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Abstract. We characterize experimentally and numerically the two-dimensional structure of

the global mode of the longitudinal component of the velocity in flow behind obstacles of different

geometrical shapes. Measurements in
a

low velocity water tunnel and numerical simulations of

the longitudinal component V~ of the oscillating velocity are carried out in the near wake region
of the flow where vortex shedding is regular. We find that in the range of Reynolds numbers

studied, the position (Xmax, Ymax) of the maximum of the global mode of V~ shifts very little

away from the central line in the y direction. The amplitude Amax of the maximum of the global
mode scales

as
(R- Rc)~/~ in a range of R Rc larger then in previous studies. We also confirm

that Xmax of the global,mode scales as (R Rc)~~/~ in the same range of Reynolds numbers.

An analysis of the initial slope of the global mode is presented.

1. Introduction

A recent experimental observation of global modes of the BAnard-von Karman instability has

triggered a renewed interest in the classical subject of vortex shedding from a body. Systematic
experimental and numerical study have shown (see Reis. [1] and [2]) that the amplitude oi the

oscillations of the propagating wave instability grows from the origin (the shedding body),
reaches a maximum at a downstream distance of the order of few diameters d of the shedder,

and subsequently decays. The spatial envelope of this coherent oscillation gives the amplitude
of the global mode. It has been shown that the maximum amplitude of this mode (Amax) and

the position oi this maximum (Xmax) are iunctions oi the Reynolds number. However, with a

suitable renormalization scheme all spatial envelopes collapse to a universal curve independent
oi the Reynolds number.

The shear induced by the flow behind the body, which is at the origin of the instability,
relaxes far away reducing its strength. It is therefore not surprising that the peak to peak
amplitude of the temporal oscillations is spatially inhomogeneous and diminishes with the
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distance from the shedding body, as the instability gets weaker. This spatial inhomogeneity
of the basic flow implies that the results of the local linear stability analysis change from

one downstream station to the next. The stability analysis shows that the flow regions near

the body are locally absolutely unstable, while further downstream local convective instability

occurs [3].
It could be therefore expected that the local values of the linear growth rate and frequency

will differ from one downstream station to the next. However, in reality vortex shedding selects

unique frequency and acts as a synchronized nonlinear oscillator distributed in space. Because

of its distribution in space the envelope of the temporal oscillations is called the global mode

of the instability [4].
From the physical point of view it is legitimate to ask how this mode comes into existence.

It is clear that some kind of feedback mechanism plays a role in this process, but more work is

necessary in order to clarify this key point. In other hydrodynamic systems with self-sustained

oscillations (jet-edge [5], confined jets [6], coupled jets [7] etc.) feedback mechanisms of the

flow between downstream and upstream regions in the form of pressure waves or hydrodynamic
recirculations are necessary to induce intrinsic dynamics. In wakes, the basic flow creates

two recirculation lobes behind the body and they can play a role in inducing hydrodynamic
feedback. However, the nature of this feedback remains to be elucidated in order to explain

surprising effects of the presence of small objects or suction on the suppression of vortex

shedding [8].
In previous studies of the BAnard-von Karman instability, experiments were performed by

local measurement of the non linear evolution of the temporal oscillation as a function of the

Reynolds number R. The obtained results were analyzed in terms of the Landau model for

Hopf instabilities [9]. In reference iii
we showed, that in order to find the pertinent order

pararnetir of the instability one needs to take into account the existence of the global mode.

As a consequence we claimed that the maximum amplitude of this global mode as well as the

position of this maximum are essential for a correct non linear study of the wake flow.

Our experimental studies motivated numerical simulations by Zielinska et at. [2] and Du§ek

[10]. These simulations confirm our experimental results concerning the form and behavior of

the global mode. In addition they provide information about the spatial distribution of the

mode out of the central line of the flow and on its evolution from the initial linear regime to

the full non linear behavior.

Previous theoretical studies ii Ii of the evolution of global modes in space and their behavior

as a function of the Reynolds number were restricted to linear global modes without taking into

account their deiormation, as observed by us in reierences II, 2] and in the present work, due

to nonlinear interactions and evolving Reynolds number. From the theoretical point oi view a

well founded prooi of the applicability of the Landau model to spatially evolving open flows is

a subject of intense research. A recent theoretical study [12] has shown that in the context of

weakly nonlinear theory the Landau constant is a function of the degree of non parallelism of

the flour.

