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Abstract. We discuss the solution properties of polymers with
a

highly anisotropic rigidity
which bend rather freely in a

plane (the plane of main flexibility) and are extremely rigid in

the direction perpendicular to this plane. Examples of these polymers are the ladder polymers
recently synthesized

or
living polymers formed by the aggregation of peptide rodlike fragments.

These polymers have
a much higher out of plane persistence length 12 than their in-plane per-

sistence length I. In the first paper of this series, we
mostly investigate the conformation of

single chains in solution (at extremely low concentrations). The conformation of
an

isolated

chain with a highly anisotropic rigidity essentially depends
on

the dimensionless parameter
fl

=
12d~l~~ where d is the chain diameter. For small values of fl, (12 °~1), the chain behaves

as

a standard semiflexible chain with isotropic rigidity. For large values of fl, (fl 2 1), the chain

adopts
a one-dimensional rodlike conformation at length scales smaller than I, an anisotropic

disc-like conformation at intermediate scales (corresponding to a contour length L such that

£ L £ 12) and a
three-dimensional swollen coil conformation at larger length scale. In the

intermediate range of fl, l~ /d~ £ fl £ I, the same three regimes are
expected but the excluded

volume interactions do not play any role in the disc-like regime. At the end of the paper we

discuss qualitatively the possible liquid crystalline phases (with nematic
or

smectic symmetry)
which

can emerge in these solutions at higher concentration.

1. Introduction

The conformation and the phase behavior of semiflexible polymer chains in solution are now

rather well understood iii. Both the properties of isotropic solutions [2] and the isotropic-

nematic transition [3-5] have been studied quite thoroughly. The detailed structure of the

solution is controlled by the asymmetry ratio d/I (d is the diameter and is the Kuhn segment

of the chain) and by the total contour length L (or, in another language, by the number

(*)Author for correspondence (e-mail: joanny@janus.u-strasbg.fr)
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Fig. 1. (a) Ladder polymer chain with mirror symmetry synthesized in references ii, 8]; (b) local

conformation of the polymer random walk in the horizontal plane.

of monomeric units, N, the excluded volume of the monomer, B, and their size, a). Scaling
theories have been successfully constructed, the results can be summarized on diagrams showing

the various possible regimes in the variables IL, d,1, 4l) (or (N, a, B, c) ), where c is the polymer
concentration and 4l is the corresponding polymer volume fraction [2, 6].

However, up to now, only polymers with an isotropic rigidity have been studied theoretically:
in all the models, the chains actually have a rotational symmetry around their main axis. The

term rotational symmetry includes here not only the pure free-rotation between consecutive

monomers, but also all the situations where there are short-range correlations in the rotation

angles (e.g. as in trans/gauche models of polyethylene or in the helical structure of DNA).
The general configuration of isotropic semiflexible polymer molecules is either "rodiike" for

very short chain fragments, (L £ I) or "coi~iike" for very long chains, (for L / I); the chain

sizes along the three directions are then equal, R~
+~

Ry
°~

Rz.

Polymers with a new type of rigidity were recently synthesized and are now available in

soluble forms [7, 8]. They belong to the class of so-called ladder or ribbon polymers with

a structure based on two independent, inter-tied strands of bonds. The monomers which

form ladder polymers often have mirror symmetry (see Fig. la), and hence the corresponding
polymers have the shape of two-dimensional coils. They rather freely bend inside one

(say the

horizontal) plane and are completely rigid in the perpendicular direction (see Fig. lb). The

flexibility inside the horizontal plane is due to endo-exo isomer transitions, so that the polymer

shows random walk statistics in this plane. Possible deviations from the horizontal plane are

due to a bending or a twisting of the double stranded chain, which require a much larger

energy. The thermal fluctuations perturb the pure two-dimensional structure of the chain, and
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at large enough length scales it forms a disc-like object. At even larger length scales the out

of plane fluctuations become dominant and a 3d coil shape is expected. As the concentration

of the solution is increased, the anisotropic configuration of the chain leads to the formation
of liquid crystalline ordered phases with a variety of different symmetries.

This paper starts a series of publications devoted to polymers with a highly anisotropic
rigidity. Our aim is t6 construct a scaling theory for the polymer structure in solution. We

discuss both the chain conformation in dilute solutions and the liquid crystalline organization in

more concentrated solutions. This first paper deals mainly with the single chain conformation

(dilute solutions).
The paper is organized as follows. In the next section, we formulate

our model for the de-

scription of ribbon-like polymers (or, more generally polymers with two-dimensional flexibility,

or with planar stiffness). In Section 3 we classify the various possible conformations (shapes)
of isolated chains with planar rigidity and clarify the role of the rigidity anisotropy parameter
fl. In the limit where fl / I, it is possible to formulate a scaling theory for the structure of

ribbon chains; this is presented in subsection 3.3. In Section 4 we briefly discuss the various

possible liquid crystalline phases which could appear in more concentrated solutions. Finally
the last section is devoted to a discussion of our results and to some concluding remarks.

