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PACS.92.40.Je ~ Evaporation

Abstract. -—— We describe how lattice-gas cellular automata may be used to simulate evapo-
ration phenomena in models of porous media constructed at the pore scale. Two-dimensional
simulations of evaporation are performed in simple channel geometries and in a model of a
microscopically disordered porous medium. We describe a variant of the lattice gas, called
the liquid-gas model. By static and dynamic tests we show that this model can simulate low
Reynolds number mechanical and thermodynamical equations for isothermal evaporation in a
real system made of a single-species liquid in equilibrium with its vapor. From static simula-
tions in simple geometries we obtain equilibrium pressures on both sides of a meniscus. These
are seen to obey the Gibbs-Thomson relations, which are equivalent to the Kelvin effect. We
observe evaporation in simple capillary channels and compare the results to a simple theory
based on Poisenille flow. An unexpected effect is additional flow in the wetting films and sharp
density jumps. In simulations of evaporation in disordered geometries, we observe bursting and
convoluted interfaces as previously reported in laboratory experiments.

Résumé. — Nous décrivons comment un automate cellulaire, le gaz sur réseau, peut étre uti-
lisé pour simuler les phénomenes d’évaporation dans des modéles de milieux poreux construits &
I'échelle du pore. Des simulations bi-dimensionnelles d’évaporation sont réalisées dans la géomé-
trie simple du tube et dans un modéle de milieu poreux microscopiquement désordonné. Nous
déerivons une variante du gaz sur réseau, appelé le modele liquide-gaz. A laide de tests sta-
tiques et dynamiques, nous montrons que ce modele peut simuler les équations mécaniques et
thermodynamiques a faible nombre de Reynolds, pour une évaporation isotherme dans un sys-
teme réel composé dune espéce unique sous forme liquide en équilibre avec sa vapeur. A partir
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des simulations statiques dans des géométries simples, nous obtenons les pressions d’équilibre
de part et d’autre d’un ménisque. Celles-ci obéissent aunx relations de Gibbs-Thomson, relations
équivalentes a Veflet Kelvin. Nous observons une évaporation dans des tubes capillaires et com-
parons les résultats & une théorie simple basée sur le flux de Poiseuille. Un effet mattendu est
an fux additionnel dans les films mouillants et de brusques sauts de densité. Dans les simula-
tions d’évaporation en géométries désordonnées. nous observons des avancées par sauts et des
interfaces irrégulieres, comme déja décrites dans les expériences en laboratoire,

1. Introduction

The invasion of one fluid into a porous medium filled by another fluid presents problems
of both practical and fundamental interest [1-3]. Within just the earth sciences, practical
concerns range from problems encountered in secondary oil recovery to the prediction of the
spreading of contaminants in groundwater reservoirs. Deeper in the earth, the segregation of
melt from partially molten mantle rock may be viewed as a problem of multiphase flow in
porous media [4]. Because of the intricate, and often fractal, patterns formed by the invading
front, the general problem is considered one of the simplest examples of pattern formation in
nonequilibrinm fluids [5].

Theoretical, experimental, and numerical studies generally consider the case of two non-
reacting, thermodynamically stable fluids such as oil and water. Evaporation in porous rocks
is a more complex displacement process that involves a rich microscopic physics. During the
process of evaporation or drying of a rock. water is transported from the saturated pore to
the outside both in the gas phase present in unsaturated pores and in the liquid phase. It is
generally believed that an important fraction of the water passes either through the saturated
pores [6] or through thin liquid films present on the sidewalls of the pores [7].

Irregularly shaped fronts are observed in microscopic evaporation experiments [7]. This
irregularity may be explained at least in part by capillary effects. Capillary forces play an
important role in shaping the liquid-gas interface and determining which pores remain satu-
rated. The large pores offer little resistance to the advance of the meniscus and empty first.
Smaller pores remain saturated longer, and may remain saturated when the evaporation front
has traversed the box.

Despite the qualitative understanding of the evaporation process, a detailed microscopic
description is lacking. For some geomefries in the static case, i.e. when the effect of fluid
motion may be neglected, the shape of interfaces may be found theoretically. For instance
in a circular tube the meniscus is a spherical cap. Analytic solutions are however missing
beyond such special cases and numerical solutions are required. Interest in the physics of the
displacement process at the microscopic pore scale has recently led to the development of new
numerical methods [8,9]. These methods are variations of lattice-gas automata [10-14]. Here
we show how another laftice-gas automaton, called the liquid-gas model [15,16] may be used
to study evaporation in porous media.

