the reconstructed

dynamics equivalent to the original dynamics? And more precisely, in which sense is it equiv-
alent, I.e. how equivalent can it be? This is the basic question addressed in this paper for the

special case of equivariant vector fields.

Takens [15] proved that in the absence of noise it is always possible to embed a time series

in a state space. To ensure with probability one that a reconstruction is an embedding, i.e.

that there exists a diffeomorphism from the original state space to the embedding space, the

embedding dimension has to be dE > 2DH +1 where DH would ideally refer to the Haussdorff

dimension of the attractor studied. If not, the diffeomorphism is not ensured but is quite pos-

sible. Indeed, diffeomorphisms between manifolds of the same dimension are not uncommofl.

Unfortunately Takens' theorem may be too demanding for experimentalists because it requires
work in high-dimensional spaces. Indeed, the smaller the dimension of an embedding, the bet-

ter the situation for analyzing the data. Thus, in spite of Takens' theorem, the choice of the

embedding dimension is still a topic of particular interest [16-18]. Actually, Takens' theorem

does not refer to cases when the dimension of the reconstructed state space is smaller than

2DH +1. Such cases, however, are particularly important since topological characterization

of attractors is based on the knot theory which is related to three dimensional spaces. Thus,
topological characterization is always achieved with a lower dimension than the one defined by
the Takens criterion.

The general purpose of the present paper is therefore to clarify the nature of equivalence
between original and reconstructed attractors in 3D state spaces such as those presented in

references [2,5,14], in the particular case concerning equivariant systems as exemplified by
the Lorenz system [19]. The results of this paper are obtained with derivatives, which have

the advantage of providing algebraic relationships between original and reconstructed spaces.
Another advantage of derivatives is that global vector field reconstruction may be achieved

in principle by working with a small piece of trajectory. For example, an attractor may be

reconstructed by studying transients, or intermittency behaviour may be reconstructed by
analyzing only laminar phases [20].

In the course of this study, specific procedures to perform the topological characterization

of systems with symmetry properties (such as the Lorenz system) are developed. In such

symmetrical systems we show that a fundamental domain is conveniently defined to characterize

the topology of their related attractors. Indeed, we will show in this paper that the topology
of the fundamental domain is of great importance in characterizing the dynamical behaviour

of an equivariant system. In this approach, the topological characterization takes into account

the symmetry to provide a description which acts independently of symmetry properties. In

this way, a characterization may be obtained, even if the symmetry is not preserved by the

reconstruction method, since we mod out the symmetry in the topological characterization.
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Such a procedure is found to be useful when a dynamical system displaying some symmetries
is reconstructed from a scalar time series since an attractor induced by a time series need not

have the same symmetry properties. As a result, topological characterization of the original
and reconstructed attractors may lead to two different templates, even though the underlying
system is the same. Therefore, factoring out symmetry groups using concepts such as the

fundamental domain is essential for carrying out a characterization independent of the choice

of a particular embedding. The existence of a fundamental domain in which all the trajectory
is projected leads us to introduce a procedure for topological characterization in this domain by
using linking numbers counted on a plane projection and a fundamental template synthesizing
the topological properties of the fundamental domain. We therefore introduce the concept
of restricted topological equivalence meaning topological equivalence of related fundamental

domains (and thus of related templates).

The paper is organized as follows. Section 2 is a brief review of the time derivative coordinate

systems used to obtain reconstructed state spaces. When the original system is known, an

algebraic transformation between original and reconstructed coordinates is obtained. A brief

review of the topological characterization procedure is given thereafter. Section 3 is the main

purpose of our paper. Successively, we show that I) the attractor reconstructed from the y-
variable of the R0ssler system is diffeomorphically equivalent to the original one and it) the

attractors reconstructed from the variables ofthe Lorenz system are topologically equivalent to

the original one in fundamental domains but with different symmetry properties (consequences
for the dynamical analysis from each variable are explained). This means that topological
equivalence stricto sensu is not satisfied but restricted topological equivalence is nevertheless

ensured. Section 4 is a conclusion.