It is our motivation here to give a full spatial description of the global mode of the velocity in

the wake flow. For this purpose we have undertaken
a

twc-dimensional characterization of this

mode in the plane perpendicular to the shedding body. We have performed measurements in a

low velocity water tunnel and carried out numerical simulations of the longitudinal (streamwise)
component V~ of the oscillating velocity in the full region of the flow where vortex shedding

exists.

Previously [1] we have presented measurements of the transversal component Vy on the

central line of the flow. In these measurements the scaling law found for the Amax had a

critical exponent larger than 0.5 presented here, for V~ and in the numerical simulations [2j.
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This was perhaps due to lack of precision in the experimental determination of the R~ value

in these preliminary experiments. One of the goals of this paper is to clarify this point.

The fundamental mode of the transversal component Vy is symmetric with respect to the

central line and therefore the measurements along this line were sufficient to find the maximum

of the global mode. However, the longitudinal component V~ of the oscillating velocity is

antisymmetric with respect to the central line. Consequently its maximum lies off this line and

its position is function of the Reynolds number. In order to study the scaling law based on the

maximum amplitude of V~ a twc-dimensional characterization in the streamwise as well as in

the transverse direction was necessary.

In reference [1] we have established two scaling laws as a function of the reduced critical

Reynolds number (R R~) of onset of global oscillations: for the position of the maximum

(Xmax) of the global mode and for the evolution of the maximum of the peak to peak amplitude
of the oscillations meas~tred at Xmax. The existence of these two scaling laws allowed us to

obtain for the first time a renormalized universal curve for the envelope of the global mode. In

the present work we show the extension of these previous results for the streamwise component
of the velocity V~. It can be expected that the critical behavior of the V~ will be the same

as of the Vy, because of the essentially two dimensional character of the flow. However, the

V~ component on the symmetry axis iv
=

0) contains only higher pair harmonics [13] and

is expected to follow a different scaling law then the fundamental mode. Therefore it was

necessary to perform an additional full two-dimensional measurements of the V~ component

in order to prove, that its scaling law is indeed the same as for the Vy in the extended range

of Reynolds numbers. We also extend the study of the scaling behavior with an analysis of

the initial slope of the global mode what emphasize the existence of scaling laws for Amax

and Xmax.

2. Experimental Set Up

Our experiments were carried out in a low velocity water tunnel shown schematically in Fig-

ure and the velocity was measured using a Laser Doppler Anemometer. The details of the

experimental set up can be found in reference [1].
The bluff body has a trapezoidal criss section with sharp edges to ensure constant initial

span wise phase to the vortex shedding. Larger of the parallel sides of height d
=

0.4 cm faces

the flow. The angle of the lateral faces is 4° and the ratio of the height I of the downstream to

the upstream face is Id
=

0.875.

The flow in the channel is induced by gravitation from a constant level reservoir and exit

gate modifies the flow rate. Two-dimensional nature of the flow behind the shedding body in

the near wake region is checked using visualization. Fluoresceine dye is injected through the

lateral faces of the bluff body and vortex shedding is observed using a sheet of argon laser

light.
In order to characterize the global modes and their evolution as function of the Reynolds

number we have measured the amplitude of the longitudinal velocity perturbations of the flow

behind the obstacle scanning the
x y plane in the middle of the bluff body, at z =

0 (see
Fig. 1).

The aspect ratio of the body in the z-direction is 12.5; the ends of the obstacle are fixed to

the side walls of the tunnel. It was shown [14-16], that in addition to the lowest mode of the

velocity envelope, also higher modes with nodes distributed along the
z axis can be excited.

We performed velocity measurements along the z-direction at the central part oi the body
(Az m Lz/2) and did not find any evidence oi the existence oi the nodes. So we conclude
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Fig. 1. Experimental set up.

that in our case only the first mode oi the velocity envelope is present, with zeros only in the

extremity oi the bluff body.
The longitudinal velocities (V~) from the trailing edge of the bluff body (from z =

0.7 d) to

z =
25 d, and from the center line y =

0 to y =
2.8 d) were scanned using a Laser Doppler

Anemometer. The instantaneous value of the velocity is obtained by processing the Doppler
bursts with a frequency counter and analyzed by a spectrum analyzer (FFT), in order to obtain

the frequency and the amplitude of the oscillatory part of the velocity.
The measurements were carried out for various Reynolds numbers ranging from 1.1R~ to

1.6R~, where R~
=

60.8 is the onset oi the global biiurcation.