2. Polymer Chains with Anisotropic Rigidity

The rigidity of ordinary semiflexible polymers is often characterized by the Kuhn segment, I.

For an ideal chain of contour length L, the mean square end-to-end distance (R~) is propor-
tional to L, and by definition [9,11, 24]

(R~)
=

Li (2.I)

for L » I. Although the ground state of the chain (obtained when the temperatures T
~

0)
is rod-like, the thermal fluctuations at finite T always make the chain isotropic on large length
scales. One can then introduce the so-called persistence length, ip [1,9-11], which characterizes

the orientation memory of the vector t(s) tangent to the chain backbone:

jt(0)t(8))
=

exp(-slip) (2.2)

where s is the distance along the chain contour. Generally ip
+~

I, and hence in the scaling
theories, only one parameter (I) is necessary 11, 9].

We now describe the structure of a chain with planar stiffness sketched in Figure 16. The

chain has a finite stiffness both in "the plane of main flexibility" (PMF) (the horizontal plane
in Fig. lb) and in the perpendicular direction (outside this horizontal plane), but the out

of plane rigidity is higher. We thus need two rigidity parameters to characterize the chain

statistics: characterizes the rigidity of the chain inside the "plane of main flexibility", and 12

the "out-of-plane" rigidity
£12 (2.3)

In the absence of excluded volume interactions (this ideal situation however never realizes for

a real two-dimensional polymer [1,6] the mean-square end-to-end distance is governed by the

Gaussian law (2.I).
The second rigidity, 12, is in fact the persistence length for the PMF. If12

~ cc the trajectory
of the chain is completely flat and the corresponding plane can be characterized by its normal

vector, n.
If12 >1, we can divide the chain into subunits of contour length 1 (I < ~ « 12) so

that a well-defined local normal to the chain, n(s), characterizes each subunit is is the linear
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Fig. 2. Typical conformation of
a

polymer with planar stillness. The orientation of the PMFS is

characterized (a) by the normal vectors, n(s,)
or

(b) by deviation angles ~(s,). Short fragments are

crumbly discs with the radius Rjj and the thickness Ri.

coordinate measured along the chain contour). The orientation of the normal vector n(s) varies

slowly and randomly with s (see Fig. 2a).
Let us first assume that the chain is ideal and that there are no excluded volume interactions,

I.e. that distant parts of the chain are transparent to each other. As the rigidity is a local

property, the various subunits of size ~ are statistically independent. As a consequence, the

correlations of the normal vectors decay exponentially for s >

In(0)n(S))
=

exP(-S/12) (2.4)

It is clear that for
s » both twisting and bending perpendicularly to the PMF affect the

second persistence length, 12, in a similar manner since for s » the chain has already lost the

memory of its initial orientation t(0) in the PMF.

The persistence length 12 in equation (2.4) measures the second rigidity of the chain with

"two-dimensional" flexibility. The angle ~l between n(0) and n(s) obeys a diffusion law for

8 <12.

(~§(s)~)~°~
+~

sl12 (2.5)

The index (0) refers to no excluded volume interactions.

In order to consider the statistics of ladder polymers such as that shown in Figure I, we

model the chain as a cylinder of diameter d with two characteristic persistence lengths and
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12. The chain length is measured either by its contour length L, or by the number of Kuhn

segments of length I, N
=

L Ii. Our choice of
a persistent model for the first rigidity, connected

with I, is not crucial. For most of the scaling results given below the nature of the first rigidity
is not important, provided that the definition (2.I) is used. The precise mechanism of the

I-rigidity is only crucial for nematic phases with highly oriented tangent vectors t(s). The

corresponding generalization of the theory to any kind of flexibility is straightforward. The

persistent nature of the second rigidity 12 is however quite important throughout this paper.

3. Conformation of Ribbon-Like Polymers in Dilute Solutions

We discuss here the conformations of ribbon-like chains in a very dilute good solvent, when

each chain can be considered as isolated. Rather short chains (L < 12) have an asymmetric
shape, and can be characterized by two different sizes Rjj and Ri, the end-to-end distances

projections on the main plane (say, on the PMF of the middle link of the chain) and on its

normal vector (Rjj » Ri, see Fig. 2b). We show below that such short chain have a disc-like

rather than a spherical shape.

3.I. CONFORMATION OF AN ISOLATED IDEAL CHAIN. We first determine the shape of

an ideal chain, R)(I and R(I, ignoring any excluded-volume interactions. The results are

summarized in Figure 3 (dashed lines). For short enough chains (L < 12, and hence ~ < l)
the shape is asymmetric and the trajectory of the chain is nearly parallel to one plane. The

chain radius in this plane, R)/~, is that of an ordinary ideal chain with a persistence length

[1,9]:

~o~
lN

=
L, if L $

~" ilk
=

(Ll)~/~ if L j~
~~'~~

The perpendicular chain size, R(~, is estimated as (see Fig. 2 and Eq. (2.5)):

j~(o)
~

~(o) ~j(0)
~

j~(o) ~ /~ )l/2 (~ ~)
l

((
~

where R)j°I is determined by equation (3.I) (we assume that the plane bending angle is small,

~l(°I < I).
L~'~/1('~, if L £

R [~
+~

Lji/12)~'2, it i s L s 12
13.3j

(Ll)~/~, if L / 12

When L / 12 the chain configuration becomes isotropic: R f~
+~ R)j°~. We also assume that the

dimensions of the whole coil are always larger than the chain diameter d: Rjj > d; Ri > d.