2. Theoretical Background

2.I. RECONSTRUCTION METHOD. Let us consider a time continuous dynamical system
defined by a set of ordinary differential equations:

k
=

fix; p) 11)

in which xii) E lit" is a vector valued function depending on a parameter t called the time and

f, the so-called vector field, is a n-component smooth function generating a flow it- v E lltP

is the parameter vector with p components, assumed to be constant in this paper. The system
ii) is called the original system (OS). As stated in the introduction the systems studied are

such that n =
3. The OS may therefore be written as:

#
/I(X, y, Z)

"
/2(X> #> Z) (2)

Z "
/3(X,Y, Z)

It is then assumed that the observer numerically records a scalar time signal. By convention

in this section, the observable is taken to be xi " x.
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The template is then checked by extracting the linking number L(Ni, N2) of a pair of orbits

Ni and N2 in a plane projection. For this operation one only needs to count the signed crossings

of a pair of orbits Ni and N2 in a regular plane projection of the pair (a drawing of it such that

no more than two lines cross at any point). After assigning an orientation to the periodic orbits

with respect to the flow and defining a number e12(p)
"

+I for right/left-handed crossings p

between Ni and N2 [30], the linking number is given by:

LiNi, N2)
=

L £121P) IS)

p

which is a topological invariant. Then, orbits Ni and N2 are constructed on the template (the
procedure is reported in detail in [31]). Finally, linking numbers are compared: the template

is validated if the linking number obtained from the regular plane projection is equal to the

one obtained from the corresponding orbits constructed on the template.
As the template which carries the periodic orbits is identified, the organization of the orbits

is known. For a complete discussion of the equivalence between periodic orbits embedded

within a strange attractor and orbits of the template, see [32].

3. Is Ass Equivalent to Aos?

The system studied in this paper is generated by three equations, I-e- there are three origi-
nal coordinates, namely (x,y,z). Each of these coordinates may be taken as the observable

and, consequently, three different cases may be investigated for each system. Only the most

interesting results will be discussed.

Although only one variable of the R6ssler system provides a reconstructed attractor dif-

feomorphically equivalent to the original R6ssler attractor, attractors reconstructed from the

other variables ix and z) are topologically equivalent to the original one by using delay coordi-

nates [32] as well as derivative coordinates [33]. By topologically equivalent, we mean that any

two periodic orbits in the reconstructed phase space have the same topological invariants as

the corresponding orbits in the original phase space. But the R0ssler system is a very simple

folded band and it is definitely worth studying more complicated cases. For instance, let us

examine the case of the well-known Lorenz system which exhibits symmetry properties.

3.I. ORIGINAL PHASE SPACE. In the case of the Lorenz system, the problem becomes

a little more tricky. Two kinds of configuration related to the equivariance properties of the

system appear. ii)
x- and y-observables are equivariant and provide attractors A~ and A~ with

symmetry properties, respectively (Figs. la and b), iii) z-observable is invariant and provides an

attractor Az without any symmetry (Fig. lc). It is clear that all the information on symmetry

is lost in Az. King and Stewart [34] showed that the use of an equivariant observable is required

to guarantee a reconstructed attractor with symmetry properties. Unfortunately, even now,

we are not sure that the symmetry properties are identical to the original ones, as illustrated

below.

In the whole space, the Lorenz system reads as:

i#~(§-X)
fi=Rx-y-xz (6)

I
=

-bz+xy

in which we use a control parameter vector (R, ~, b)
=

(28,10, 8/3) for which the asymptotic

motion settles down onto a strange chaotic attractor [19].
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Fig. I. Attractors reconstructed from different variables of the Lorenz system: a) Attractor A~,

b) Attractor Ay, c) Attractor Az.
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Fig. 2. Schematic view of the fundamental domain D as the right wing and its copy ~D as the left

wing.

The system has three fixed points reading as:

0 x+ x-

Fo
"

0
,

F+
= y+ and F-

= y-
0 z+ z-

where x+ = y+ =

+fill and z+ =
R I.

