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Abstract, Packing asymmetry between head-group and tail-chain of anlphiphiles may in-

duce buckling modulations in monolayers at air-water or oil-water interfaces. We consider three

different cases associated with the head-tail asymmetry: (I) spontaneous curvature, (it) molecu-

lar tilt divergence, and (iii) local composition variation in nlixed monolayers. For
a pure mono-

layer with non-zero spontaneous curvature, we find that, below sortie critical surface tension, an

hexagonal array of "long-fingers" becomes more stable than the flat surface. This "long-finger"
structure is not expected to remain stable against multilayer formation in the case of a Langmuir

monolayer, but is relevant for monolayers at the oil-water interface. When the molecular tilt is

non-zero, as often is the case in the liquid condensed phase of Langmuir monolayers, the coupling
between curvature and tilt can also give rise to a first-order buckling transition. Considering

a
binary nlixture monolayer, we find that it can easily buckle to periodic structures following

composition modulations. For the latter case we find two kinds of buckling structures. One

involves a very large amplitude,
a counterpart of the "long-finger" structure, and is dominated

by the average spontaneous curvature. The other structure is of nluch snlaller anlplitude, and

results from the curvature-composition coupling. Implications for the process of spontaneous
emulsification

are
also briefly discussed.

1. Introduction

Monolayers of amphiphilic interfaces are important to the design of new materials and are

challenging systems which allow one to study the transition from 2- to 3-Dimensional (3D)
physics and chemistry iii. Their importance in applications such as coatings, catalysts, and

surface tension modifiers requires an understanding of their equilibrium structure and stability,

as related to their failure to remain as simple monolayers. There are also related biological
issues; for example, understanding the stability of monolayers may also shed some light on key
aspects of the behavior of the lungs [2], which involve a Langmuir monolayer covering a few

microns thick solution, sitting on top of the living tissue.

A Langmuir monolayer under compression, sitting at the liquid-air surface, can explore the

third dimension in several ways. As the surface pre§sure is increased the monolayer may
buckle [3-5], namely become weakly corrugated or simply bent, or it may even fully "collapse"
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by folding over itself to form trilayer or multilayer structures. (The term "collapse" is often

referred to as the formation of the 3D bulk phase, while formation of a few layers or possibly
buckling are sometimes referred to as "partial collapse".) It is also hypothetically possible that

the buckling will be followed immediately by the formation of multilayers, in which case the

buckling state will not be observed. For a monolayer at the oil-water interface, on the other

hand, it is much more plausible that the monolayer to multilayer transition will not appear at

all, because of the absence of real energy gain in the formation of multilayers. In this case,

however, a large amplitude buckling is not likely to stay stable for a long time, and may lead

to spontaneous emulsification [6j.

From the experimental viewpoint, monolayers at the air-water surface often "collapse" to

form multilayers [2, 7-11], while a buckling transition has been reported so far only in two

experiments [4, 5j. In the study of Saint-3almes et al. [5j a second order buckling transition of

a solidified monolayer (with
a non-zero tilt angle) has been directly observed by shadowgraphy

and more quantitatively by light scattering experiment. The work of Bourdieu et al. [4j deals

with a polymerized monolayer. In this paper, instead, we would like to focus on Langmuir
monolayers which are still in their liquid or liquid-crystalline-like phases, I,e., either liquid
expand or liquid condensed phases. As suggested by several authors ii,10] (on a purely qual-
itative basis), it is possible that a buckling state is often the transition state that allows fast

nucleation of multilayers.

Moreover, pressure-area isotherms of quite different systems, e.g., fatty acid monolayers
[10,12,13], often show a plateau at high applied pressures flex m 65 70 dyne /cm corresponding
to areas per molecule smaller than the close packing area. It is sometimes hard to interpret
this plateau as either a monolayer to multilayer transition, or as the point of transition from

insoluble to soluble monolayer. For example, in a stearic acid monolayer a clear plateau in

the isotherm is observed [10] when the area per molecule is decreased below 20 12 (down to

~J
1 12) and for pH > 6 (with flex m 65 dyne/cm). As the pH is lowered, a dip appears

in this plateau which widens out to finally make a lower new plateau, with only an overshoot

left from the initial plateau. This new (lower) plateau has been interpreted as a monolayer to

trilayer coexistence [10], an assumption which has been partially confirmed by atomic force [13],
and Brewster angle [12] microscopies. (The lower pH presumably facilitates the formation of

hydrogen bonds.) A monolayer to trilayer transition has also been observed in several other

systems [11,14,15]. What is left unclear, then, is the (higher) plateau in this system observed

at pH> 6. It is quite possible that this plateau corresponds to a first order buckling transition,
although this hypothesis is yet to be confirmed by direct measurements.