Our purpose in this paper is mainly methodological. We have extended and tested the liguid-
gas model to adapt it to porous media simulations. A new feature with respect to previously
published work is the presence of “solid sites” allowing the simulation of solid grains in a porous
medium. The liquid-gas model has interesting wetting properties in the presence of these solid
grains. We first report measurements of these properties and check their consistency against
those made in the absence of solid walls by Appert and Zaleski (1993). We also report a
simple evaporation experiment in the presence of Poiseuille flow in the gas phase, allowing us
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a comparison with an analytic expression for the evaporating front. Finally we report on more
complex evaporation experiments. They illustrate the ability of our model to reproduce some
of the microscopic pore-scale features of evaporation.

2. Method

Our approach to modelling involves two conceptual steps. First we simplify the evaporation
problem to a one-species, isothermal problem. This simplification is motivated by practical
concerns, mostly our limited ability to simulate thermal effects with the lattice gas. Second
we use the liquid-gas model to study this simplified problem. The present paper reports our
first use of this model with solid walls. To validate our model in the presence of such walls we
performed tests of static and dynamical wetting properties, which we report below.

2.1. THE LiQUID-GAS LATTICE MODEL. The liquid-gas model is a variant of the lattice-
gas cellular automaton of Frisch ef al. (1986). This liquid-gas model has been defined and
studied in several papers [15-18]. We thus describe the model only briefly.

2.1.1. Model Definition. - We consider a 2D lattice gas on a hexagonal lattice as in Figure 1.
On each site, there is at most one particle moving in each direction of the lattice and at
most one particle at rest. In the clagsical lattice gas, particles evolve through collisions and
propagation to nearest neighbor sites on the lattice. A detailed description of the model can
be found in [11,14].

In the liquid-gas model, interactions between distant pairs of sites are used in addition to
the classical collisions. The interaction range is a fixed number r. Tu the applications reported
in this paper we use r = 3 sites. Interactions act like van der Waals forces in a real fluid and
lead to a liguid-gas transition. The liquid-gas model has thus two coexisting phases of high
and low density. The extension of the liquid-gas interface is of the order of the interaction
range, namely 2 or 37, Here we use two variants of the liquid-gas model called Model A and
Model C. Tn Model A, interactions are performed independently of the number of particles in
the interacting sites. In Model C, interactions are performed only if the number of particles is
larger than 4. This results in different physical characteristics of the two models ag reported
in Table I In particalar, Model C has a higher gas density. The reason for imtroducing several
different raodels is principally to avoid some difficulties appearing in the simple evaporation
experiments of Section 2.4. A detailed description of the liguid-gas model and of its variants
is given in [16].

solid sites are added to the model used in this work. As in the classical lattice gas, particles
bounce back on these sites. This means that during the collision step they simply return to
the site they were coming from. Thus a particle cannot enter a region of the lattice filled with
solid sites.

Particles on the non-solid sites are also attracted by solid sites. This is performed by adding
to the particle some momentuim oriented fowards the solid site. This solid-particle interaction
has the same range + as the ordinary interaction. The strength of the solid-particle interaction
is tuned by controlling the amount of momentum that can be added to the particle. The
amount by which momentum can change can never be greater than a number w. Lhis affords
us a crude way of controlling wetting, Move refined ways would include a different range for the
solid-particle interactions and probabilistic ways to control the amonnt of momentim change.
In most experiments reported in this paper we used g, = 2.

2.1.2. Hydrodvnamical Equations. The hydrodynamical equations of a two phase system
can be decomposed into hnlk equations, jump conditions on the interfaces. - and boundary
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Fig. 1. - Propagation and collision on a hexagonal lattice. (a) Particles are represented before their
with 0 momentum. Labels 1 and 2 refer

collisions and after. Small circles represent particles at rest,
respectively to two- and three-body collisions. Label 3 shows a collision involving a rest particle,
and label 4 a particle not involved in the collision step. Notice that each collision conserves total
momentum. Some sites are left unchanged as there is no possible redistribution of particles that
conserves momentum. (b) Propagation of particles is shown. Fach particle advances by one step in
the direction of its momentum.

conditions. The bulk equations for the lattice liquid-gas model are derived in [16]. They are
valid on the hydrodynamical scale which is defined as a scale much larger than the mean free
path of the particles. In the low Reynolds and Mach number limit they simplify to