One may note that the vector field f defined by equation (6) is equivariant, I.e.

fl~x, v)
=

~flx. P) 17)

where ~ is a matrix defining the equivariance. In the Lorenz case, the matrix ~ is given by:

-1 0 0

~ =
0 -1 0 (8)
0 0 1

In other words, the original Lorenz attractor AOS is invariant under the action of ~ which

defines an axial symmetry.
This symmetry induces specific considerations such as defining a fundamental domain D

which tasselates the complete state space [35, 36]. Indeed, as the Lorenz dynamics is invariant

under the action of ~, the state space can be tiled by a fundamental domain D and one of

its copy ~D (note that ~~D
=

D). In the Lorenz attractor, the fundamental domain may be

viewed as a wing: in Figure 2 the fundamental domain D is displayed as the right wing and

its copy ~D as the left wing. More precisely, the fundamental domain D is separated from its

copy by the invariant surface S under the action of ~, i-e-

S e
((x,

y, z) E llt~
y =

-x) (9)

Consequently, the fundamental domain may be defined as

D e
jjx,y, z) e m3

y > -xj jio)
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Fig. 3. Symmetric orbit a) and a pair of asymmetric orbits b) and c). a) Symmetric orbit encoded

(RL), b) asymmetric orbit encoded (LRR), c) asymmetric orbit encoded (RLL).

while its copy is defined as

~D e
((x,y, z) E llt~

y < -x) ill)

It must be noted that the choice of D and ~D is quite arbitrary and, consequently, D and ~D
could be inverted.

For the sake of clarity, we must introduce a symbolic dynamics working in the whole phase

space before carrying out the topological analysis. Such symbolic dynamics was first introduced

by Birman and Williams [37] as displayed in Figure 2. All periodic orbits may thus be encoded

in the obvious way with symbols on the set (L, R) following the trajectory. In this case, a

symbol is associated with each revolution of the trajectory around one of the fixed points F+

or F-. The topological period of an orbit is thus clearly related to the number of revolutions

around F+ and F-. The population of periodic orbits is reported in Table I.

Two kinds of periodic orbits may then be distinguished. First, we have symmetric orbits

(Fig. 3a) which are globally invariant under the action of ~. Their symbolic sequence may be

written under the form (WW* where W* is the conjugate of W, I.e. R is mapped to L and vice

versa. The period of such an orbit is therefore even. Next, we have asymmetric orbits (Figs. 3b

and c) which are mapped to each other under the action of ~ to their symmetric configuration
and therefore appear in pairs. For instance, the orbit encoded by (LRR) (Fig. 3b) is mapped

to the orbit encoded by (RLL) (Fig. 3c) under the action of ~. Their symbolic sequences are

conjugate.
This symbolic dynamics has been successfully used by many authors as exemplified by Spar-

row [38]. Such symbolic dynamics is not compatible with the existence of a two strip tem-

plate [39]. This is because it is impossible to build a template with two strips playing a

symmetric role. A four strip template may, however, successfully predict the linking numbers

counted in a regular plane projection of periodic orbits. Such a template is displayed in Fig-

ure 4. Consequently, symbolic dynamics on the set (0,T,1,0) is required to encode periodic

orbits on this template. Note that symbols b and are the conjugate of 0 and I, respectively.
The necessity of using 4 symbols for the template and only 2 (L and R) to encode the orbits is
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Table I. Population of periodic orbits within the Lorenz attractor for R
=

28: y =
(b(R

I))1/~ For each periodic orbit, the symbolic sequences in the whole phase space and in the

fundamental domain D are given.