According to equation (3.3) R (~ becomes of order of d when

~
~

~~
" lfl~/~~ if fl > l~

~~'~~

where we have introduced the dimensionless rigidity ratio

fl + 12d~ /l~ (3.5)

to characterize the second rigidity 12. For L £ L3 the apparent thickness. Ri, of the coil is of

order d.
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Fig. 3. Characteristic scales Rjj and R
i

plotted
us. contour length L of

a
chain fragment for

various values of the second rigidity 12: (a) fl £ (d/1)~; (b) (d/1)~ £ fl £ 1; (c) fl 2 1. L4 + l~ /d~.
The slopes

a
for the dependencies R(L)

c~ L" are shown
near the corresponding lines. Self-avoiding

chain (solid lines); ideal chain (dashed lines).

3.2. CONFORMATION OF AN ISOLATED CHAIN IN A GOOD SOLVENT. We now use Flory-like

arguments to estimate the dimensions of a non-ideal (self-avoiding) chain with two-dimensional

flexibility. The Flory approach gives quite satisfactory results for the dimensions of isotropic
chains in one, two and three-dimensional spaces [6]. The free energy of one chain is written as

a function of the sizes Rjj, RI as:

F
=

2 ~(j +
(

jj + NnB (3.6)
Rjj

~

R~

~

where n is the characteristic segment concentration (inside the chain) and B is the second virial

coefficient of two Kuhn segments of length I (here and below we choose kBT as the energy unit ).

The "ideal" dimensions Rfl (a
= ii, I) have been determined in Section 3.I (Eqs. (3.1), (3.3)).

The equilibrium sizes R~ are defined by minimization of the free energy (3.6), provided that

these dimensions are larger than the "ideal" dimensions Rfl.
We consider here only repulsive forces. The case of attractive interactions could also be

treated along the lines of reference [12] as
for ordinary persistent chains.

We call the chain flat if all its links lay in "the same plane" (of thickness d). In this case we
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use "two-dimensional" values for the concentration and the virial coefficient:

n = n2 ~
N/R(; B

=
82

~

l~ for RI £ d (3.7)

If the chain is thicker than d, we call it thick and use "three-dimensional" values for n and B:

n = n3 ~

N/R~RI B
=

83
~

l~d for RI 2 d (3.8)

The values of the virial coefficient B in equations (3.7), (3.8) were obtained by Onsager [13]
for rods with random orientations.

The results of the minimization of the free energy (3.6) are presented in Figure 3 (solid
lines). The values of the radii, Ra(L), depend strongly on the rigidity parameter Q defined in

equation (3.5).
For the case 12 £ (fl $ (d/1)~) the chain has no PMF at any scale, I.e. the conformation

of the chain is always "isotropic" (rod
or coil): Rjj m RI

~
Ro (see Fig. 3a) where Ro is the

radius of a persistent chain with only one rigidity cf. [2]):

L if d £ L £ I

Ro
~

(Ll)~/~ if $ L $ L4 + l~/d~ (3.9)

L~/~(dl)~/~ if L ~ L4

The cross-over length L4 corresponds to the Fixman parameter z(L4)
+

(L4/1)~/~B3/l~ of

order I since 83/l~
m

d/I.
For higher rigidities12, when (d/1)~ $ fl $ I (or $ 12 $ l~/d~) the various regimes are

displayed in Figure 3b. The chain becomes thick at L
r~

L3 +
lfl~/~, i.e. before it reaches the

cross-over from the "rod" to "semiflexible coil" regime at L
r~

I. In this case even in the regime
L ~ 12 where the chain is completely isotropic, it might be not yet swelled by the excluded

volume interactions; the swelling onsets at L
+~

L4
~

l(I/d)~ » 12. Thus, if1 £ 12 £ l~ /d~ and

L £ L4, the characteristic dimensions of the coil, Rjj and RI, coincide with )j°~ and R fl (see

Eqs. (3.1), (3.3)). On the other hand for L z 12, we have Rjj ct RI
+~

Ri~=o (see Eq. (3.9)),
I.e. finally:

Rjj
r~

L and RI
~

d if d $ L $ L3

Rjj r~

L and RI
~

L~/~/lj/~ if L3 £ L £ I

Rjj r~
(Ll)~/~ and RI

~
L(1/12)~/~ if $ L $ 12 (3.10)