3. Computations

Numerical simulations oi two-dimensional incompressible Navier-Stokes equations were per-

iormed using a spectral finite element code NEKTON [17]. The computational domain is

presented in Figure 2. In this figure the finite elements used in the simulations are shown.

Within every element a solution based on 9th order polynomial is calculated.

The simulations were carried out with an
equilateral triangular bluff body with blockage

d/Ly
=

1/15 id is the base oi the triangle and Ly is the transverse extension oi the domain oi

numerical simulations) and slip boundary conditions at the horizontal boundaries oi the do-

main. The base oi the triangle is perpendicular to the flow and the apex points upstream. The

aspect ratio oi the computational domain L~ /Ly
=

3, where L~ is the longitudinal extension

oi the domain. A constant velocity U was introduced at the inflow and the Reynolds number
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y

x

Fig. 2. Computational domain used in numerical simulations.

was calculated using U and,the base oi the triangle d. The details of the numerical method can

be found in reference [2]. The critical Reynolds number for the onset of the oscillations was

found to be R~
=

36.2 and is employed throughout the present study. We obtain the whole

velocity field and in particular the V~, component which is compared with the experiments.
The envelope of the global mode is determined as peak to peak amplitude of the oscillations.

4. Results

As mentioned in the Introduction, the fundamental mode of the longitudinal component V~ of

the oscillating velocity is antisymmetric with respect to the central line and consequently its

maximum lies off this line. Therefore in order to establish a scaling law based on the maximum

amplitude of V~, the maximum of the oscillations has to be located in the z y plane. For this

purpose experimental measurements of V~ were performed in the region of 0.7 d < z < 25 d and

o < y < 2.75 d for Re
=

1.6 R~ and the contour lines of constant amplitude of the oscillations

are shown in Figure 3a. No modal decomposition has been attempted here. For this Reynolds
number the maximum of the global mode is situated at Xmax

=
7 d and Ymax

=
1.25 d.

The shape of the contour lines is elongated and reflects the non parallel aspect of the flow

downstream of the shedding body. In the area of the flow field studied, the position of the

maximum of the global mode Xmax for consecutive cuts of constant y is a linear function of y

as shown in Figure 3b.

As has been demonstrated previously (see Refs. iii and [2]) the amplitude of the global
modes Amax grows with increasing Reynolds number, while its position Xmax moves closer to

the shedding body. The same behavior can be observed for the envelope of V~, as shown in

Figure 4a (experimental results) and b (numerical simulations). In this figure the global modes

for constant y and various Reynolds numbers are presented.

From the elongated shape of the contour lines in Figure 3a and from the monotone depen-
dence of Xmax as function of y presented in Figure 3b, it could be expected that the maximum

of the global mode of V~ will move further away in y direction from the center line while moving
further downstream in z direction with Reynolds number approaching Rc. Surprisingly this

is not the case. In both numerical simulations and experiments we have observed that the
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value of I)ax stays relatively constant when the Reynolds number is changed. The contour

lines of the global mode of the ~[ obtained from numerical simulations for Re
=

1.02 Rc and

Re
=

1.21 Rc are shown in Figures 5a and b respectively. It can be seen that while the Xmax
changes from 8.5 d for Re

=
1.017 Rc to 4 d for Re

=
1.213 Rc, Ymax remains quite constant

and equal to 0.7 d. The negligible variation of Ymax with the Reynolds number is confirmed

by experiments. In Figure 6 the amplitude of the global mode at x =
Xmax is shown as the

function of y for two different Reynolds numbers: Re
=

1.41 Rc and 1.6 Rc. The value of

Ymax does not change appreciably, in this range of Reynolds numbers and stays equal to 1.25 d.

The difference in the value of Ymax between the trapeze used in experiments and triangular
obstacle employed in numerical simulations is not surprising, the streamlines of the basic flow

behind the bluff body being quite different in both cases. The flat face of the trapeze facing
the flow forces the impinging streamlines to diverge from the parallel flow more then in it the

case of the flow around a triangle with the apex facing upstream. For comparison Ymax
=

0.5 d

for a cylindrical obstacle was
found in numerical simulations [10] for a Reynolds number of

Re
=

1.04 Rc. On the other hand Ymax
=

2 d for the cylindrical obstacle and various Reynolds
numbers was observed in recent experiments [18]. The difference in the value of ijax between

the experimental and numerical results rests to be elucidated.