From the theoretical viewpoint, a buckling instability has been predicted by MiIner et al. [3]
for negative surface tensions. This however is not entirely relevant for monolayers at the

air-water surface as these tend to form multilayers already at positive tensions. Another very

interesting, but not yet well founded, suggestion, has been that of a dipolar interaction effect [5].
Other approaches focused on composition modulation effects in binary systems [16-18], and on

persistence length effects [19]. Closely related questions in lamellar [20, 2 ii and vesicular [22, 23j
bilayer systems have been also addressed. One important quantity that was not fully accounted

for in these previous (theoretical) studies of monolayers is the spontaneous curvature of the

film. The spontaneous curvature results from differences in preferred areas of the heads and

tails and thus breaks the symmetry between up and down (air and water, or oil and water).
It can possibly make the buckling traiisition be first order and happen at positive tensions, as

further discussed in Section 2. (The spontaneous curvature was included in a few theoretical

studies of vesicle shapes [22j, which could be related to the present study in the limit of infinite

vesicle size.)
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Our description thus far has been concerned with the buckling of a pure surfactant monolayer.
In many practical and biological applications, however, monolayers are composed of a few

components. One example is the lung surfactant, which is a mixture of lipids, fatty acids

and proteins and form monolayers at the alveolus air-water interface [2j, thereby reducing
the surface tension to almost zero. Ink varnish monolayer is also a mixture of polymeric
amphiphiles which can even bear a slightly higher pressure than air-water surface tension [24].
These studies show that multicomponent monolayers can have very different behaviour from

the pure systems. In this work we consider (in Sect. 3) a binary mixture and characterize each

component in the mixture by its own spontaneous curvature, leading to a coupling between

composition and curvature. As first pointed out by Leibler and Andelman [16], and later

by Wang iii] and by Andelman et al. [22, 23j, this coupling may lead to a modulation of

composition and curvature. Our objective here is to include into these previous studies the

non-linear symmetry-breaking effect generated by a net average spontaneous curvature ii. e.,

the one which results from random mixing). This leads again to a first order buckling transition

upon increasing the surface pressure land
so to a plateau in the isotherm), as opposed to the

mostly second order na~ure of the transition occurring when the non-linear bending terms are

neglected. Unlike in the case of a pure monolayer, we find in Section 3 that for strong coupling,
which occurs when the two spontaneous curvatures are similar in magnitude but have opposite
signs, the amplitude of the buckling state is now relatively small.

A similar degree of freedom, which could be relevant for both single- and multi- component

systems at the liquid-air surface (but usually not for oil-water interfaces), is the tilt of the

surfactant molecule with respect to the surface normal. This usually occurs in monolayers
their liquid condensed phase [25j. If the tilt is coupled to the curvature, it can induce a

buckling transition which will also break the symmetry between up and down, in a similar

way to the spontaneous curvature. A similar mechanism has been suggested by Mackintosh,
Lubensky and Chen [21j to explain the appearance of the ripple phase in phospholipid bilayers.
This possible coupling will be therefore studied separately in Section 4.

The study of the buckling transition may also help to understand the process of spontaneous
emulsification. It has been recently suggested that large amplitude buckling of an oil-water

interface may lead to the formation of small "microemulsion" droplets at the interface [6j. In

the latter study, which addressed mainly the dynamics of the process, the mechanism that has

been suggested involves a slightly negative surface tension, similar to the study of buckling by
MiIner et al. [3j. In addition, the effect of spontaneous curvature was not truly accounted for,

and so it was not possible to determine whether it is oil in water, or water in oil, droplets,
which are spontaneously formed at the oil-water interface. A transition to a non-symmetric
buckling state will clearly be a route to this important selection.

In this paper we primarily study the effect of the up-down asymmetry on the buckling of

a monolayer. This asymmetry is modeled in two ways. In the first case (Sect. 2) we use the

Gibbs free-energy which includes the Helfrich bending Hamiltonian with non-zero spontaneous

curvature. This is generalized in Section 3 to account for a non-zero average spontaneous

curvature in binary mixtures. In the second case
(Sect. 4) we couple the curvature to a

tilt order parameter and use a free-energy for the tilt which is non-symmetric with respect

to reflection. Free-energies are minimized both analytically and numerically using variation

ansatzs for the buckling state that incorporate the asymmetry between the two sides. We

note that although our approach does not distinguish between monolayers at air-water and at

oil-water interfaces, our results do have different implications on them. This is discussed in

Sections 5 and 6.