Rjj +~

(Ll)~/~ and RI
~

Rjj if 12 £ L £ L4

Rjj r~
(L~ld)~~~ and RI m Rjj if L4 $ L

If the second rigidity is even higher (12 2 l~/d~
or Q / I) the chain passes from the regime

of "flat rod" (for L < I) to that of "flat swollen coil" (for I < L < L5 £
lfl~/~), then to that

of "thick disc" (for L~ < L < 12 and finally to the regime of "three-dimensional swollen coil"

(for L > 12) (see Fig. 3c):

Rjj r~

L and RI
~

d if d $ L $

Rjj r~
I(L/1)~@ and RI

~

d if I £ L £ L5 £
lQ~/~

Rjj
r~

(Ll)~/~ fl~/~° and RI
~

(Ld/I) fl~~/~ if L~ £ L $ 12
~~ ~~~

Rjj r~
(L~ld)~~~ and RI t Rjj if 12 £ L
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It is worthwhile to stress -here that the results of equation (3.ll) are obtained by direct

minimization of the free energy (3.6). An interesting feature in the "thick disc" regime is that

the angular statistics of the PMF are not disturbed by excluded volume interactions. Indeed,

the characteristic angles between the PMFS inside the chain can be estimated as

ib(Lj
+~

Ri /Rjj, (3.12)

and it is clear from the comparison of equations (2.5), (3.ll), (3.12) that ~l
+~

~l(°I This is

due to the fact that the Gaussian angular statistics of (2.5) leads to a completely stretched

configuration in the perpendicular direction: RI c~ L (see the second line in Eq. (3.3) and the

third line in Eq. (3.ll), and thus it cannot be changed by the excluded volume interactions.

3.3. SCALING PICTURE FOR THE STRUCTURE OF RIBBON CHAINS WITH fl > I. The

chain radii given by equation (3.ll) can be interpreted in terms of "blobs". Let us divide the

chain into fragments each one consisting of N5 + L5/1 e
fl~/~ links. The fragments ("coins")

are flat and their dimensions are Rjj r~
R~,

and Ri
r~

d. When L > L~ e N~l a chain forms a "monisto", a kind of necklace of coins.

Being flat, the fragmen~
are strongly swollen in two dimensions, hence neighboring "coins"

strongly repel each other as they are located almost in a common plane. Thus, the next "coin"

in the "monisto" prefers to occupy the neighboring plane (almost parallel to the previous one

but shifted by distance d), and the "monisto" as a whole occupies a sequence of almost parallel
planes (see Fig. 4a). Each coin in the monisto occupies a plane in the sequence, next to the

plane occupying by the previous coin. The monisto is thus strongly stretched along the axis

perpendicular to these planes. The stretching is due to the strong repulsion between the coins.

The thickness of such a rouleau of planes is of order d(L/L5)
~

(dL/lfl~@) in agreement with

the result (3.ll) for RI in the "thick disc" regime (L5 $ L $ 12). On the other hand, as soon

as each "coin" occupies its own plane, the coins virtually do not meet each other and hence

the statistics of the chain of "coins" parallel to these planes is Gaussian: Rjj r~
R~ (L/L5)~~~

~

(Ll)~/~Q~/~° (see Eq. (3.ll). When L approaches12, the typical angle between the "coins" is

of order unity, and the picture of parallel planes fails on larger scales: instead, we get a ball-like

configuration; each ball is made of "parallel" planes and has a size

RI
+~

R
+~

R2 % (ldl()~~~ (3.14)

At larger scales (L / 12) the chain can be considered as a sequence of strongly repelling bails

(see Fig. 4b). The second virial coefficient between the balls is of the order of their volume

R(. The radius of the chain is therefore R
+~

R2 IL /12)~° in agreement with the last regime of

equation (3.ll).

4. Liquid Crystalline Phases in Semidilute Solutions of Ribbon-Like Polymers

In the previous section we have studied the behavior of an isolated chain with planar rigidity.
The next natural step is the investigation of more concentrated solutions. However, the problem

is complicated by several possible orientational transitions. These transitions are related to the

coil shape asymmetry of the ribbon chains (see Figs. 2, 3). Here we try to describe the various

ordered phases which may appear in more concentrated solutions. These include various types

of nematic as
well as smectic phases. In Section 4.I we discuss possible types of nematics, and
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Fig. 4. Schematic picture of
a

chain with high second rigidity ill z I): a) "monisto" made of

"coins" id x
R(). L5 £ L £121 b) three-dimensional swollen coil made of "balls" (RI

)> L z12.

in Section 4.2 more ordered liquid crystalline phases are considered. However, in the following,

we only discuss the possibilities of liquid crystalline phases formation and we propose formal

models for these phases. We have to postpone the discussion of the stability of these phases

to the next papers of this series (Refs. [18,19]).

