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Abstract. The kinetics of the pressure induced hydration of modellipid membranes is stud-

ied in terms ofthe Avrami-Kolmogorov model and the fractal-like chemical reaction kinetics
con-

cept. As a
general result, the stretched exponential relaxation function of the process is obtained

and applied to an
experimental

case
of the dioleoylphosphatidylethanolamine (DOPE)-bilayer

hydration, understood
as a cooperative process in which, both, the structural lipid changes and

hydration
are

coupled in a complex way with each other, and hypothesized in terms of the

anomalous random walk. The trends of both theory and experiment are
in agriement.

1. Introduction

Amphiphilic assemblies, such as lipids and surfactants dispersed in water or other (e.g. organic)
solvents can aggregate into a variety of morphological forms among which biomembranes en-

compass some well-defined structured systems. Under certain external-field (mostly pressure

or
temperature) conditions they may undergo the phase transformations, e.g. from the gel

to the liquid crystalline state; some physico-chemical processes occurring within such systems

may even strongly be influenced by the solution conditions e.g. the pH-characteristics, the elec-

trolyte concentration or some
thermodynamic quantities like chemical potential of the water

molecules dispersed in there Iii.
Such systems can also exhibit a very rich structural behaviour concerning the liquid crys-

talline (or noncrystalline) phases with many topological arrangements of components from

which they are prepared. Under certain physico-chemical circumstances biomembranes are ob-

served to constitute regular (periodic) lattices in one-, two- or even three-dimensional spaces [2].
The structures formed usually resemble the smectic liquid crystals (it is frequently the case

of lecithines) because of existence of stacks of amphiphilic layers, mostly separated by wa-

ter. Some lamellar as well as nonlamellar (like inverted hexagonal or cubic) phases, or even

the intermediates called mesophases, can also emerge which is of relevance when investigating

some biological processes like ion transport through membrane channels, phase separations,
material flexibility, etc. [1,3]. There is also a

possibility of forming some more irregular mostly
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self-similar complexes (reminiscent of the percolation lattice) when some defects or structural

imperfections (anaesthetics, impurities, some interstitially located molecules or thermal fluc-

tuations of the membrane material) are detected in the system [4]. The last case becomes

certainly a case that is more realistic and is easily observed in real biosystems, where biomem-

branes represent the main structural constituent for their complex architecture [5].

It is often argued that the rationale for studying some dynamic or kinetic features usually

assigned to model biomembranes, like hydration dynamics or some phase transformations,

appears to be one of the most interesting and not completely solved problems in this area of

research.

In order to understand the dynamic (or kinetic) aspects of the phenomena mentioned above,

one requires not only a proper understanding of the thermodynamics of self-association in

the lipid dispersions, but also the temporal rules of how the new phase, whatever it is, may

emerge from the old one. An important problem is usually related to the general feature

(possibility) of how the interaction forces between amphiphiles within aggregates are affected

by certain solution conditions. and how to incorporate it into a rather phenomenological kinetic

description [6, 7].
In the paper, we wish to study the pressure induced hydration kinetics of biomembranes.

Let us suppose, that a dioleoylphosphatidylethanolamine (DOPE) model membrane, composed
of nonlamellar (precisely: inverted hexagonal) lipid phase, is prepared by mechanical mixing

to be fully hydrated [8]. In consequence, the membrane (bilayer) is considered to be under a

rather homogeneous swelling. It also implies that the macromolecules comprising the bilayer

get elongated (or stretched) because of entering the small water molecules or agglomerates
of them, throughout pre-existing pores (or free spaces among lipid molecules which are of

orders of nanometers) rather than by transient fluctuations in the bilayer structure until an

equilibrium state is achieved. Note also that, as ever in the hydration process, the water

molecules penetrate the system and eventually get aggregated on the lipid molecules or even

on (within) some ensembles or clusters of them, and the effect is of the electrostatic nature,
being commonly called the solvatation effect [8,9]. After applying the hydrostatic pressure,

e.g. taken from the range 0.1-2 kbars, on the system under study, one may notice at least

two categories of phenomena which we consider to be of prior importance when studying the

hydration phenomenon.