Hpu = ~-Vp+ VS, (1)
where S is the usual viscous stress tensor:
o ; ou
Soi=n| —L 4+ —|.
Y ! ( dux; O):I'_I

and 77 is the dynamic viscosity, related to the kinematic viscosity v by 1 = prr. The pressure p
is related to density p by an equation of state p = p(p) caleulated in [16,17]. Mass conservation

—
|8
~
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yields
Gip+ V- (pu) = 0. (3)

However the model is used only at low Mach numbers M = lul/ce (we note ¢2 = dp/dp the
sound speed squared). Tn the limit of vanishing M and in the bulk of each phase we have the
incompressibility condition

Vou=0 (4)

On the walls the presence of solid sites implies as for the usual lattice gas the rigid boundary
condition u = 0.

Liquid-gas thermodynamical equilibrium is realized for a flat interface at a well-defined
pressure P.,. At equilibrium the liquid and gas densities are pp and pg and verify F.q =
p(pr) = p(pc). The values of Peq, p and of other relevant parameters of the liquid-gas model
have been measured using procedures described in part in [16] and in part in the following
Sections of this paper. They are summarized in Table .

On interfaces there are further, mechanical jump conditions for the flow of mass, the tan-
gential velocities, and the total stresses. We have continuity of the stress tensor [14, 19]:

[(57;1' -+ ])b“) TIVj]L — [(S,; + pé}j) nj](; = OKNy; (5)

where n is the unit vector normal to the interface,  is the total carvature 1 /Ry +1 /Ry and o
is the surface tension. When the viscous stresses can be neglected these conditions amount to

the Young-Laplace equation
Po — P, = ok. (6)

The liquid gas model is expected to have complicated and relatively unphysical jump conditions
for the tangential velocity u -t on the interface [16]. This difficulty may be circumvented for
the evaporation problems considered in the present paper. The fact that the liquid is most of
the time at rest leads to simplified conditions: near the interface ur, = 0 on the liquid side,
while when the interface is approached from the gas side, uc -t = 0, where t is the unit vector
tangent to the interface. The normal gas velocity is given by the following expression which
expresses the conservation of mass:

peug -n = (pg — pL)W. (7)

here V1 is the interface velocity.

In addition to these mechanical conditions there are modified thermodyuamical conditions
in the presence of a curved interface. In the presence of a pressure jump across the interface
the equilibrium temperatures and pressures are different from those found for a flat surface and
obey the Gibbs-Thomson conditions [20]. For the lattice gas, these conditions were obtained
by direct measurements of static droplet pressures reported in [16]. They read

)
Po = Pg+(l-a _J_E_N_,)M
oL P
b= P«q - ( ~-~ﬂ;——~vm{, (8)
PL — P
which is equivalent to
. 3 . .
)(; = [)1({ + (] - -—fi—--— (‘,P(; - PL)
PL — PG

D, _— > - p]‘ 3 20
fL — ](\q B ([(R‘ _']!,) (9)

PL — PG
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where g is the curvature of the interface and a is a coefficient of proportionality specific to the
lattice gas. The typical value of this coefficient is one. In our liquid gas model o equals 1.35.

When this coefficient is left arbitrary, equations (8) express the most general form for a depen-
dency of the equilibrium pressure that is ¢) linear in ok = |Pg — F| and i4) compatible with
the Young-Laplace equation. The most important new effect when the isothermal evaporation
problem is compared to jmmiscible displacement is the linear dependence of each equilibrium
pressure on ok. This is also known as the Kelvin effect. Tndeed in immiscible displacement
only the pressure difference across the meniscus is given. Fixing the pressure allows in turn to
find the pressure gradient in the gas region. This problem is worked out in a simple case in
Yection 2.4, Tests of the Gibbs-Thomson relations in the presence of solid walls are reported
in Section 2.3.

A final hydrodynamical scale condition concerns the contact angle at points where the liquid
gas interface meets the walls. On length scales [ such that r < I < R where 7 ig the range of
microscopic interactions and R the curvature one should observe a straight interface making
an angle 6 with the wall. When the contact angle is not zero the fluid is non-wetting, but even
in the non-wetting case there may still be microscopic layers deposited on the solid walls [21].