4.I. NE&iATic PHASES. The shape anisotropy of chains (or of fragments of chains) with

two rigidities (Rjj » RI, see Figs. 3, 4) might induce orientational transitions. It is well-known

that solutions of solid discs often form nematic phases and/or discotic phases [14-17]. Both

the isotropic-nematic and nematic-discotic transitions occur when the disc concentrations is

of order of R~~, where Rjj is the radius of the disc. However, for the ladder chains the
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corresponding "discs" are not solid, since the trajectory of the chain occupies only
a small

fraction of the "disc" volume (as shown for example in Figs. 2b and 4a). The orientational

ordering in solutions of such "crumbly discs" (made of chains) turns out to be quite different

from that of ordinary solid discs. However, we can expect that nematic ordering of crumbly
discs (with discs oriented parallel to each other) is still possible under appropriate conditions.

We call this phase a pancake nematic phase (or P-phase), and the ordinary isotropic phase is

denoted as I-phase. As shown in Figure 5a, in the P-nematic phase the main axis of the chains,
t(s), is oriented perpendicular to the nematic axis, whilst the normal vectors n(s) are oriented

parallel to the nematic axis.

It is also clear that when 4l ~ d/I, the P-nematic solution should transform into another kind

of nematic phase due to an ordering of the tangent t vectors. This ordering is of the same nature

as that occurring in concentrated solutions of ordinary persistent chains [3, 20-23], where the

main axis of the chains given by the tangent vectors t(s), has a preferential orientation parallel

to the nematic axis (this ordinary nematic phase is called here N-phase, see Fig. 5b). However,
for ribbon-like polymers (12 2 1) the distribution of tangent vectors t(s)

can be rotationally
asymmetric, implying a biaxial nematic phase ("B-phase"). In the B-nematic phase both

vectors t(s) and n(s) have preferential orientations in perpendicular directions, see Figure 5c.

One can characterize the order parameters in all these nematic phases by the orientation

angles ~ and ~li, 1b2 of the vectors t(s) and n(s), so that small values of ~, ~li, 1b2 correspond to

high order parameters. In the isotropic (I) phase we formally set the angles ~ =
~li

= 1b2 =
7r/2

(these angles thus correspond to zero order parameters). In a highly ordered pancake-nematic
P-phase, ~ =

7r/2 and ~li =1b2
= 1b < 1; on the contrary ~ < l, ~li

=
7r/2 and ~l2 = ~ in the

highly ordered nematic N-phase. Finally ~ < l and ~li,1b2 < 1 in the highly ordered biaxial

B-phase.

The well-known arguments based on the order parameter symmetry suggest [24] that a

transition between the isotropic and any orientationally-ordered phase in three dimensions

must be a first order transition, while the transitions between the P- and B-, or between the

N- and B-phases could be of the second order. In the latter case the corresponding additional

order parameters (associated with the angle vi for the N-phase and the angle ~ for P-phase)
change smoothly from zero (in N- or

P-phase) to a finite value in the B-phase (where both

orientation angles are smaller than 7r/2).

Although a detailed analysis of nematic ordering in solutions of ribbon polymers will be

presented in separate publications [18,19], it is worthwhile to outline here the formal approach
that we use to describe these transitions. Following [13] we characterize orientational order

in the P-, N- and B-phases by trial distribution functions for the vectors t(s) and n(s). The

specific form of the trial functions is not too important provided that the symmetry properties of

the phases are correctly taken into account: the specific form affects only numerical coefficients

in the final results [3, 23]. Thus for the purposes of the scaling analysis which ignores numerical

coefficients, we can use any smooth trial functions. We propose to use the following probability
distribution functions for the orientation of the tangent vectors t(s) and of the normal to the

PMF vectors n(s):

f° m const exp
(-fl) cos~ fl( sin~ sin~ p) (4.1)

where and p are the spherical coordinate angles for either t (a
=

t) or n
(a

=
n). The

prefactor of the exponential in the r.h.s. of equation (4.I) is a normalization constant.
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Fig. 5. Orientation ordering in various nematic phases: orientation distributions of the tangent
vectors t and normal vectors n in la) pancake nematic phase (P-phase); (b) uniaxial nematic phase

(N-phase); (c) biaxial nematic phase (B-phase).
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The situations illustrated in Figure 5 correspond to the following values ofthe parameters flf:

flf
=

fl[
=

-fl)
=

-fl(
=

cot~(~l), P-phase, Fig. 5a

flf
=

-fl(
=

cot~(~); fl[
=

fl( =
0, N-phase, Fig. 5b

flf
=

-fl(
=

cot~(~l2)1 fit
"

cot~(~li )i fl(
"

cot~(~) cot~(~l2), B-phase, Fig. 5c.

(4.2)
The distribution functions, equation (4.I), allow

a
study of all the nematic-like phases (I-,

P-, N- or B-) simultaneously. A thermodynamic analysis of these phases can be performed
according to the following program (which is actually realized in the next papers [18,19]: As

a first step we must calculate the free energy as a function of the orientation angles, ~ and ~li,

~l2 (see Eq. (4.2)). The equilibrium values of the angles are then obtained by minimization of

the free energy. The stable phase is the one with the lowest energy.