in the whole space in D

RLLR 10

LRR RLL 101

RLLLRR 100

LRRR RLLL 1001

RLLLLRRR 1000

LRRLR RLLRL 10111

RLLRLLRRLR 10110

LRRLL RLLRR 10010

RLLLRLRRRL 10011

LRRRR RLLLL 10001

RLLLLLRRRR 10000

101110

RLLRLRLRRLRL 101111

RLLLRRLRRRLL 100101

LRRRLR RLLLRL 100111

RLLLRLLRRRLR 100110

LRRRRL RLLLLR 100010

RLLLLRLRRRRL 100011

LRRRRR RLLLLL 100001

RLLLLLLRRRRR looooo

RLLRLRL lolllll

RLLRLRLLRRLRLR lollllo

LRRLRRL RLLRLLR lollolo

RLLRLLRLRRLRRL lolloll

LRRRLLR RLLLRRL loololl

RLLLRRLLRRRLLR loololo

LRRRLRL RLLLRLR loolllo

RLLLRLRLRRRLRL loollll

LRRRLRR RLLLRLL loollol

RLLLRLLLRRRLRR loolloo

LRRRRLL RLLLLRR loo0100

RLLLLRRLRRRRLL 1000101

LRRRRLR RLLLLRL 1000111

RLLLLRLLRRRRLR 1000110

LRRRRRL RLLLLLR 1000010

RLLLLLRLRRRRRL 1000011

LRRRRRR RLLLLLL 1000001

RLLLLLLLRRRRRR 1000000



N°11 ANALYSIS OF ATTRACTORS MODDING OUT SYMMETRIES 1625

,

Fig. 4. Four strip template obtained by dividing each wing in two strips: one, labelled by 0 or

fi, associated with the reinjection of the trajectory in the
same wing, and one, labelled by I or

I,
associated with the transition from one wing to the other.

lo-o

5.o

,

0

F

I o-o
~~

j

5.o

lo-o
lo-o 5.o o-o 5.o lo-o

Fig. 5. First-return map to the Poincar4 section Pw computed with the ~-variable. Each monotonic

branch is associated with a strip of the template according to the symbols on the set (6, I,1, 0).

a shortcoming which will be canceled by accounting for the symmetry, I.e. by projecting the

dynamics on fundamental domains.

This discussion may also be illustrated by computing a first-return map in a PoincarA section

Pw reading as:

Pw + ix, y) E llt~
z =

R -1) (12)

The x-variable is then used to compute the first-return map which is made up of four monotonic

branches exhibiting an inversion symmetry relative to the fixed point Fo (Fig. 5).
Symbols of the set (0,T,1, 0) act as transition symbols. Thus, for instance, two revolutions

on the left wing corresponding to a sequence (LL), I.e. without any transition is mapped to

b, and a sequence (LR), exhibiting a transition from the left to the right wing, is mapped to

(see Fig. 3). Therefore blocks of two letters in the code (R, L)
are mapped to one letter in
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50.o

40.0

30 0

20.0

lo-o

~
~l 0 0 0 0 lo 0 20.0

Fig. 6. Dynamics of the Lorenz system projected
on

the fundamental domain D.

the code (0,T,1, 0). As a whole, we may define a mapping lY sending blocks of two letters in

(R, L) to one letter in (0, T,1, 0), reading as:

(LL)
=

0

lY(LR)
=

T
lY e (13)

il(RL)
=

I

lY(RR)
=

0

For instance, the orbit (LRR)
=

LRRLRR... is mapped to T01T01..
=

(T01).

3.2. IN THE FUNDAMENTAL DOMAIN. It has been shown that the dynamical analysis of

such a system may be more conveniently achieved by working in the fundamental domain in

which all the trajectory is projected [35, 36]. Indeed, taking into account the equivariance

property, the dynamical behaviour on the fundamental domain is the same as on its copy.

Consequently, knowing the topological organization in the fundamental domain and the nature

of the equivariance provides all the required topological information on the whole attractor.

The template associated with the fundamental domain is then much simpler than on the whole

attractor and is therefore given a due privilege. Furthermore, restricted topological equivalence
allows us to compare the topological organization of different attractors tasselated by different

numbers of fundamental domains, I.e. different symmetry orders. Therefore the comparison
between the spectra of periodic orbits, from the point of view of the symbolic dynamics, is

allowed.