2.1.3. Scaling. — Following the tradition in lattice-gas studies all units arc expressed in lattice-
gas units. Thus the separation hetween sites is one unit of length. The time unit is the time
step, and the mass of a particle is the unit of mass. To scale our results, it is convenient to
take the typical velocity of the gas Uq as a velocity scale and the typical pore size D as a
length scale. If gravity is neglected (a gimplifyving assumption which will be discussed below)
the problem has four dimensionless numbers. The Reynolds number 18 Re = g(pa)pala D/ne
where n¢; is the gas dynamic viscosity and g(pq) is the non-Galilean factor which can be found
in [14]. The other dimensionless numbers are the density ratio oL/ pes, the viscosity ratio L /na,
and the capillary number Ca = ¢ Ug /o, The latter number is the most important since it
controls the balance between capillary forces and viscous digsipation. In many evaporation
experiments it is extremely cmall. For a 10 em box evaporating in one day Ca = 1077, It is
impossible to reach such a cmall capillary number on present day computers with the lattice
gas. The capillary numbers obtained in simulations are on the order of Ca ~ 1072 and thus
much larger than what would be realistic in a natural setting or a laboratory experiment.
We do not know whether this difference in capillary numbers would cause qualitative or only
quantitative changes in the evaporation process.

292 IMPLEMENTATION AND DESIGN OF SIMULATIONS

2.2.1. Implementation. The liguid-gas model was implemented on SUN SPARC 2, SO1-
BOURNE and IBM Risc 6000 workstations, Collisions and interactions are performed using
look-up tables. A speed of up to 5.6 X 104 sites per second was reached on the Sparc and
Solbourne while we reached 2.8 x 107 on the Risc 6000.

)

299 Tpitial and Boundary Conditions. -— Simulationg were performed in rectangular hoxes
of width L. and height £.. In the tests of this Section simple wall geometries were used. In
the next Section we choose a more complex grain geometry. For an initial condition we filled
the lattice with liquid. This was performed by putting particles at random on the lattice at
a density equal to the equilibrium density of the lignid. This fixed both the density and the

pressure, the latter being fixed throngh the equation of state. The initial gas densities also

cotresponded to the equilibrivm values.
Boundary conditions were periodic in the horizontal direction so that for any quantity A we
V= A(z, =.t) at all times / and heights = This is equivalent to let a particle

had A(x + L. 2. 1):
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t=0 t=60000

Fig. 2. - A model capillary throat. Grey squares are solid grains. Sites with more than 3 particles are
in black while those with less than 3 particles are in white. Thus the mostly black area is liquid while
the mostly white area is gas. The density of black or white dots gives an indication of the density of
the gas or liquid phase. The system equilibrates from ¢ = 0 to about ¢ = 10000. During equilibration,
thin liquid films form on the grains. The gas density decreases and the liquid density increases to
approach the values given in Table I. With appropriately chosen initial conditions, as in this figure,
the meniscus stabilizes in the middle of the capillary throat where measurements of capillary effects
can be reliably performed. The pressure measurements reported in the text are performed between
t = 30000 and ¢ = 60000. Model A was used with gy = 2.

leaving the box on the left reenter it on the right. On the vertical we placed a rigid wall at the
bottom of the box so that u = 0 for z = 0. In static experiments (Sect. 2.3) the top also has
a closed wall. In dynamic experiments (Sects. 2.4 and 3) density is fixed to some value p; at
the top. When py > 0 particles were removed and added at random on the top layer to satisfy
this boundary condition.

2.3. STATIC VALIDATION. — Capillary properties of the liguid-gas model in presence of walls
were tested. A simple capillary throat was constructed with two solid blocks of size £, < €,
with height (. fixed to 50 lattice sites and variable width ¢,. The simulations were performed
in boxes containing 144 x 120 lattice sites. with the boundary conditions of Section 2.2.

The simulation is initialized with liquid filling the bottom part of the box as shown in
Figure 2. After an initial transient equilibrium is reached at the hydrodynamical scale. During
the transient one can observe microscopic liquid films condensing on the solid walls and a
meniscus forming in the capillary throat. These microscopic wetting films are of a thickness
approaching the range r of the interaction. The final result after equilibration is shown in
Figure 2.

The equilibrium pressures are measured far enough from the walls and the interfaces to
avoid spurious pressure variations near the interfaces. The resulting pressures are plotted in
Figure 3. To compare our measurements to equations ( 8) we need to estimate the curvature
of the meniscus. This was done in the following way.