1002 JOURNAL DE PHYSIQUE II N°7

2. Bending Free-Energy General Approach

Our starting point is the construction of the Gibbs free-energy for a monolayer held at a fixed

external pressure Hex. The monolayer is allowed to buckle in the third dimension. In this

case the measured trough area, which we call the projected area A~, is smaller than the real

monolayer area A. The Gibbs free-energy is expressed as [3j

G
#

'to(A Ao) ~ A fo(Cs) ~ F~ + HexAo (1)

The first term accounts for the fact that, in a hypothetical change from a flat state to a buckled

state of the same area A, a pure air-water surface of area A A~ and bare surface tension ~~

is exposed. The second term is the part of Helmholtz free-energy of the monolayer which does

not depend on curvature; f~(cs) is the free-energy density and cs =
N/A is the concentration

of amphiphiles on the actual (possibly buckled) surface. F~ is the curvature dependent part
of the free-energy, and the last term, IlexA~, is the usual Legendre transform,"PV", term,
expressing the mechanical work done on the system.

Different buckled states of the same area A may have different projected areas A~. The

buckled state is uniquely specified by the "height" deviation function h(x) (where
x is a 2D

vector on the reference flat surface), assuming, for simplicity, that no overhangs are allowed,
I.e., h(x) is a single valued function. Given h(x), the relation between A and A~ is given by

A
=

/ d~~fi (2)
Au

with

§ "
I + lvh)~ (3)

The equilibrium state can be found by minimizing G over A, A~, and all possible buckling
states (h(x)), subject to the constraint (2). This constraint is incorporated using the Lagrange
multipliers method, in which we introduce the surface tension a as the Lagrange multiplier.
We thus minimize

G,
=

G
a (A

/
d~~fi) (4)

A~

with no constraints. For clarity, G, is rewritten as

G,
# l'fo + fo(Cs) °j A l'fo Hex) Ao + Fh (5)

with

Fh
= a

/ d~xfi + F~ + Fj + F~ (6)
A~

Note that Fh has the more familiar free-energy form which incorporates both surface tension

and bending energy.
Let us now specify the bending free-energy F~. For small curvatures it is given by the

Helfrich Hamiltonian [26]

F~
=

(~ / d~xfi (H~ 2HC~) (7)
A~

Here C~ is the spontaneous curvature, ~ is the bending modulus, and H is the mean curvature,