Previous results presented in references ill and [2] show that global modes of the transversal

component Vy measured on the center line renormalized with Amax and Xmax collapse to an

universal curve. This means that the shape of the global modes remains the same when the

Reynolds number is changed. Similar behavior can be found for global modes of the V~, as

shown in Figure 7. In Figure 7a measurements taken at y =
Ymax are presented, while in

Figure 7b numerical data are compiled for y =
0.5 d < Ymax

=
0.7 d. It is interesting to

note that the data for a constant value of y different from Ymax also renormalize to one curve.

This fact together with the negligible dependence of Ymax on the Reynolds number allows

construction of scaling laws with Amax and lima, obtained for constant values of y, for y not

much different from Ymax.
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In Figures 8a, 8b and 8c, 8d the log-log plots of Amax and Xmax as function of the reduced

Reynolds number are presented using experimental data (for y =
Ymax and numerical data (for

y =
0.5 d) respectively. We observe that the laws Amax

+~

(R-Rc)~/~ and Xmax
+~

(R-ll~)~~/~

can be fitted in both cases. We note however, that in the case of numerical simulations the

value of Xmax is not large enough for the lowest value of the Reynolds number. This can

be attributed to finite size effects due to the limited size of the computational domain. Both

scaling laws are consistent with Landau-Ginzburg model, if Xmax is interpreted as a correlation

length [19]. However, the authors are aware of the fact that this equation was not applied to

flows with spatial dependence in the streamwise direction.



N°10 GLOBAL MODE IN WAKES 1353

1

1

1 1

~) R/Rc -1

~

lo

w

i

i 1

b) R/Rc
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An interesting feature is observed in Figures 9a and b where it is shown that the ratio of

Amax to Xmax is a linear function of the Reynolds number for the dxperimental and numerical

data respectively. On the other hand the renormalized global modes presented in Figure 7

grow linearly with Xmax for
x < Xmax. This means that the angle of the initial spat1al growth

of the global modes shown in Figure 4 depends linearly on the Reynolds number.
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5. Conclusions

We have characterized experimentally and numerically the two-dimensional structure of the

global mode of the longitudinal component of the velocity in the wake flow. We have performed

measurements in a low velocity water tunnel and carried out numerical simulations of the
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longitudinal component V~ of the oscillating velocity in the full region of the flow where regular

vortex shedding exists.

We did not attempt modal decomposition of the obtained oscillation amplitudes. This means

that all the temporal harmonics are present in the envelope of the global mode of V~. However,
the scaling laws derived from our results apply effectively only to the fundamental mode. As

shown in references [2] and [10], the position of Amax of the second harmonic of V~ (oscillating
with double frequency 2 Jo) is located on the central line and further away in the wake then

the position of the maximum of the fundamental mode (oscillating with Jo). Moreover, the

second harmonic, being already weaker then the fundamental mode by its nature, has a local

minimum around the maximum of the fundamental. This means that its contribution to the

global mode at Xmax and Ymax is negligible. Since the third and higher harmonics are very

small and can be neglected for practical purposes [13], the by far dominant contribution to the

global mode around (Xmax, Ymax) comes from the fundamental mode.

It has been found in this study that the position (Xmax, Ymax) of the maximum of the global
mode of V~ moves very little in the transverse y direction away from the central line. In fact

we were able to assume that Ymax stays constant in the raiige of Reynolds numbers studied.

However, the value of Ymax might change for larger Reynolds numbers. Du§ek [lo] performed
modal decomposition of the wake flow past a cylinder and found that between R

=
1.04 Rc

and R
=

2.17 Rc, the value Ymax of the fundamental mode changes from 0.5 d to 0.75 d. It is of

practical importance, however, that the position of Ymax stays relatively constant in the range
of the applicability of the scaling laws. This reduces considerably the number of measurements

to be taken in order to establish the scaling law. It is enough to measure the amplitude of the

global mode along a line of constant y approximately equal to Ymax and not in the whole
x y

plane.

The scaling laws for the amplitude of the global mode Amax of V~ established in this study are

consistent with a Landau model in a range of Reynolds numbers larger then in previous studies

if the pertinent order parameter of the transition is the amplitude Amax of the global mode

(the position of this maximum is Reynolds number dependent) and not / local measurement

of the amplitude A(x) (for comparison with previous studies, see Ref. [2]).

From the measurements of the V~ component of the velocity presented here (which is a

pertinent order parameter)
we can now definitely confirm the value 1/2 for the critical exponent

of the Amax as a function of the relative Reynolds number.
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