The equilibrium shape of a meniscus in a throat of width R is that of a circle of radius
R/ cos# forming a contact point on the wall at an angle ¢. This model does not give very good
results for small R. Thus we replaced it by a model in which the contact point is located on
the edge of a wetting filmu of thickness e and obtain & = cos 8/(R — e). The resulting fit with
e = 3 sites is shown in Figure 3. We note a deviation from linearity at largest curvatures. In
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Fig. 3. — Liquid and gas equilibrium pressures as a function of capillary width. Diamonds represent
gas pressure and small black dots liquid pressure. The abscissa corresponds to the inverse of the
estimated radius of curvature s = 1/7’ (see text). The linear relation shows qualitative agreement
with the dependence of pressures on curvature predicted by thermodynamics (8).

Table I. — A summary of model parameters.

Parameters Model A Model C
Poy(?) 0.0426 + 0.002 0.280 + 0.004
dey () 0.0165 (%) + 0.001 | 0.097 + 0.01
dr.(%) 0.575 (*) £ 0.003 | 0.610 & 0.002

na 0.103 & 0.01 (¢) | 0.28 (*) £ 0.01
nea (%) 0.30 = 0.04
n(%) 39406 5.4+ 0.6
a(?) 0.22 4 0.02 0.027 £ 0.03

cos B (9°) 0.969 + 0.022 0.98 & 0.04

08 O30(77) 0.966 + 0.01 0.97 + 0.015

o cos (M) 0.21 £ 0.02 0.092 + 0.08

o cos Bz (") 0.3 + 0.02 0.0724 + 0.005

@) From [16]. (?) Obtained using the decaying sine wave method as in [16].

¢y Reduced densities d = p/7. (%) From Poiseuille flow experiment in Section 2.4.
¢} Contact angle for wall aligned with the lattice.

) Contact angle for wall at 30 deg. with the lattice.

) From direct fit of the meniscus, see Section 2.3, with gy = 2

)

f
g
") From static pressure measurements, see Section 2.3, with gw = 2.

(
(
(
(
(
(

the limit of small radii we reach microscopic length scales where the approximations leading
to Laplace’s law cease to be valid. Thus, we may suggest a rule of thumb: one needs to use
pore diameters greater than 8 sites in the modelling of a porous medium to avoid the effect of
the microscopic forces.
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We have also performed direct measurements of the contact angle § by fitting a circular
meniscus shape to the data. Specifically, pressure measurements were performed during the
simulations. To decrease the statistical noise a time averaging was performed. Finally the
contours of pressures were computed and fit to a circle. The resulting intersection near the
wall gives the contact angle with some uncertainty due to the presence of the wetting forces
near the wall. The results are shown in Table I.

We have also at our disposal a direct measurement of surface tension from the stress tensor
in the lattice gas [16]. The result of that measurement, also shown in Table I, can be cross-
checked against the measurements of ¢ cosd and @ reported above. The agreement is good,
indicating that our fundamental assumptions about the hydrodynamical scale behavior of the
model are correct.

2.4. DYNAMICAL VALIDATION. — In systems away from thermodynamic equilibrium, trans-
port of mass may occur through convection in the liquid phase, convection in the gas phase or
both. The viscosity of the liquid phase was measured using a simple Poiseuille flow experiment
in [22]. In this section we study the corresponding flow in the gas phase. This brings us two
benefits: we check the estimate of viscosity given in [16] and we get a closer look at gas phase
transport in a simple capillary. The capillary was modelled by walls parallel to an axis of the
lattice. The following conventions are used: depth A is positive downward and the top of the
capillary is fixed at depth h = 0 (Fig. 4a).

A gas density gradient is performed through the channel: the gas density is fixed as described
in Section 2.2 in regions near the top and the bottom of the capillary respectively defined
between depths 0 and Ay (hy > 0) and between depths L — hy and L. L is the length of the
capillary. The depth hy, of the order of 10 lattice sites is chosen for technical reasons related to
the existence of correlations over distances of the order of the interaction range. Thus unlike
the previous experiment the number of particles is not conserved. The density at the top region
is set to p; and at the bottom region to p,. The density py is set close to the equilibrium gas
density pq, which is attained near a static liquid-gas interface as reported in Section 2.3. The
density py is set inferior to pg. Model C was used because of its higher gas density and shorter
mean free path between particle collisions.

An interesting effect is that this set-up produces an unexpected pair of density jumps at
depths hy and L — hy separated by a linear gradient, as clearly seen in Figure 4b. We are
unable at present to trace the origin of these jumps. Their effect is seen in other experimental
set-ups such as a simple evaporation experiment in a test channel.