~ Ii ~
~2

~~~
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where RI and R2 are the local radii of curvature. The curvature is taken positive when the

surface is concave. (The Gaussian curvature 1/(RiR2) was omitted in equation (7) since we

do not consider here topological transformations of the surface.) H is related to the surface

normal li by H
=

V li leading to

H
=

-v
~~

j9)
v@

(Gradients here are 2D and are defined on the reference planar surface.) Note that in F~ we

choose to keep only curvatures dependent terms; other constant terms are absorbed into f~(cs).
We neglect any possible dependence of ~ and C~ on the monolayer concentration c~.

We shall consider (for simplicity) only periodic buckling structures, denoting by ai the area

of a periodic (Wigner-Seitz) cell. Integrals are then transformed according to

/d2~
=

~° j d2~ jio)
Au al

a~

so that the free-energy density fh
"

Fh/A~ is independent of A~.
We now turn to the minimization of G« over A, A~, and all possible buckling states (h(~, y)).

Minimizing over A~ and A (recalling that cs =
N/A)

we obtain

flex
" 'fO fh (ii)

a m ~~ n(A) (12)

with the internal monolayer surface pressure II(A) as usual given by

II(A)
=

-°(Afo(Cs))/°A (13)

Inserting a from equation (12) into equation (6) and using (II) yields a general relation between

the internal pressure and the e~ternal pressure in the form

flex
= ~~

~'~° ~~~~~ / d~~fi ~ / d~~fi (H~ 2HC~) (14)
ai

~~
2ai

~~

Only when fh
= '/o II(A), as for, e.g., a flat surface, do we obtain flex

=
II(A). When

~~ flex
=

f~ < ~t~ H(A) we have flex > II(A). This may be understood by noting that

in a given buckled state which is away from the transition, both the bending forces and the

internal monolayer pressure work to balance the external pressure. To find II~x for such a state

one needs to know of course the monolayer equation of state II(A); this is not our main scope
here.

Suppose that the monolayer goes through a first order buckling transition, as shown later.

At the transition, on both flat and buckled states, f~
= n~~

II(A) and so II(A))buckled
"

II(A))fl~t
=

II~x. Accordingly the monolayer area A does not change through the transition.

This important conclusion allows us to deal with the transition without having to specify the

equation of state II(A). Of course, we cannot predict in this way the "critical" area A~ (= A)
of the flat state at the transition, but, on the other hand, we can calculate the ratio A~ IA (for
the buckled state), which determines the relative width 1- A~ IA of the coexistence plateau in

the pressure-area isotherm. (Recall that for the flat state A~
=

A while for the buckled state

A~ < A.)
For the buckled state at the transition, we are thus left with the minimization of G« over the

manifold of states (h(x)). This involves only the free-energy Fh defined in equation (6) with
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a = n~~
II~x. The same expression is involved if we explicitly use the fact that A does not

change through the transition. With this assumption the Gibbs free-energy difference between

buckled and flat states (at transition) becomes

AG
=

G(~~ G~~~
= (n~~

H~x)(A A~) + F~ (15)

in which AG differs from Fh only by an additive constant. In fact, equation (15) could have

been our starting point, but we have chosen to start with the more general procedure since it

also allows in principle calculations away from the transition and at metastability.
Led again by the fact that AG should exhibit a

first order transition as II~x increases, we

can envisage several local minima corresponding to different buckling states (h # const.).
When AG of the global minimum vanishes, a transition from flat to the corresponding state

occurs. Alternatively, each buckling state can be associated with a fictitious critical pressure

Hc e Hi[~'~~ (for which AG
=

0),
so that the lowest critical pressure determines the real

transition. Putting AG
=

0 in equation (15) and solving for Hc we obtain

Hc
= n~~ +

~

~~

~
(16)

or, more explicitly,

)~ / d~~fi (H~ 2HC~)
~c "'to + ~~ Iii)

d~~ (fi 1)~~

(Of course, putting II(A)
=

H~x in Eq. (14) and solving for II~x will lead to the same result.)
Minimizing IIc over

(h(~,y)) requires however solution of the Euler-Lagrange equations,
which are highly non-linear partial differential equations for this case. We therefore use a

variation approach using trial functions. The trial function which will give the lowest critical

pressure is the closest one to the true buckling shape. Obviously, the trial function should

not be symmetric with respect to the two sides of the monolayer if the effect of spontaneous

curvature is to be accounted for correctly. Let us first distinguish between ID and 2D buckling
shapes.

For ID (stripe) buckling in which the shape function is mathematically analytical, we can

use in equation ii) (say) R2
# cc and RI

=
R((), where ( is a curvilinear coordinate. The

term involving C~ simply becomes

L~C~
/ ~~

=
L~C~

/
d9

=
L~C~ (RR 8L) (18)

R(()

where 9 is the angle describing the direction of the tangent to the curve, 8R,L are the corre-

sponding angles at the boundaries, and L is the system linear size. The spontaneous curvature

has thus no effect on the "bulk" surface shape, although some effects could be present near the

boundaries.

We therefore turn to examine non-symmetric 2D buckling shapes. We choose to use tri-

angular (hexagonal) periodic functions, for which the asymmetry occurs already in the first

harmonic (see Fig. 1). Let us begin by considering first the regime Vh < 1. We expand both

the numerator and denominator of equation (17) up through the six-th order in h, which is

required for stability. We then use only the first harmonic of hexagonal periodicity (Fig. 1)

h(x)
-

ho C°S(~x) + C°S

~
~ i/~l

+ C°S

~~
+~"~ II (19)
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a)

b)

Fig. 1. The first harmonic of hexagonal buckling, equation (19) (ho
=

q): (a) is for ha > 0;
(b) is for ho < 0 and is also the view from bottom to top of (a). ((b) is referred to in the text as

inverse-hexagonal.)

Performing the integrals in equation (17) and simplifying the result, we obtain

~~ ~° ~ ~~
16 9q2h( + (91/8)q4h( ~~~~

We now have to minimize Hc over both the amplitude h~ and wavenumber q. From dimensional
considerations we may expect that the values corresponding to the minimal shape will scale

with C~ according to qc ~J
C~ and h~c

~J

Cj~. Indeed, putting q =
aC~ and h~

=

flcj~ (where
a and fl are numerical constants)

we obtain IIc
= n~~ + v/~Cj where v is a numerical constant

depending on a and fl. Minimizing IIc thus amounts to minimizing v over a and fl, and
we find
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Fig. 2. Illustration of the long finger buckling shape obtained from equation (21). The vertical

scale was reduced (i.e., the actual values of Woc, uoc and qc were not used) and the top part of the

figure was chopped for the purpose of representation. Compare to Figure 1.

(numerically) qc =
0.05C~, h~c

=
29.8Cj~ and IIc

= n~~
0.0133~Cj. The ratio of projected

area A~ to real area A in the buckled state (at the transition) is A~ IA
=

0.156. Recall that

since A does not change through the transition, this ratio determines the relative width of the

plateau in the pressure-area isotherm. Note that the sign of the spontaneous curvature C~
determines if it is hexagonal (h~ > 0) or inverse-hexagonal (h~ < 0) buckling shape which is

obtained (see Fig. 1).
As expected we have found

n~~
IIc

~J

~Cj, however, the numerical prefactor v obtained is

much smaller than unity. We attribute this to the insufficient adequacy of our trial function

the first harmonic of the hexagonal symmetry which only slightly breaks the up-down
symmetry. (The average curvature for the above minimal shape is (H)

=
0.0087C~.) We

also note that our minimal buckling shape obeys qch~c ci 1.5, signifying a breakdown of our

expansion, which assumes qh~ < 1. In view of these, we now seek to go beyond the expansion
and beyond the first harmonic of hexagonal symmetry. We shall therefore use the following
ansatz

h(x)
=

W~exp
u~

cos(q~) + cos

q
~ ~ ~~

+ cos

q~
~ ~~

(21)
~ ~

which is able to more appreciably break the up-down symmetry and mixes high order harmon-

ics. Substituting this function in equation (17) and performing e~act numerical integration,
the absolute minimum is found to be at qc =

0.355C~, W~c
=

2.5Cj~ and u~c =
3.55, leading

to IIc
= n~~

0.314~Cj and A~ IA
=

4 x
10~~ This result thus corresponds to an hexagonal

array of e~tremety long 'fingers" (see Fig. 2) whose length is about lc
=

8.7 x 10~Cj~, which

can be macroscopic. As expected, the numerical prefactor v =
0.314 appearing in the result

for Hc is now of order unity, and so IIc is significantly smaller than the one obtained using the

expansion in single harmonics.
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We may understand the high stability of these long fingers (subject, of course, to our trial

function) using the following consideration. Consider first the energy associated with end caps.

A positive (concave) quasi-hemispherical cap can indeed be adjusted to the spontaneous cur-

vature and give a negligible bending energy contribution, however, the penalty resulting from

an identical negative (convex) cap will be too large to be compensated for by this adjustment.
Thus the asymmetry between maxima and minima in the hexagonal array can only slightly
lower the free-energy density. The energy is much more significantly reduced in the case of long
fingers because the core of a finger approaches a cylindrical shape, whose radius is adjusted
to the spontaneous radius of curvature. Using this idea let us now estimate IIc for the case of

perfect, cylindrically shaped, fingers of circular radius R
=

Cj~ Denoting their length as we

obtain from equation (16)

~~ ~~ ~
~+