First, the chemical potential of the water present in the mixture is changed which, in con-

sequence, leads to some migration of the molecules throughout the spatially fluctuating mem-

brane (being, in fact, an elastic "porous medium" ). The resulting spatial reorganization of

water complexes and the unavoidable association of water to lipid domains provides a spe-

cific coupling of the hydration process with the lipid structural changes, where none of the

processes mentioned stands for the kinetic limitation of the phenomenon in question. Many
bimolecular chemical reactions can occur, where the reactants are confined randomly to some

compartments (domains) separated from each other due to the previous pressure action, and

certain connections and disconnections of lipid domains resembling a phase separation may
be observed [10]. Since, generally speaking, such a process is reminiscent of a random walk

process on a percolation lattice ill,12] (there is something like a "moving front" of the hy-
drated phase propagated through the bilayer),

some terminology characteristic of it will be

used in our further study. Also, one can see some phase transformation in the system. Namely,
before applying the hydrostatic pressure the system and its parts (e.g., lipid macromolecules

or
domains) are stretched or elongated because of swelling (one can name this phase as a

parent phase). After the pressure comes into action a release of water molecules is observed,

the swelling conditions are changed, the hydration is still taking place, and the system with

its parts is supposed to be not longer in an elongated state, but arrives at a new state that,
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in comparison to the old (parent) one, can be termed as the non-elongated (squeezed or com-

pressed, or sometimes "normal" state (this phase is said to be the children phase). Note here

that the children phase still remains hydrated.
Second, from the physical point of view, it is allowed that the pressure will cause some

detectable changes in hydration because it induces changes in ionization of surface charges due

to either electrostriction or changes in charge repulsion since an effective surface area expansion

may occur (cf. [13] and Refs. therein). This fact, however, will not be seriously taken into

account in the present study. But one has to realize that it supports in a subtle way the whole

scenario sketched here.

Thus, establishing on the former, we have proposed a modification of the phenomenological
Avrami-Kolmogorov equation [14,15] due to incorporation of the above mentioned fracal-like

kinetics [12] and by realizing that the hydration may be coupled in a complex way with the lipid

structural changes which is equivalent to hypothesize an existence of the anomalous random

walk process on the structure (it is much more than considering the whole lipid structure as

a statistical fractal, and, in general, the fractality of the structure is not the necessary feature

to establish such a random walk process! note also that, for sure, before applying the pressure

the whole structure is a non-fractal [8]). As a result, we have obtained the temporal (kinetic)
behaviour of the system in question which, in general, is a stretched exponential (i.e., the non-

Debyean relaxation kinetics takes place).'By applying it to an
experimental situation, fully

described in [8], we have reached a promising tendency in elucidating the experimental data

reported (a rescaled relaxation function of the system under study is a power law of time with

an exponent lying between ca. 0.66 and 0.99 [8] which we are able to reproduce by means of

our modelling with quite well accuracy). It will be demonstrated in the subsequent chapters.

The paper is organised as follows. After some introductory remarks given in Section 1,

we shortly sketch the model that can describe the pressure induced hydration kinetics in lipid

bilayers, and next, we modify this model in order to adapt it for a phenomenological description

of the anomalous random walk process on the "soft matter" system [8,15] that we investigate

(see Sect. 2). In Section 3, some results are revealed and a discussion of them is carried out.

The last Section 4 serves for the concluding remarks.

2. Description of Kinetics of the Pressure Induced Hydration of Lipid Bilayers

The well-known Avrami-Kolmogorov kinetic theory of the temporal behaviour of the system

has been reviewed and summarized, e.g. in Iii and briefly presented in [16]. We do not wish

to do the same in this work. One may also consult the original papers [14]. Thus, let us start

directly from the simple modified equation of Avrami-Kolmogorov-type that we propose to be

jfhlt)
=

Nklt)li fhlt)I
)