The viscosity of the gas phase was measured using the assumption of a uniform Poiseuille
flow between the fixed density regions. Its value nic is given in Table I. The velocity profiles
display a transition between Blasius and Poiseuille type profiles at the top and the bottom
of the channel, as predicted (at higher Reynolds numbers) in [23,24]. We checked that these
transition regions do not affect the viscosity measurement. We calculated the gas viscosity in
the central region of the channel where the velocity profile is close to a Poiseuille type profile
as shown by Figure 5. We found n¢ = 0.27+0.01 very close to the former measurement. Thus,
there appears to be very little difference in the pressure drop predicted assuming a uniform
Poiseuille flow and obtained by the full simulation. We therefore keep this assumption in our
analysis of the evaporation numerical experiment to which we now turn.

In the test evaporation experiment, the capillary was made of parallel walls and is initially
partially filled with liquid with the meniscus at a given depth hg. As before, we imposed the
density of the particles in a region near the top to be p; < pg, but there are effects similar to
the jumps discussed above.
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h=0
hishy -
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0.04 ]
6.02
L 0,000 T S —
h=L-h, 0 20 40 60 B0 00 120
h=L - h depth of the capillary
a) b)
Fig. 4. — a) Drawing of the capillary used in Poiseuille flow experiment. Solid walls are in light

grey and fixed density regions are in dark grey. b) Measured density profile on a 120 x 48 lattice
for model €. Gas deunsities p1(< pa) and po(= pa) are fixed in the ranges [0, ha] = [0, 9] sites and
[L — hy, L] =102, 11 2] sites respectively. A pair of density jumps appears between 9 and 10 sites and
between 101 and 102 sites. Note that top and bottom walls densities are not displayed.

L ¢ profil ed in time
0.1 /
/, / L
S
00 e
(8 et .
& 1C 20 40 G
widirn of th
Fig. 5. — Upward velocity profiles in the gas region on a 120 x 48 lattice for model C. The different

line ornaments correspond to different heights through the capillary. Dotted-dashed, solid and dashed
profiles were measured at heights h equal to 16, 50 and 100 sites respectively. We drew the reference
mark of zero velocity. The profiles on top and bottom of the capillary are of a Blasius type while the
profile on the central region of the channel is well fitted with a Poiseuille velocity solution represented
by the dotted line. Notice how the liquid films formed along the vertical walls and of about 3 sites
wide affect the shape of the velocity profiles. Note particularly that a counter flow occurs in the films

at the bottom of the capillary.
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a) b)
Fig. 6. a) Evaporation in a capillary channel on a 240 x 48 lattice. The image is generated as in

Figure 2. (b) Position of meniscus as a function of time. The solid lines represents the theory and
dots are numerical data. Viscous effects slow down evaporation as time progresges.
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Time-averaged fTux of the gas phase

0.000 S : i : .
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X

Fig. 7. Flux of the particles in the gas region, averaged in time and for 16 < = < 32 for Model A
Notice the important flux in the wetting layers on the side of the channel. 1n lattice units. the Hus is

the number of particles per time step,

‘The height of the liguid columa diminished at a rate which depends on the gag density
at the interface and on viscous properties in the gas. Figure 6 shows a computer-generated
image of this numerical experiment ag well as a plot of the position hg — h(t) of the meniscus.
Both Models A and C were used for thege experiments, although Figure 6 shows the result for
Model A, Assuming Poiseuille flow in the gas phase it is easy to obtain a theory. analogous to
a classical Darcy scale theory, that predicts the rate at which the position A(t) of the meniscus
will vary. We obtain a classical Poiseuille flow solution from the Navier-Stokes equations (1)
and (2). The mass conservation equation (7) gives the velocity of the interface V] = dh/dt.
The pressure gradient in the capillary is A = cZ{pe—pi)/h(t). In this equation g 18 the density
Just above the meniscus (which differs from pe becanse of the density jump effect) and Py is
the dengsity just below the top of the capillary at @ = 0 where the density is imposed (pr differs
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from p; when a jump is present). We recall that ¢2 = dp/dp is the compressibility of the gas
phase. The result is

s o, PR pr = pi
h(t)? = hé + B_(_z.,_,_(ﬁf_,__p_)t (10)
na(p— pL)

and it also appears in Figure 6b. 1t has a qualitative agreement with simulations. The difference
comes from an important flow in the wetting films that transports mass in parallel with the
Poiseuille flow.