In order to achieve a topological characterization of the fundamental domain, all the dy-
namics has first to be projected on the fundamental domain as displayed in Figure 6. A given
periodic orbit in the whole space reading as:

j e
jx~jt)jjj~ j14)

where X~ it) is the coordinate vector at time t of the periodic orbit (, and T~ is its time period,
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Fig. 7. First-return map on
the Poincar4 set Pt built with the invariant z-variable.

is then projected on the fundamental domain to a
fundamental periodic orbit reading as:

it e (Y~ it) Y~(t)
=

~X~ it) if y < -x Y~ it)
=

X~ it) otherwise )))~ (15)

A Poincard section Pz~ of the fundamental domain D is then defined as

Pz~ e I(x, z) E llt~
y = y+,

~~
< 0 (16)

°Y

where f is the vector field defined in equation (6). The first-return map is displayed in Figure 7

and is found to be similar to the well-known Lorenz map [19]. This is due to the fact that

the Lorenz map is computed with the z-invariant variable which does not distinguish the

fundamental domain D from its copy ~D.
This first-return map allows us to encode periodic orbits as follows:

whele l~(z) is the code of the z-coordinate of the trajectory in the PoincarA set Pz~. The

population of fundamental periodic orbits is reported in Table I.

In order to define the linking properties of fundamental periodic orbits, we introduce the

fundamental linking numbers £(N~, Nj) which are counted on the fundamental domain and

defined as:

£lN~, NJ)
=

~j
f~j Iv) Ii # J) l18)

where eij designates oriented crossings between two fundamental orbits. Fundamental linking
numbers £(N~, Nj) have to be equal to the linking numbers predicted by the template which

synthesizes the topology of the fundamental domain. Such a template may be called a fun-

damental template in contrast with the more complex template which is associated with the
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Fig. 8. Checking of the fundamental linking number £(101,10) between the plane projection and

the template construction of orbit pair (101, 10). a) £(101,10)
=

)(+4)
=

+2, b) £(101,10)
=

)(+4)
=

+2

Table II. Fundamental linking numbers between pairs of orbits whose period is less than 5.

+1

(101) +1 +2

(100) +1 +2 +3

(1011) +2 +3 +4 +4

(1001) +1 +2 +3 +3 +4

+1 +2 +3 +3 +4 +4

whole attractor. As an example, the fundamental linking number £(lot,10) is counted on a

plane projection of the fundamental orbits encoded by (101) and (10) (see Fig. 8).
In the same manner, we determine linking numbers between all pairs of orbits whose period

is less than 5. These linking numbers are reported in Table II. All these linking numbers are

found to be well predicted by the template described by the linking matrix M~j reading as:

Mij
=

l~ ~
(19)

+

This template is displayed in Figure 8b where a construction of the pair (101, 10) is given as

an example allowing the fundamental linking number £(101,10) to be checked. The template
obtained is furthermore found to be in agreement with the Lorenz map, i.e. a band 0 (even

local torsion) is associated with the increasing (orientation preserving) branch of the map and

a band I (odd local torsion) is associated with the decreasing (orientation reversing) branch of

the map. A similar template is obtained from ~D.

3.3. ATTRACTOR INDUCED BY AN EQUIVARIANT VARIABLE. Let us consider the attractor

reconstructed from an equivariant variable that we may obtain by integrating a reconstructed

vector field or by using derivative coordinates. The same reconstructed attractor may also be
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obtained by applying a standard transformation 4l (Eq. (4)) to the original attractor. The re-

construction technique relies on the analysis of a scalar time series. When the observable used is

equivariant, then the reconstructed attractor is governed by equivariant variables only because

the derivatives of equivariant variables are equivariant too. Consequently, the reconstructed

system is unchanged under the action of a ~-matrix which reads as:

-1 0 0

~ =
0 -1 0 (20)
0 0 -1

and defines an inversion symmetry which is not necessarily present in the original vector field.

Indeed, the original Lorenz vector field is composed of two equivariant and an invariant vari-

ables. Consequently, a system whose original equivariance defines an axial symmetry is recon-

structed as a system whose equivariance defines an inversion symmetry when an equivariant
variable is used. As stated by King and Stewart [34], techniques for phase space reconstruc-

tion from an equivariant scalar time series are failing to obtain attractors whose symmetry is

identical to the original symmetry. As an example taken here, the Lorenz system exhibiting

an axial symmetry (see equivariance matrix of Eq. (8)) is mapped to a reconstructed system
which possesses the equivariance matrix of equation (20), when the observable is equivariant.
Of course, this equivariance is not directly related to the Lorenz system. It is therefore rather

interesting to discuss the restricted topological equivalence between such a reconstructed at-

tractor and the original one. In order to do that,'we have to extract the fundamental template
of the reconstructed attractor A~ generated by the equivariant variable x, taken as an example.
In this case, the reconstructed space is spanned by (X,Y, Z)

=
(x(t),I(t),I(t)).