Ill

(in this work, it is taken always with the initial condition fh(to)
=

0 for to > 0), where N

is a constant number of randomly distributed nuclei per unit volume each of which will grow

to a volume Vn(t) at time t, and fh(t) is a time-dependent fractional completion of a sample

transformed to a new phase [14,16]. Let us notice that a stationary state,
~~~~~~

=
0, is

dt
reached for fh(tsi)

=
1 ii.

e, in practice, after some large time period tsi being passed).

Two things in the aforepresented equation will be novel when comparing to the classical

description. The first one is related to the chemical reaction rate coefficient, represented in

equation ii) by kit) and being assumed as a power function of time of the form [12j:

kjtj
t

kot-h j2j
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(ko is the "equilibrium" chemical reaction rate constant which is, according to the Arrhenius

law, temperature-dependent; let us note that for h
=

0 one gets kit)
=

ko > 0; let us also

preserve that, for long times, kit) exists and is finite), and the h-exponent (being
a broken

number always placed between 0 and I) is related to the spectral dimension of the system
which, in turn, is possible to get when one can specify how the probability of the system return

to its initial state changes in time Ill,12]. One is also able to evaluate the quantity utilizing
the Alexander-Orbach conjecture Ill,12]. Most probable values of h are around 0.33 because

the most probable value of the spectral dimension ds is found to be 1.33 (usually, the quantity
exhibits a "connectivity" of the system, I.e. how likely a random walker can travel on the

whole structure or how easily can the chemical reaction proceed, etc.).
The physical motivation of incorporating kit) into equation ii may come from the following

general picture. Namely, in biosystems or in "soft matter" systems like biomembranes or

polymers, the cooperative structural changes in lipid bilayer membranes can be associated to

either the growth of lipid domains or with some kind of disruption (lysis, phase separation,
rupture, segregation, etc. of the membrane material (or

a part of it) caused by certain species
like proteins, anaesthetics, impurities or by some external fields like pressure or temperature,

or the gradients (changes) of them [4,1ii. The phenomena are closely related to the strength of

interactions in the system which are in general the lipid-protein (or lipid-solvent) interactions

[4, 6]. Furthermore, if the biological process involves migration of some agents like water

molecules within the lipid matrix and the process of water penetration proceeds in one lipid
domain in a quite different time regime than in another one, then the size of the domain, its

microscopic structure as well as life-time land many other factors like chemical affinity to the

traveling walker) may be crucial. It can lead to the fractal-like reaction kinetics of the process
and for sure cannot be understood in classical reaction-kinetic terms [1,11,12,18]. To be more

specific, one could also recall here, e.g. the gel-to-liquid crystalline phase transformation of

some multilamellar lipid bilayers, where still some discrepancies in the values of fractional

dimensionalities characterizing the system kinetics exist (some values of approximately 2 have

been reported [16]).
The second thing (I[(t)), in turn, possesses a clear and unique meaning in the Avrami-

Kolmogorov description. It has the form [16]

Vnlt)
=

g~~R~lt), 13)

where g is a geometrical factor ("shape" factor), e.g. for spheres of 1.33n, and
u is a radial

growth rate (known in some typical cases like growth of sphere-like or other symmetric objects).
The exponent p takes a value which comes from the R(t)

vs. t dependence (R(t) is the radius

of a single swollen and hydrated round domain taken at time t).
In the case studied it can be represented by a scaling formula of the form [19]

R(t)
=

st~, s, q > 0. (4)

The question arises: what are the values of the quantities s and q? The proper answer depends
probably on whether we consider the behaviour of the system on a molecular (concerning a

single lipid chain) level or that we attempt to describe the kinetics of the hydration on the

supramolecular (concerning an individual domain or cluster) stage of structural organization
of the membrane. In the former, for the lipid macromolecule squeezed by the external pressure
applied the pre-factor s depends directly on the ratio of both the second and third virial

coefficients, respectively, and if the lipid chain reflects the Gaussian (normal) properties the

quantity s becomes just the length of the monomeric unit of the chain (see [19] pp. 90-92, for

having more
details). Note also that both these virial coefficients are temperature-dependent.
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In the latter, one would postulate a phase separation process (cf. [20] and Refs. therein)
in which the parent (elongated) phase is readily separated from the children (squeezed or

normal)
one by means of the same "external cause" frequently mentioned above. In this case

the proportionality factor
8 may depend upon the volume fraction of a new phase as well as

upon the correlation length of the pressure flow [20]. In both cases mentioned, the values of

the exponent q are equal to either 0.33 (the squeezed or compressed state) or 0.5 (the Gaussian

or normal state), independent of whether we deal with the system kinetics on molecular or on

supramolecular level [19, 20].
Applying equations (3) and (4) one gets at once

Vn(t)
#

gU~8~t~~ (5)

which means that Vn it) increases powerly with t (for q =
1/3. it increases linearly with t).

Notice here that the value of the exponent into which t is raised ii- e., 3q) ranges between and

1.5. It is in a qualitative agreement with the values measured in [16]. The difference, however,

would be,that the authors of [16] obtained the fractional dimensionality around 2, but for some

phosphatidylcholine systems composed of multilamellar vesicles, whereas our system is mostly
comprised of a non-lamellar (inverted hexagonal) DOPE-phase [8]; in general, some values of

the exponent presented in [16] are greater than and less than 2.

Let us mention that equation ill is reminiscent of a typical chemical reaction kinetic equation

of the first order with respect to fh cf. [12] and Refs. therein). If the hydration were slow when

compared with lipid material structural changes then the first order kinetics with k being time-

independent would be the case; in the opposite situation the hydration had to follow exactly the

kinetics assigned to the structural lipid changes. Also, the case studied here is more complex,

indeed. Moreover, notice that the fh-variable is of the form of fh
=

~,
where l~h represents

V

a volume of the swollen phase and V is the total volume of the system in question (note that

fh looks simply like the concentration of the reacting species or their molar ratio).

3. Results and Discussion

The solution of the problem represented by equations (1-5) reads

l~ 3q-h

fh(t)
=

1- Aexp (6)~tr~

I.e., for 0 < 3q < h +1, it is a stretched exponential (for 3q
=

h +1, it looks like a Debyean

relaxation function; otherwise, i.e. for 3q > h +1, the physical meaning of function (6) is

unclear) [21]. The quantities A and tr are of the form

A
= exp 1~°~ t(+~~ Ii)

1 + ~,2

and
~~~~~~