~~~io ~~~~

with Ec~ps and Ac~ps denoting the energy and area associated with end caps. For I
- oc this

becomes

IIc
= n~~

~~Cj
,

(23)
2

showing that the numerical prefactor (v) should indeed be of order unity, but cannot be in

fact larger than 1/2. Note that the resulting critical surface tension, ac =

~Cj/2, is just the

tension of a flat soluble monolayer under conditions of complete saturation.

To see if this exotic shape can be reached by a thermal fluctuation at the thermodynamic
phase transition we have to look at the energy barrier. Taking ~ m 30kBT and Gil

=
40 I, the

lowest barrier we are able to find (numerically) corresponds to
~J

103kBT per buckling period.
It is therefore essentially impossible that the buckling state will be reached at the equilibrium

transition point without an external excitation. (Of course, the high of this barrier, at the

transition, is proportional to /~, so that for
~ ~J

kBT it is
~J

102kBT, which is still rather high.)
As the pressure is further increased and passes through

n~~
the barrier lowers and vanishes at the

spinodal point for the transition. This occurs when the flat surface becomes a local maximum

rather than a local minimum on the free-energy surface in the (F,q, h~) configuration space.
We thus look for the second differential d2G and calculate it for a flat surface (h~

=
0, A

=
A~

and for an arbitrarily chosen q. We find

d~G)~~=o
= ~~j(~ (dA)~ +

Aq~
n~~ + ~q~ II(A)] (dh~)~ (24)

Only the second term in this expression can become negative, and so the limit of local stability
of the flat surface against buckling at wavenumber q is given by II~x

= n~~ + Nq~. The smallest

II~x is obtained for the smallest possible wavenumber q = x
IL (with L, the system linear size)

and the spinodal for the flat monolayer is thus

flex
= ~o + 7r~

)
" ~o (25)

It is not surprising that this is just the threshold obtained by MiIner et al. [3] for a
(second order)

buckling transition in the absence of spontaneous curvature. It is also of interest to find the

spinodal of the buckled state. This occurs when the buckled state local minimum combines with

the barrier and becomes an inflection point. We thus obtain numerically II~x cf IIc 0.3~Cj
for the spinodal pressure. We see that this still corresponds to a relatively high pressure,

n~~
II~x

~J

~Cj. Pressure-area isotherms often show similar hysteresis under compression and

expansion, although the hysteresis we obtained here is indeed a very small one.