4.2. SMECTIC AND DISCOTIC (COLUMNAR) PHASES. In smectic and discotic phases [14-
l7, 25-28] the positions of the centers of masses of the particles are partially ordered in space:

in the (hectic phase, the particles form layers which are actually two-dimensional liquids and

there is a crystalline order in one direction. The discotics are two-dimensional crystal-like

structures consisting of columns, each column being a one-dimensional liquid. One can expect

the formation of these more ordered liquid crystalline phases in solutions of chains with two

rigidities.
The Discotic phases (D-phases) are well-known for solutions of monodisperse solid particles

with disc-like symmetry (see Fig. 6c). The discotic structure implies that the discs are not only
oriented (like they do in a

P-nematic), but also the positions of their centers are correlated in

space so that the discs form columns. The axes of the columns are parallel to the nematic axis

(vertical in Fig. 6c) and form an ordered array. The period of this two-dimensional crystal is of

the order of the diameter of the discs, Rjj. Inside each column the structure is liquid-like. Let

us compare the P- and D-phases (see Figs. 6a and c). If the discs are ordered into columns, the

phase looses translational entropy of the discs; this favors the P-phase at low concentrations.

However, at concentrations near the clqse-packing limit, the D-phase can become more stable

due to excluded volume interactions. Indeed, if one probe disc is added to the D-phase, the

excluded volume interactions depend on the position of the probe: it is clear from Figure 7a

that the free energy of the disc "I" is higher than that of the disc "2", as the former one

interacts with the discs from two neighboring columns, and the latter one is incorporated
in a single column. So as the osmotic pressure of the solution increases, the P-phase might

transform into the ordered D-phase which shows a lower pressure at the same concentration.

However, from these arguments it is clear that the transition to the discotic phase is con-

nected with the fact that the disc have
a

standard diameter. If the typical fluctuations of the

diameter were of the order of disc diameter, there would be no difference between the discs

"I" and "2" in Figure 7a, so that the driving force for a D-structure would disappear. This

is actually the case for the solutions of chains with planar rigidity, which look like disc-like

particles at intermediate length scale. Indeed, the characteristic dimensions of the coils, Rjj
and RI (see Sect. 3), are randomly distributed and fluctuate strongly. Hence, the D-phase is

not likely to appear in these solutions.

Smectic phases (S-phases) are another possibility for solutions of solid discs (Fig. 6b). The

one-dimensional crystalline structure (perpendicular to the layers) is characterized by the pe-

riod of the order of the disc thickness, RI Again, the ordering transition P
~

S is connected

with a loss of translational entropy and with a gain in the packing entropy which is determined

by the excluded volume interactions (one can compare the free energies of the discs "I" and

"2" in the part (b) of Fig. 7 similarly to the case considered above with Fig. 7a). The absence
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of S-phase in solutions of monodisperse solid discs is due to the competition between the P
~

S

and P
~

D transitions (the discotic transition preempts the smectic transition). Smectic or-

dering is however known in solutions of rods (say, of length L and diameter d), where smectic

phases with the period H
r-

L were observed 11?, 25-28] near the close-packing limit (4l
r-

1).
In the case of chains with two rigidities, which form crumbly discs in solutions, the transition

to the D-phase is suppressed and the possibility of a P
~

S transition must be considered. The

stability of the S-phase is due to the fact that the chains have a standard diameter d, giving
rise to a smectic ordering with periodicity H

r-

d.

In the S-phases, the chains have their PMFS practically parallel to the smectic layers, so

that the normal vectors to the PMFS, n, are strongly ordered along the axis perpendicular to

the layers. This ordering of the n-vectors is similar to that of the P-phase, and can also be

described by the characteristic orientation angle, ~l.

In addition to the orientational order, there is also a one-dimensional crystalline order in

the S-phase: the chains are arranged in layers. The chain links (monomers) are distributed

inhomogeneously and periodically in space. To characterize this translational order we intro-

duce the spatial distribution function for the points on the central axis of the chains, p(x) (the
axis x is perpendicular to the layers). The function p(x) has pronounced maximums near the

centers of the layers (see Fig. 7c). The period of the function p(x) coincides with the width of

the smectic layers, H, the width of the peaks, h (h ~ H), characterizes the degree of smectic

ordering in the S-phase: the smaller h, the higher the one-dimensional crystalline order. When

h
r-

H the S-phase transforms into a P-phase.
The width h is actually the width of the inter-layer gaps cf. parts 16) and (c) of Figure 7):

for a given smectic periodicity H, the distribution function p(x) is smeared for entropic reasons

around its maximum until objects (discs, chains, etc.) of neighboring layers touch each other.