° tr
=

~ ~°~ ~

(8)
Wi

where wi and w2 are represented by

wi =

3Nkoqgus~
w2 =

3q h 1 (9)
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(Note that we have put here p =
1, for simplicity.) Throughout the rest of the paper, without

loosing of generality, one may assume that A
=

which holds for some tr large compared to

to lit is a rather usual case observed in many biophysical systems [3, 8,17] cf. Eqs. (7-9)).
Now, the solution (6) can be rewritten as l~ 3q-h

fh(t)
=

I exp (~)
,

j10)
~

and in the case
of h

=
0 and q =

1/3
or h

=
1/2 and q =

1/2, this is the classical Debye
relaxation function of the exponential form. Otherwise, it is always a stretched exponential

with a critical exponent hi, where hi
=

3q h, ranging most probably between 0 and I, but

never reaching hi
=

0 (discarding, however, the unphysical case mentioned above). Typically,
hi is placed between 0.5 and I (see [11,12,19, 20] for details). Because of assuming above (see
Introduction) the hydration process (represented by the exponent hi to be coupled in a complex
(random walk) way with the lipid structural changes (represented here by the exponent q), we

are aware that the result (10) can be restricted to hi ranging from 0 to (this is the case of the

classical stretched exponential relaxation kinetics [21] ). Therefore, because of the limits of the

h-range [11,12], the most probable value of q is 1/3 which physically means that the squeezed
but hydrated state will dominate after the phase transformation, and some Gaussian chains

or domains will be met rarely in the system after the pressure is applied. For this reason the

most probable value of hi would be 2/3. Note that, because of our assumption A
=

1 which

holds for the relaxation times big enough, one can approximate equation (10) by

fh(t)
"

()) Ill)

expanding solution (10) around its argument into the Taylor series and finishing this expansion

on the linear first order term, and neglecting the higher terms because of being small.