1008 JOURNAL DE PHYSIQUE II N°7

We have been concerned so far solely with the absolute minimum of the free-energy. As

discussed above, the long fingers solution is not easily accessible because of the too high energy
barrier involved. It is therefore of interest to search also for local minima which may have

a smaller energy barrier. The only other minimum which we were able to find is at the low

cutoff value q = ~
IL. Adding gravity to the problem shifts this low cutoff value to much

shorter wavelengths [3j, however the corresponding critical pressure is (slightly) larger than ~~.

It thus appears that, within our assumption of having no overhangs, the long fingers solution

is the only buckling shape to be considered for the bending free-energy (at positive surface

tensions) [27j. Of course, it is possible that by forming "beads" these fingers may further lower

their free-energy. This will be briefly discussed in Section 5.1.

3. Mixed Surfactant Monolayers

When
a

monolayer is composed of two components, the local composition may vary from one

place to the other depending on the local curvature. Since each surfactant, when forming

a single component monolayer, can be characterized by its own spontaneous curvature and

bending modulus, in the mixture these quantities will vary from one place to the other,leading

to a coupling between curvature and composition. These effects have been previously studied

by a few authors, in which a second order buckling transition has been found upon lowering
the surface tension [16,17,22]. However, these studies did not take into account the non-linear

(high order in h) effects introduced by the spontaneous curvature, as described in Section

2. Wang [17] studied this (second order) type of transition for a monolayer without surface

tension, which corresponds to a surfactant-saturated interface. Leibler and Andelman [16]
considered a non-zero surface tension, bending free-energy, composition free-energy taken to

high order, and composition-curvature coupling. This yielded first order coexistence between

flat and (hexagonally) buckled states and between different buckling states upon varying the

composition, provided that the surface tension is below a given critical value. When the surface

tension is varied at a given composition [16j, they obtain a buckling transition which appears

second order (since qc =
0 at the transition). As shown below, a non zero average spontaneous

curvature makes this transition always be first order and so it can be observed as a plateau
isotherm.

For simplicity, we shall consider here only composition variation of the spontaneous cur-

vature, the variation in the local bending modulus being neglected. In addition, we assume

that the spontaneous curvature is a linear function of the composition. Namely, given the

mole fraction # of (say) component 1, and the two spontaneous curvatures C)~l and C)~~, the

resulting spontaneous curvature is

c
=

c(I) j +
c(2) ji j) j26)

Introducing the local composition variation 4/(x)
as

#(x)
=

#~ + il /2, where #~ is the average
of # (and is independent of position), we may write