The fundamental domain cannot obviously be defined in terms of an invariant surface since

only a single point, namely the origin of the reconstructed space, is invariant under the action

of the ~-matrix. Nevertheless, we may practically define the fundamental domain as defined by

D e
((X, Y. Z) E llt~ X < 0) (21)

and its copy

~D +
((x, Y, z) e m3 x > o) (22)

where X
=

0 is here considered as an invariant surface. Once the dynamics is projected on the

fundamental domain, we compute a first-return map into a Poincar4 section Pz~~ defined as:

Pz~~ e ((Y, Z) E llt~ X
=

XF, X < 0) (23)

where XF
"

b(R i). The first-return map can then be independently computed from the

Y- or Z-variables. An equivalent first-return map may be obtained by using a Poincar4 set Px

in the whole space which is defined as Px
"

Px+ U Px- where:

Px+
" ((Y, Z) E

llt~ X
=

XF, X < 0) (24)

and

Px-
" ((Y, Z) E lll~ X

=
-XF,X > 0) (25)

To mod out the symmetry, the map is hereafter computed with an invariant variable which

may be the natural invariant Z-variable or the less natural but efficient )Y)-variable. A map

similar to the Lorenz map is obtained in which the critical point is located at )(
=

78 (Fig. 9).
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Fig. 9. First-return map to the Poincar4 set Px of the A~.

As on the original attractor, the increasing branch, labelled 0, is associated with the reinjection
of the trajectory in the same wing and the decreasing branch, labelled I, with the transition

from one wing to the other.

Nevertheless, there exists a deep difference between the original attractor and the recon-

structed attractor A~ since the symmetry properties are different. Indeed, the fundamental

template induced by the original attractor was found to be independent of the choice of the

fundamental domain, I.e. D and ~D induce the same template. Conversely, in the recon-

structed attractor, the strip of D associated with the increasing branch of the first-return map,
undergoes a positive K-twist while the strip of ~D associated with the same branch of the map
undergoes a negative K-twist (Fig. 10a).

In the previous section, we have presented the topological procedure to characterize an

attractor in a case where the symmetry preserves the local torsion sign but this condition is

not met in the case of an inversion symmetry. In fact an inversion symmetry reverses the local

torsion sign (Fig. ii ). This property will have deep consequences on the fundamental linking
numbers £(N~, Nj) as,described below.

From the mask of A~ (Fig. 10a),
we extract the masks associated with the fundamental

domain D and its copy ~D, respectively (Fig. 10b). Let us insist on the fact that Figure 10b

presents both D and ~D, I.e. exhibits two fundamental domains in so far as either D or ~D
could be chosen as the fundamental domain, this choice being arbitrary. Two fundamental

templates are then proposed (Fig. 10c). Note that the fundamental template associated with

the fundamental domain D presents a band I with a positive K-twist and the template associ-

ated with its copy ~D has a band I with negative K-twist this is a consequence of the inversion

symmetry which reverses the local torsion sign in contrast with the previously discussed case

of axial symmetry. Then, using the standard insertion convention, the templates are described

by the linking matrices

fifz~
=

~
and M~z~ =

~ ), (26)
+
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Fig. 10. Extraction of the ~-induced template. a) Equivariant mask of A~: the fundamental

domain D and its copy ~D
are bounded by the dashed line. The Poincard sections Px

+
and Px- are

also displayed. b) Schematic views of the masks associated with D and ~D of A~. c) Templates of the

fundamental domain D and its copy ~D.
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Fig. ll. Local torsion sign is reversed under
a inversion symmetry.

respectively. Note that the template of the fundamental domain is the same as for the fun-

damental domain of the original attractor. Consequently, if we mod out the symmetry, the

template of the reconstructed attractor induced by the x-time series is the same as the original
Lorenz system. So the two different dynamical systems have a fundamental domain exhibiting
the same structure (horseshoe dynamics).