The power function of t, represented by equation ill and being a relaxation function of the

system studied, is a particular result of this work. In fact, this result reflects a nonexponential
relaxation kinetics of the system that we study. It will be used for a comparison with an

empirical relation got from the fitting of data in the experiment [8]. The data show how does

the lattice spacing in the DOPE-membrane relax in the course of time measured which is

equivalent to the increase of the average number of water molecules per lipid molecule with

time (designated by nw(t) after applying a hydrostatic pressure. (The relative lattice spacing.
in turn, is a decreasing function of time; the temperature is kept constant during the whole

measurements.) The authors of [8] got, finally, the empirical form of the following relaxation

function, Fh It), namely

~~~~
f/~~l ~ii)

~~~~

where T is the final time of the experiment. being distinctly larger than the relaxation time,

and the function relaxes from to 0 (cf. [8] for details). They fitted the function (12) by [8]

Fh(t)
"

(() ~~

(13j

which is also a power function of time (here, h2 ranges from ca. 0.66 to 0.99). Note, however,
that in [8], the current times of the experiment (say tn) are measured as the multiples of the

relaxation times tr, I.e.

tn
#

ntr. (14)
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(Note that tn are equivalent to the discrete observation times and n stands here for
an averaged

number of the measurement points in the time domain, I.e. n =
1, 2, 3, ).

In the case that we have developed theoretically (cf. Eq. Ill) for comparison) times t~, by
construction of our model, are exclusively some fractions of the relaxation time, namely

tn
=

tr. (isj

It is so, because the relaxation time was assumed to be practically the largest time of the

time domain taken into account (see discussion at the beginning of this chapter). Replacing
formally t by tn and inserting (14) into (13) and (15) into (11), one gets perfectly the same

sequences of broken numbers. The only necessary condition for saying it would be

phi h~j -
o. j16j

It would be so indeed, because the ranges of values of the both afore presented exponents are

very close to each other or even the same. The most probable case that we opt for would be

when q =
1/3. It means, that for satisfying equation (16), one has to have h between

ca. 0

and 0.33 (notice, once again, that hi
=

3q hi. Thus, it implies that, both, the theoretical as

well as the experimental cases are, at least, of the same quality. Some quantitative agreement
between them can also be anticipated (see above). Note formally, that one gets equation (13)

by applying equation (11) and some "group properties" (or rescaling) like t - tr and tr
-

t+tr

as well (obviously, Eq. (16) has also to be considered in this case).

Such rather small values of the h-exponents are observed in the case when the random walk

process (hydration coupled with structural lipid changes) is proceeds anomalously, I.e. when

the structure has many kinetic obstacles like e.g. a change of the tilt angle under pressure even

under equilibrium conditions [22] or some steric hindrances or structural traps and cavities

[4, 23] also, one has to take into account a strong tendency towards hydrogen bond formation,
the presence of polar head groups (there is no simple correlation betw.een the number of polar
head groups and solubility; note also that the polar groups of the lipid will tend to react with

water on the surfaces of lipid domains)
or even accessibility of polar groups and, also, relative

strength of the water-water versus water-polymer bonds [2,4, 6,11,12, 24] cf. [25] for a general
information as well). The situation can generally be called a case in which the reactants are

compartimentalized or confined well enough to the interior or, perhaps, to a vicinity of the

lipid domain chosen [10,18, 24]. Moreover, some defects may be contained in the system; for

instance, one knows that a lecithin in the projess of swelling is a smectic with some dislocations

or focal conics [1-7]. This is also a general motivation why one may try to use the fractal-like

chemical reaction kinetics in this context (cf. Eq. (2)).

Obviously, the agreement between theory and experiment presented in these considerations

has not been obtained in a very formal way. The formal agreement would demand some very
carefully developed theory, where "such useful but a bid protetic tools", like equations (14)
and (15) are not necessary at all. But this work is rather addressed to some experimentalists
which like mostly certain simple arguments. To be in very agreement in this study, one should

also have available some measured values of the exponents h and q which are quite well-known

for some model systems [11,12,18-20]. Therefore, the modelling served shows rather some

promising trends (note, for example, that fh and Fh are not the same functions, but they may
certainly be related to each other) between the theory and experiment than it gives someone

satisfaction from the formal point of view. It has, in consequence, some hypothetical character,
though, it was readily motivated by the experimental study [8].
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4. Concluding Remarks

Let us first summarize the results obtained in the paper. Namely, in Section 2 we have presented

the description of the pressure induced hydration in terms of the Avrami-Kolmogorov [14,16]
and fractal-like chemical reaction kinetics concept Ill,12] combined together. In Section 3 we

have revealed some results of that modelling, mostly by stating explicitly and applying the

relaxation function fh(t) of the system studied. We have also obtained quite promising trends

concerning the agreement with the experimental measurements reported in [8] and represented
by the relaxation function Fh(t) (see all the equations presented in the preceding section).