C~
=

©~ + t4/ (27)

~~~~~

C
=

C~~~ ~j ~ ~~~~ (~ ~j (~~)

t
= (Cj~~ Cj~~) /2 (29)

4/ is thus a scalar order parameter describing the local composition variation from homogeneous
mixing (4/

=
0) of the two species. It is bounded according to -2#~ < 4/ < 2(1- #~), where
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the lower and upper bounds correspond to the single component case. Equation (27), when

inserted into the bending free-energy equation (7), leads to a sum of a bare bending-energy

term F~ (in which ©~ replaces C~) and a coupling term

Fc
=

-~t
/ d~~fiHflt (30)

A~

We now need only to specify the free-energy of mixing. To low order in fit it may be written as

F~
=

/
d~~fi1%4/~ + ((V4/)~ (V4/ Vh)~ /g) + a34/~ + a4

/~)
(31)

A~
2 2 3. 4.

The terms multiplying are the explicit expression [17] of the square gradient term on a

curved surface (Vs4/(s))~ in projected base coordinates (x) (and so lead to another, higher
order, coupling between 4/ and h). We exclude the possibility that there is an inplane phase

transition within a flat monolayer, so that a2 and are positive; a3 can be positive or negative
depending on the composition, but a4 is positive for stability. (a2 is taken to include the

contribution ~t~ resulting from the bending part. These coefficients can be suitably estimated

using the mean-field approximation to the lattice-gas model [28], but we prefer not to invoke

this model explicitly. If the composition is nearly symmetrical, #~ m
1/2, the coefficient a3

is small [16,28-30] (assuming that only two body interactions) and so it is sufficient to take

only the quadratic terms in order to obtain qualitatively correct results. For non-symmetric
compositions, the higher order terms can stabilize the hexagonal phase over the stripe phase [16]

and so will be included.

The total free-energy associated with the order parameters h and fit, and which is analogous
to equation (6), is the sum of the four contributions

Fh~=F«+F~~+F~+Fc. (32)

We may now repeat the procedure described in Section 2, for the present case. The only
difference is that Fh~, which replaces Fh of Section 2, has to be minimized over both h and

4/. Thus we find again
a = ~~ flex at the transition. The two states (buckled and flat) have

again the same area A. Equating Fh~ to zero and solving for IIc we find

Unlike in the case of a pure monolayer with non-zero spontaneous curvature, for a one dimen-

sional buckling, the coupling Fc resulting from the spatially varying part of the spontaneous
curvature is not simply a constant. We therefore compare the stability of the two symme-

tries, stripe and hexagonal. The buckling shape h and the composition order parameter 4/ are

assumed to have the same phase (based on the result of the linear theory [16,17], discussed

below). For the hexagonal symmetry, h(x) is taken to follow equation (19) and similarly fit

follows

4/(x)
=

4/~ cos(qx)
+ cos

q
~ ~ ~~

+ cos

q~
~ ~~ jj (34)

~ ~

For the stripe symmetry we use

h(x)
=

h~cos(q~) (35)

and

lY(x)
=

lY~cos(q~) (36)



1010 JOURNAL DE PHYSIQUE II N°7

1

-+
~

o.s

o.995

0.6
d

~'$
0.99 ",

C ~

~.~~~
0.2

Hexagonal Stripe

0,98 0

0 0,2
0.i~

0.6 0.8

t

~)
~ t/(C~+t)

1

0.998
0 8

0.996

~
0. 6

~e 0.994 ~
,w ",

u ~~
0.992

0. 4

°.99 Stripe Hexagonal
0.2

0,988

0.986 0

0 0.05 o-1 0.15 0.2 0.25 0.3 0.35 0.4

b) ~Z~~~~@
~

Fig. 3. Dependence of the external pressure Hex and the ratio An IA of projected area An to real
area

A, on
the following three parameters: (a) coupling constant t, (b) coefficient a2, and (c) coefficient b.

The results
were

obtained by minimizing numerically equation (33) using the trial functions equations
(19) and (34) for the hexagonal symmetry and equations (35), (36) for the stripe symmetry. By

changing each of the above three parameters, we can see a crossover
(denoted by tc in (a)) front

small amplitude buckling of stripe symnletry to large amplitude buckling of hexagonal synlmetry. The

synlbols are nunlerical data points, the lines are numerical fits to the data, performed separately for

the two regimes. (The vertical lines are guides to the eye.) We used lo =
ill dyne /cm and

K =
30kBT

for all figures. In la),
a2 =

2A x
10"~kBTli~, b

=
S~ =1S0kBT. In (b), t~~

=
77 lL, b

=
30kBT and

Co~~
"

83 1. In (c),
a2 "

2.4 x
10~~kBTli~, t~~

=
Co~~

=
80 I.
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The resulting IIc is minimized numerically with respect to h~, flt~ and q, for various coefficients.

Consider first the symmetric (or nearly symmetric) composition case #~
=

1/2, for which

we set [16, 28] a3 " a4 "
0. (a4 is set to zero for simplicity.) Our results for this case are

summarized in Figure 3. Fixing two of the remaining parameters (a2, b and t), we always
have a crossover from a regime of stripe type buckling of small amplitude (and A~ IA cf 1) to a

regime of he~agonal and large amplitllde buckling (A~ IA < 1), reminiscent of the long fingers
solution obtained in Section 2. Varying the coupling constant t, we can see from Figure 3a that

for large t the stripe (and small amplitude) buckling is preferred while for small t the hexagonal
(and large amplitude) buckling is more favorable. There is a critical value of t, tc m

Co, that

separates the two regimes. In Figures 3b, 3c we can observe similar crossovers when changing
either a2 or b respectively. Note that although IIc is (of course) continuous when crossing from

one regime to the other, the plateau relative width (1 A~ IA) changes sharply. For typical

range of parameters (©p~
=

80 I,
~ =

30kBT, a2 ~J