This film flow is clearly seen in Figure 7 which shows the space and time-averaged flux of
particles in a section of the channel, The large transport in the wetting films is obvious. Just
as wetting films are a microscopic feature of the liquid-gas model the flow in these films is also
a microscopic property. It is not described by the hydrodynamical equations of Section 2.1.2.
Although this flow would become negligible for larger scale experiments, it is significant for
the range of channel widths we used. It is also more important for Model A than for Model C.
The difference originates in the higher gas density in Model €, which tends to let the Poiseuille
flow in the gas phase transport more mass.

3. Dynamical Simulations in Porous Media

Our 2-D model of a porous medium consists of networks of capillaries constructed by placing
square solid obstructions on the two-dimensional triangular lattice. This model is inspired by
similar models used in experiments [25].

A representative simulation of evaporation in porous media is shown in Figure 8. The lattice
contained 480 by 480 sites. Each direction could accommodate 12 square obstructions. Channel
widths were randomly distributed between 16 and 32 lattice units in the horizontal direction.
We had approximately the same distribution in the vertical direction. The simulation was
initiated by filling the porous mediam entirely with liquid except for a few of the upper rows.
“Fyvaporation” was performed at the top of the model as described in Section 2.2 with p1 = 0.
The capillary number in the simulation was Cla ~ 1072, With larger py as in Section 2.4
slower evaporation and smaller capillary pumbers would occur but the simulations would be
exceedingly long.

Animated visualizations or “movies” of the simulations showed a complex and interesting
behavior. A striking feature was the abrupt progression of the liquid through narrow pores.
This behavior is qualitatively similar to the bursts described by Shaw [7]. The menisci were
observed to stop either at the entrance or the exit of a pore. We have studied in detail this
phenomenon of pinning by performing additional simnlations involving the single pore shown
in Fignre 2. They confirm that because of capillary effects the pressure jumps aft the entrance
and exit of a square pore throat.

We also noticed that the recession of the front slows down during the simulation. Indeed,
the pressure gradient between the top of the model and the evaporating front decreases. This
in turn decreases the flow of gas as in the single channel experiments of Section 2.4.

For the hexagonal grain geometry, bursts similar to those observed on the square lattice were
seen. The details of the bursts, however, were different: the meniscus could sweep in one burst
all of the 6 large pores surrounding a single small hexagonal grain, while for square grains
the bursting involved only one or two pores. An example of evaporation with a large porous
medium and hexagonal grains is shown in Figure 9. The interface becomes more irregular than
in Figure 8.

The lattice-gas method allows for an easy implementation of various boundary conditions,
including simple models of fractured media. For instance Figure 10 shows a model with a
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t=75000

=0 t=125000 t=250000

Evaporation on a 480 x 480 lattice with Model A, gw = 2 and hexagonal grains.
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Fig. 10. — Evaporation on a 240 x
used). Notice how the area of high porosity empties first.
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=0 t=2000

Fig. 12. - Evaporation on a 480 x 480 lattice with hexagonal grains and Model ¢! with gw = 2.
An area of high porosity is introduced as in Figure 10. This areas empties more rapidly than the
surrounding porous medium. The invasion in this area is comparatively slower than with Model A,

region of high porosity in the middle of the domain. The simulation is realized on a 240 by 240
lattice with a distribution of channel widths between 12 and 24 lattice units. The distribution
of the channel widths for the area of high porosity is between 20 and 50 lattice units. When the
high porosity area is absent a more regular final stage was observed (see Fig. 11). A simulation
with Model C and a larger “fractured” lattice is shown in Figure 12.

Another frequently observed effect in our simulations with Model C is the appearance of
gas bubbles inside the liquid phase; i.e., cavitation. (This effect is not in the figures included
here because of lack of space.) It occurs in the small pores. It is a consequence of the Gibbs-
Thomson relation (8) for P, which implies that the liquid pressure is negative for small
radii. Such phenomena have also been seen in laboratory experiments (S. Bories, personal
communication).

4. Discussion and Conclusion

We have introduced a new model for the simulation of isothermal evaporation in solid matrices.
The model has been validated in this paper by static and dynamic experiments. The wetting
properties which are new to the model have in particular been tested in several ways. As an
example of the possible uses of the liquid-gas model we have performed evaporation experiments
on square and hexagonal matrices. These simulations show qualitative features similar to those
observed in real experiments.

An unexpected result of our dynamical tests was the transport of flow in thin liquid filins.
Since our films are very thin, of the order of the interaction range, it is difficult to explain this
motion in the framework of continuum mechanics. However it is possible that such a motion
actually contributes to water transport in very thin capillaries.