Here, we wish to list a few possible advantages and drawbacks of our modelling. In our

opinion, to the first group belong:

(ii some well-established "physical structure" of the relaxation time (cf. Eqs. (8) and (9)),
being essentially of the Vogel-Fulcher form [21]
iii) quite physical picture of the situation modelled: domain-growth like in [14,16,18, 20],
swelling proceeded in a

homogeneous way, and fractal-like reaction concept utilized which is,

however, not exclusively applicable to the geometric fractals [12]; also, the hydration process

coupled in a complex way with the lipid structural changes (h would be
a

characteristics of

this complexity);
(iii) very good tendency towards agreelilent with the experimental data reported in [8].

The second group can contain some doubts like:

ii) for which time regime the application of that modelling is firm?

iii) how to apply in a precise and not so phenomenological way the spectral dimension or

anomalous random walk concept and what should the experimentalists do under such circum-

stances?

(iii) is the scaling for a squeezed lipid macromolecule with the exponent 0.33 (see Eq. (4))
really the case?

(iv) is the description presented not too oversimplified because at the nanometric size scales the

quantum effects [26] may enter and because it requires to estimate only two parameters h and q

(from the practical point of view, note that if one will apply the Alexander-Orbach conjecture
only [12], it will need to determine two parameters of the system: by, e.g., small-angle X-ray

or light scattering experiments [17], the fractal dimension of the membrane that will typically
be an Euclidean object or, perhaps, a percolation cluster, and the fractal dimension of the ran-

dom walk of a water-lipid complex that can be obtained from the fluorescence photobleaching

recovery experiments or in single-particle tracking measurements; cf. [27] and Refs. therein)?

One can see, at least, two other ways that lead to justify the reasoning presented in this

study and to get the solution to the problem of the forms of equations (10) and ill). The

first one is more or less equivalent to the modelling shown here. The only difference is that

the kinetics of the process would be postulated to be of the broken order, denoted usually

by x (cf. [11,12] for details), like that x =
1+

),
but with the chemical reaction rate

same concept like this studied here (also,
one would be leased to start from the Eq.

the same additional ssumptions" represented by Eqs. (2-5)). A echnical difference when

omparing with our modelling would be that, firstly, a formal substitution of

(one can read it as a time dependent of swollen
nuclei")

is
equired,

and
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change of variables during the integration process is to be done, that physically would mean

that there exist a constant density of hydrated domains ("nuclei") in the system in question.
This would be, however, an interesting case for subsequent study [28].

A question concerning the role of the fluctuations in the system seems to be worth stating.
Namely, after the pressure being applied and when the swelling effect still influences the whole

behaviour of the system, the "invasion" of water molecules and for water agglomerates proceeds
rather throughout transient fluctuations in the bilayer structure. Because it may cause, due

to the elastic free energy change, some effect
on the membrane channel lifetime as well as on

membrane curvature elasticity [29], it may also influence the permeation through the membrane

channels [30]. Under such circumstances, the mechanism proposed can fail, and e.g. the

anequilibrium phase transitions theory, where the first order time derivatives can be replaced
by some derivatives of a broken order (these phase transitions are of the order of less than unity)
might be of help; such a formalism is very suitable for dealing with the phase transitions in

highly fluctuating inhomogeneous systems like glassy polymers [31].
Last but not least, it is hoped that the problem will attract an undivided attention because of

possible i>ast applications mentioned, e.g. in [2, 8,15, 26,32]. A need for some new experiments,
mostly leading to determination of h-exponent seems to be worth suggesting as well.
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