As both fundamental templates topologically characterize the attractor (in the restricted

sense), we cannot determine the sign of the local torsion of band I. Consequently, as the

choice of the fundamental domain D is arbitrary (the right wing could be also chosen as the

fundamental domain), the sign of the fundamental linking number £(N~, Nj) is arbitrary too.

For these reasons, we prefer to introduce an unsigned fundamental linking number £(N~, Nj).
Let us note that the introduction of unsigned fundamental linking numbers is deeply related

to the fact that restricted topological equivalence is not topological equivalence in the strict

sense (indeed topological equivalence requires the use of signed linking numbers).
We now emphasize the usefulness of working with such a fundamental domain (at least

in the present case of inversion symmetry). Due to the inversion symmetry which reverses

the local torsion sign, a signed crossing on a wing of A~ is opposite to its corresponding
crossing (under the action of ~) on the other wing. Thus the linking numbers L(i'T~,Nj)
between two symmetric orbits are always equal to 0. So topological equivalence in the strict

sense does not discriminate sufficiently between different dynamics associated with symmetrical
orbits. Topological characterization should therefore preferably be performed by considering a

fundamental domain and a fundamental linking number.

Thus, as signed crossings are reversed under the action of ~, fundamental linking numbers

are found to be positive in the fundamental domain D and negative in its copy. Indeed, one

may check that the fundamental linking number £(101,10) is found to be equal to +2 in the

fundamental domain while it is found to be equal to -2 in its copy ~D (Fig. 12). One may check

in Figure 12 that each oriented crossing of D is mapped to an opposite crossing on ~D under

the action of the ~-matrix. Consequently,
we do not have here a topological invariant which

may be equivalently computed in the fundamental domain and in its copy.
~rhis problem may

be solved by using an unsigned fundamental linking number £(N~, Nj) =( £(N~,Nj) which

mods out the dependence on the choice of the fundamental domain. No jinformation is lost

when we are working with such an unsigned linking number £ since we have no prescription to

choose between the positive and the negative signs. Indeed, due to the equivariance properties,

to each oriented crossing between a fundamental orbit N~ and a fundamental orbit Nj on

the fundamental domain is associated an oriented crossing on its copy but, as the inversion
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symmetry reverses the signs of crossings, a positive crossing in D is found to be negative on ~D.
In particular, on the x-induced attractor, all the positive crossings counted on D are counted

as negative on ~D.

For instance, let us determine the fundamental linking number between two couples of fun-

damental periodic orbits encoded by (101, 10) and (1, 100), respectively. The unsigned funda-

mental linking number £(101,10) is then found to be equal to 2 (Fig. 12) which is therefore

equal (within the value of the sign) to the fundamental linking number £(101,10) obtained on

the original Lorenz attractor (Fig. 8a). The unsigned fundamental linking number is then also

in agreement with the template construction (Fig. 8b). Similarly, the unsigned fundamental

linking number £(1,100) is found to be equal to I (Fig. 13) and may easily be checked by a

construction on the original template. All unsigned fundamental linking numbers of funda-

mental orbits whose period is less than 5 have been found to be in agreement with the original
fundamental template prediction.

3.4. ATTRACTOR INDUCED BY AN INVARIANT VARIABLE. The observable is now the

invariant variable z. This variable contains no information about the symmetry and, conse-

quently, the attractor reconstructed from this variable does not present any symmetry prop-

erty. The reconstructed space is spanned by the set of coordinates (X,Y,Z)
=

(z,I,I).
Thus the topological characterization of Az is conducted following the procedure used for

the R6ssler system. This reconstructed attractor has a first-return map to the Poincar4 set

Pz
"

((Y, Z) E llt~ X
=

30, X > 0) which is similar to the original Lorenz map (Fig. 14).