If the S-phase is formed by objects of width d, the smectic periodicity is:

H m d + h, (4.3)

It is clear that H typically ranges between d and 2d. The objects strongly interfere inside

the layers, but the inter-layer interactions are much weaker, because the probability density
p(x) to find the object between the layers is rather low (for h < H). So the total interaction

energy of the S-phase is basically dependent on the intra-layer concentration. This intra-layer
concentration can be determined as the two-dimensional concentration of objects inside the

layers. If the volume-averaged concentration of the objects in the S-phase is c, the intra-layer
concentration c2 can be estimated as:

~~ 'W
~j~ ~ ~d ~

~
(~_~)

~

Hence, c2 can change by a factor of 2 in the interval of possible gap widths h (0 < h $ d).
Now one can compare S-phases with different distribution functions p(x). At a given con-

centration c, a decrease of the gap width h causes: I) entropy loss due to the formation of the

layer structure (of order AS
+~

In(h /H) for each subunit ); 2) a decrease of the interaction free

energy due to a decrease of the intra-layer concentration c2 in accordance with equation (4.4).
A competition between these two factors gives the value of the equilibrium order parameter
H/h. We will show in the following paper [19] that for high enough rigidities 12, the compe-

tition between thdse two factors leads to the formation of a smectic phase with a high order

parameter (H/h > 1).
To further illustrate this point, we consider here ribbons with an infinite second rigidity, 12 "

cc, at a rather high concentration: c > c*** m (RIR() ~
where RI " d and Rjj c~ (L~l)~~~
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are the sizes of the chain (see Eq. (3.ll)). One can prove easily that these disc-like chains

form a strongly ordered S-phase. Indeed, at c +~
c*** the discs occupy the whole volume, this

corresponds to an intra-layer concentration c(**
r-

R[~ At a higher concentration, the chains

strongly overlap and the free energy per chain in a S-phase is (we use here the standard scaling
formula [6] for the interaction energy and Eqs. (4.3), (4.4)):

F
=

())
In
(()

t

cd(I
+ ()R() + In (1+ ~)

,

(4.5)
C2

~ ~

where ~J =
fi

=
2 (here D

=
2 and v =

3/4) is the positive critical exponent for the

variation of the chemical potential as a function of concentration for two-dimensional polymers
in a good solvent. The minimization of the free energy for

c > c*** gives the equilibrium value

h
+~

d(c***/c)~ < H ci d. Thus a highly ordered S-phase is indeed stable.

In the simplest smectic phase the layers are isotropic (the structure of the phase is invariant

by rotation around the x-axis, which is perpendicular to the layers). Such smectic phases

are usually named SA-smectics [14]. These SA-Phases can be characterized by the periodicity
H

+-
d, and also by two other parameters: h (the characteristic width of the inter-layer gaps)

and
~b

(characteristic orientation angles of the normals to the PMFS of the chains).
However, due to the local asymmetry of the chains (d « I) when the volume fraction occupied

by the chains in space, 4l, exceeds dli, a transition from SA-Phase into a more ordered phase
takes place. The origin of this transition is very similar to the ordering of the tangent vectors

t in the N- and B-phases: they prefer to orient along a given axis in order to decrease the

interaction energy [3,14]. This axis (say, axis z) is perpendicular to the axis of preferential
orientation of n-vectors cf. Sect. 4.I), and lays inside the smectic layers. This structure (which

is usually called smectic-C [14]) does not have a rotational symmetry around the x~axis.

The Sc-Phases can be characterized by the inter-layer gap width, h, and by the two charac-

teristic angles, # and ~, which are needed to describe the ordering of the t- and n-vectors.

5. Discussion and Conclusions

In this paper we have considered the behavior of
a polymer chain with anisotropic rigidity.

If the chain structure has an intrinsic mirror symmetry but not a rotational symmetry, the

chain might reveal an anisotropic stiffness. We have theoretically considered the case when

this anisotropy is strong enough I.e. when the rigidities inside the mirror plane ii) and outside

the mirror plane (12) differ significantly, 12 2 1. In this regime the chain conformation is similar

to a two-dimensional walk (if the molecular weight is not too large) in a plane which we

call the plane of main flexibility (PMF). The two-dimensional statistics of the chain can be

characterized by a Kuhn segment I. For longer chains the deviations from the initial PMF

become significant. The amplitude of these deviations is characterized by another persistence
length 12. In Section 2 we have formulated a model for chains with two rigidities and we

have shown that the two parameters it and 12) are sufficient to describe the chain statistics,
independently of the detailed microscopic nature of the deviation from the PMF which can be

due to either bending outside the PMF, or twisting of the chain, or both.

In Section 3, we have investigated the behavior of a long isolated chain with anisotropic
rigidity, and in Section 4 we discussed and classified the possible ordered phases which could

be observed in semidilute solutions.

The behavior of chains with two rigidities depends crucially on the value of the dimensionless

Parameter Q e 12d~/l~. If fl ~ l then the effect of the second rigidity 12 is relatively weak.