As our work is mostly methodological it is useful to consider the limitations of the modelling
presented in this paper. One simplifying assumption which is easy to lift is the absence of
gravity. Gravity can easily be simulated as has been done with the liguid-gas model in other
studies [22]. Here, thinking on the scale of a few real pores gravity is irrelevant, although it
may become relevant in laboratory scale porous media [26].
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There are more serious limitations related to the nature of the liquid gas model. The liquid
phase should be at rest to allow for correct jump conditions on the interface. The Reynolds
number of the gas phase should be small to avoid difficulties with the non-linear term of the
Navier-Stokes equations. Finally we are limited to isothermal problems with a single species
in both liquid and vapor states. This last limitation is probably the most important one for
applications to natural evaporation phenomena.

We expect that further progress in lattice-gas methods will alleviate some of the limitations of
the liquid-gas model. Already models extended to three dimensions of space have been proposed
and used to simulate evaporation [27]. A better theoretical modelling of the interaction has
allowed theoretical estimates of the surface tension and equilibrium pressures [27]. A still
better understanding of the workings of the interaction may allow to obtain further variants of
the models with the correct nonlinearity in the Navier-Stokes equations. The addition of more
species is also a potential improvement. However we see no clear prospect for the addition of
thermal effects.

One may also legitimately ask what advantages the use of the lattice-gas method offers com-
pared to competing methods for the simulation of interfacial low in porous media. Although
the lattice-gas method bears some cimilarities with network models such as percolation meth-
ods, lattice-gas methods contain more physics (for example, the Navier-Stokes equations), and
thus allow one to reach more fundamental conclusions about the nature of porous flow. For
example, a study of evaporation between the liquid film scale and a macroscopic, many-pore
scale is a problem of intrinsic interest that is inaccessible to the more specialized percolation
methods. However the results in this paper do not prove that the lattice-gas method has a
compelling advantage in speed or ease of use for the solution of the Stokes equations. More
classical methods for the simulation of flows with interfaces exist [28,29]. On the positive side
the lattice gas has an advantage in the ease with which boundary conditions on solid grains
are implemented. In classical finite element or finite volume methods, complex boundary con-
ditions lead to cumbersome grid generation.

Beyond this technical advantage in dealing with boundary conditions the clearest benefit we
perceive now in lattice-gas simulations lies in their additional microscopic realism. For instance
the motion in the liquid films seems to be a real microscopic effect at very small scale although
the modelling of the wall-particle attraction is very crude. The presence of density jumps may
also be an interesting kinetic effect, albeit presently misunderstood. On the other hand there
are obvious difficulties with the lattice gas formulation such as the present impossibility to
simulate real water/air conditions and in particular realistic capillary numbers. We do not
inow however how difficult it would be to devise a “clagsical” method free of that problem.

Another comparison should be made with other lattice-gas methods such as the “immiscible
lattice gas” [8]. Although the two models allow superficially for similar types of pore-scale
studies they differ in many respects. This becomes obvious with the results of the validation
experiments in this paper. The liquid-gas model principally offers the possibility of a change
of phase. This possible phase change modifies the equations at the Navier-Stokes level and
leads to the Gibbs-Thomson relations (8). Another important difference is the occurrence of
asymmetrical densities in the liquid-gas model, which have never been introduced in immiscible
lattice gases where phase separation manifests itself as the separation of two species of particles
into separate regions. Finally the longer-range interaction in liquid-gas models allows for
discernible wetting layers, though long-range interactions in immiscible lattice gases could
(but have never been shown to) yield similar results.

Another question which is not yet resolved is whether pore scale modelling will be useful to
improve, or provide parameters for, the equations describing the physics at a much larger scale.
It is probably too early to answer such a question. To be quantitatively comparable with the
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natural situations that larger scale models attempt to describe microscopic simulations should
be performed in 3D, and with several species. A preliminary 3D lattice gas simulation has
already been performed [27]. One of the potential interests of a 3D simulation is the possibility
of having a complex film flow connecting the saturated regions to the outer boundary of the
medium.

These more realistic studies will be possible with new lattice-gas models. In the meantime,
with the models in mostly their present form, it is possible to investigate many basic physical
processes. The flow in thin films should be more extensively studied. With longer-range wall
potentials the thickness of the wetting films could be increased. Variation of the wall potential
could also tune the wetting properties which appear crucial in both static and dynamic aspects
of evaporation.
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