As in the previous cases, the increasing branch is associated with a strip without any local

torsion labelled by symbol 0, and the decreasing branch is associated with a strip with a K-twist

and is labelled by symbol I. Periodic orbits are extracted and encoded following this symbolic
dynamics. Attractor Az is a simply folded ribbon with a structure similar to the R6ssler
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Fig. 14. First-return map of the z-induced attractor.

attractor but with a positive local torsion. Its template may easily be found equivalent to the

template of the fundamental domain of the Lorenz attractor. It is worthwhile emphasizing that

this equivalence holds between a non fundamental template (template on the whole attractor

Az and a fundamental template, pointing out once more the interest of the concept of restricted
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topological equivalence.
Orbits encoded by (10) and (101) are displayed in Figure 15. The linking number L(101,10)

is given here by the half-sum of the oriented crossings, and is found to be equal to +2 as

on the original attractor. The linking number is preserved and the reconstructed attractor is

topologically equivalent (in the restricted sense) to the original one.

Indeed, the one wing attractor Az may be viewed as an explicit representation of the fun-

damental domain D of the original Lorenz attractor, I.e. z-variable is a useful variable to

analyse the dynamical behaviour of the Lorenz system. Naturally, information about symme-

try properties is not available from this observable. Nevertheless let us note that this variable

is always used to compute power spectra, first-return maps, We have shown the deep root

of this common habit, I.e. z-time series contain information about dynamics projected on the

fundamental domain D which is often implicitly used to analyse the Lorenz system.

Indeed it is well-known [40, 41] that power spectra computed from the different variables of

the Lorenz system are not equivalent (Fig. 16): power spectra from equivariant variables ix
or

y) provide no peak while the power spectrum from the invariant z-variable provides a peak at

fo "1.30 Hz.

Let us recall that when a power spectrum of a variable wit) is composed of sharp peaks
superimposed on a broad background, the linearity of the Fourier transformation implies that

~u(t) can be written as the sum of a periodic and a nonperiodic part:

Wii)
"

1°Pii) + l°npi~) 127)

Consequently, power spectra of equivariant variables reveal that no periodic components are

really present in these variables. Conversely, a principal frequency fz equal to 1.30 Hz may

be exhibited from the po~i>er spectrum of the invariant z-variable (Fig. 16). This implies
that a phase coherence [40] appears on the fundamental domain (remember that the invariant

z-variable naturally projects the dynamics on the fundamental domain). In other words, a
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significant pseudo-period may be defined by the average time between two consecutive inter-

sections with a Poincar4 section P~ in a fundamental domain of the original attractor. We

found such a pseudo-period to be To
"

0.75 + 0.10 s in very good agreement with the one

estimated from the power spectrum of z: Tz m 0.76 s. The invariant z-observable provides
therefore pertinent dynamical information on the Lorenz dynamics.

Imagine now that the y-time series is recorded. One may easily check that the observable y

is equivariant in a simple way, I.e. that its time series is globally invariant by multiplying by

-i (this requires a prior reconstruction of the strange attractor to detect the equivariance).
Consequently, we know that the original attractor may be tasselated by a fundamental domain

D and one of its copy ~D. Even if we do not know whether the symmetry is of the axial or

inversion type, we may safely use the absolute value of the time series to compute the power

spectrum and find the representative frequency of the original system. If this is carried out

with the y-time series of the Lorenz system, then the power spectrum of (y( presents a peak at

1.31 Hz which is in good agreement with the pseudo-period To exhibited on the fundamental

domain D (Fig. 17). Let us note that we might similarly use y~ instead of vi.

4. Conclusion

We investigated the topological characterization of reconstructed attractors in the case of

3D-embeddings. The reconstruction technique used relies on derivative coordinates but our

conclusions extend to other kinds of embedding. We focused our attention on the case of equiv-

ariant systems and developed a specific topological characterization modding out symmetries

leading to the concept of restricted topological equivalence when the analysis is performed on
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Fig. 17. Power spectrum of the absolute vmlues of the y-time series of the Lorenz system. A

principal peak is recovered at the same frequency than on the power spectra of
z.

a fundamental domain. Relying on specific examples, we demonstrated that restricted topo-
logical equivalence between original and reconstructed attractors may hold even if topological
equivalence in the strict sense does not hold. Our results confirm the importance of the topo-
logical properties in the analysis of dynamical systems. For experimental cases however, it

may be difficult to state if the reconstructed portrait is correct or not. Therefore, detecting
pathological topology, such as symmetry or "8" -configuration, in experimental systems appears

as a topic of great interest (in detecting the symmetry, see [42]).
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