However, for contour lengths L $ 12, the general shape of the chain is still anisotropic (disc-like).
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We expect this anisotropy to lead to the formation of nematic phases in more concentrated

solutions, namely both the pancake and the biaxial nematics (phases P and B), with extra

ordering due to the second rigidity.
In the limit of very high 12

In ~ l) the effect of the second rigidity is more pronounced. For

the single chain behavior we have found a tremendous shift of the characteristic scales: the

classical three-dimensional swollen behavior exists only for L z 12 » L4 % l~/d~. At rather

short scales an ordinary two-dimensional behavior is expected in the flat rod regime (for L £ I)
and the flat swollen coil regime (for I $ L £ L~, Eq. (3.ll)). At intermediate length scale

(L~ $ L $ L4) a regime of "thick discs" is found, implying quasi-Gaussian statistics parallel to

the PMF and highly stretched statistics perpendicular to the PMF. We have also constructed

a scaling blob picture~to describe the conformation of isolated chains with fl z I. In the high
second rigidity regime we expect the formation of not only pancake (P) nematic phases, but

also of smectic phases (of types A and C). The smectic phases can appear if the coils are flat,

so that the chains have a standard thickness (d) in one direction (x), but are highly fluctuating
coils in the two other directions (along the yz plane, parallel to the PMF).

It should be stressed that rather short chains (L « 12) always have an asymmetric disc-

like shape and can be characterized by two different sizes Rjj and RI if the chain rigidity is

anisotropic (12 > 1). The fact that the chain has a disc-like rather than spherical shape could

be probed experimentally using sedimentation, viscosimetry or radiation scattering techniques
(see, e.g. the corresponding chapters in [29] ). This asymmetry might be very important in

strongly non-linear regimes (high-rate sedimentation, etc.)
or

when additional ordering of the

chains is forced by an external field. We hope that our results will inspire experiments in these

directions.

Among the systems which can be good examples of polymers with two different rigidities, we

would like to mention first ladder polymers (see Fig. I ), where the chain structure indeed implies

a two-dimensional random walk statistics. Normally these polymers are characterized by a low

first rigidity (in fact for the polymer shown in Fig. la
+~

d), and by a high second rigidity:

12 2 1001 (these estimations are based in a figure shown in reference [30] which illustrates the

conformation of a ladder polymer obtained in all-atom molecular dynamics simulations). As

far as we know, the experimental study of the solutions of this family of ladder polymers is still

in the very early stage (even the experimental data on isolated coils sizes are not available yet ).
However, it is clear from the theory presented here that this system corresponds to the case of

extremely high second rigidity, fl z I, thus the results shown in Figure 3c are appropriate for

this system.

Another system, which should show a behavior close to that described here, is a self-

assembling (or so-call "living" "ribbon polymer" made of rod-like fragments which strongly

attract each other by their opposite sides [31]. The elementary units of these polymers are pep-

tide rod-like fragments (of length
r-

801 and diameter
r-

lo I) which have about m ct 20 + 30

pairs of attracting points located on the rod surface along two lines parallel to the axis and

diametrically opposite; these rods form a kind of fl-sheet (or barrel, like in ordinary proteins)
in the form of a ribbon stabilized by hydrogen bonds between attracting points (see the sketch

of Fig. 8). The length of the ribbon can be extremely large (as the association energy be-

tween rods is about 30kBT), and electron micrographs prove that the ribbons are practically
defectless [31].

From the point of view of our theoretical approach this system can be treated as follows.

For the excluded volume interactions in solutions only the larger size in the chain cross-section

is important, so that d ci 80 1. The persistence lengths can be estimated as

I ci
a/A~~ and 12 Cf

a/A~~
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a) b)

Fig. 8. A living ribbon polymer formed by peptide rod-like fragments: a) local structure: the rods

attract each other by the opposite sides; b)
a

self-assembling ribbon at larger scales.

where a is the link length (the rod diameter,
+-

lo I), and A~ and A# are the typical
orientation deviations between neighboring rods. It is clear that as the axial ratio of the rods

is high enough (+~ 80 IO), the ratio of12 It is also high. Indeed, if the attraction potentials

were spring-like (with rigidity ~), and the rods had square cross-sections, the typical angles

would be: A~~
+-

(m~a~) ~~ and A#~
+-

(m~d~) ~~ (where
m is the number of springs between

neighboring rods, and as everywhere in this paper kBT
=

I ), hence the ratio12 It
+-

(dla)~
+-

50.

For real hydrogen short-range potentials and non-square cross-sections of the rods this ratio is

even higher.
The peptide systems thus provide another example of a polymer-like object with highly

anisotropic rigidity 12 » (the absolute values of the rigidities are determined by the parameter

~ and can vary depending on the solvent in which the living polymer is formed). In principle,
with shorter rods (smaller m) one can get a system with closer values of12 and I. It is well-

known [32], that the apparent size L is also concentration-dependent, L c~ 4l~/~, which should

be taken into consideration in the analysis of the "coil shapes" for the self-assembling tape

system of reference [31]. Unfortunately, systematic experimental data on the self-assembling
ribbons are not available yet. To our knowledge reference [31] is the only work dealing with

these systems.
The next step in the theoretical treatment of polymers with anisotropic rigidities. a detailed

analysis of the nematic and smectic ordered phases and the construction of the complete

diagram of states, is possible within the framework of the liquid crystalline models outlined in

Section 4, using a scaling analysis similar to that of semidilute solutions [6]. This is the subject
of the following publications of this series [18,19].
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