10~~ -10~~kBTli~ and b
~J

0.1-10~), we

usually get the wavelength of the buckling state ~c
~J /Jm (for both small and large amplitude

bucklings). The amplitude of the small buckling state is about 100 I, and that of the large
buckling state is greater than /Jm.

When the composition is non-symmetric, namely when a3 is either positive or negative,
the situation is more complicated. To illustrate this we compare here two different systems
(involving different types of surfactants), both chosen to have the same ©~, but inversely
symmetric composition #~

-
1- #~. (#~ always refers to the mole fraction of surfactant whose

spontaneous curvature Cj~~ is the largest of the two. For large )a3) (say, for #~
=

1/8, 7/8)

we find again a crossover bewteen two types of buckling states when the coupling strength t

is varied, with the critical value t~ » ©~ for this case (e.g., tc
~J

10©~ for #~
=

1/8, based

on our lattice-gas estimates [28]). For the regime t > tc (I.e., t » ©~) we find, instead of

the stripe buckling, a small amplitude buckling of either he~agonal (a3 Positive, #~ > 1/2) or

inverse-he~agonal (a3 negative, #~ < 1/2) symmetries. These have slightly different values of



1012 JOURNAL DE PHYSIQUE II N°7

IIc and A~ IA, because of the symmetry breaking effect associated with ©~ > 0. Otherwise,
this case appears similar to the one discussed by Leibler and Andelman [16] for ©~

=
0. If,

on the other hand, t < tc (say, t
~J

©~), we find, for both compositions (#~
=

l/8, 7/8), only

a single he~agonal, large amplitude, buckling state. The values of IIc are still very close to

one another, however, the values of A~ IA (or the wavelength to amplitude ratios) are now

very different for the two compositions considered, differing by roughly a factor of two. (For
example, using the lattice-gas estimates [28], t

=
C~

=
1/80 i~~, and ~c =

30kBT we obtain

A~ IA
=

0.1 for #~
=

1/8, and A~ IA
=

0.056 for #~
=

7/8.) This is because in one composition
(#~ < 1/2) the cap energy is smaller than in the other composition (#~ > 1/2) if the selected

buckling symmetry is hexagonal (rather than inverse hexagonal). Therefore, in the former case

the monolayer can give up some of its cylindrical-like portion in favor of having more caps.
This is similar to the situation in (bulk) worm-like micellar phases, in which the cap energy is

used to control the micellar length [31].
Recall that our results for the transition are not sensitive to the equation of state II(A) in

so far as the values IIc and A~ IA are concerned. However, when more than one buckling state

are competing, it is possible (in principle) that a transition to the second buckling state will

follow (under further compression) the first (flat to buckled) transition. This possibility can

be examined quantitatively only if the equation of state II(A) is known, and so will not be

further discussed here.

Let us now consider the different possible isotherms. Around the buckling transition point
the shape of the isotherm may take different forms depending on the coupling t. In Figure 4,

we schematically depict the two equilibrium situations: (I) small amplitude buckling for t > tc

(Fig. 4a), and iii) large amplitude buckling for 0 < t < tc (Fig. 4b). For the latter case,

0 < t < tc, we also depict a non-equilibrium situation (Fig. 4c), in which the equilibrium, large
buckling, state is bypassed by the metastable, small buckling, state. This is quite a relevant

scenario because, as discussed for the pure system case, the large energy barrier involved in the

transition to the former state may hinder this equilibrium transition. We should emphasize
that the precise value of IIc depends on how far is the system from the point of phase separation
within the flat monolayer. However, the general properties we discussed here are not sensitive

to this value.

Some characteristics of the small buckling state (t > tc) may be understood in a similar way

to that discussed by Leibler and Andelman [16j. Putting a3 = a4 =
0 in equation (31), let us

first minimize equation (32) in Fourier space over the field fltq (the Fourier transform [32] of

4/(x)). To lowest order in h, this leads to [33]

~~ ~

~~~q2
~~ ~~~~

which, upon substitution in (32), leads to the effective free-energy for h (taken
now only to

quadratic order [33])

It can be seen that the term in brackets is minimized by a different wavenumber q than the one

chosen (by the higher order terms, omitted in Eq. (38) for the "long fingers" state, qc ~J

©j~.
Thus when the value of this coefficient at the preferred wavelength becomes sufficiently small

(but still positive), e,g., when t is large, a first order transition induced by the higher order

terms can occur.
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Fig. 4. Schematic representation of possible pressure-area isotherms for different coupling constants

t: (a) t > tc, for which only small amplitude buckling is possible. (b) 0 < t < tc (where tc is the same

one appearing in Fig. 3a), for which only large amplitude (long finger) hexagonal buckling appears.

(c) Metastable isotherm for 0 < t < tc. The long finger, equilibrium, state is kinetically bypassed by a

metastable, small amplitude, state. The metastable state can evolve by nucleation to the long finger

state as the pressure is further increased and the nucleation barrier is lowered.
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The situation is further simplified if the gradient terms in F~ can be neglected, I.e., if

bq) < a2. In this case we get, upon minimization over 4/, 4/
=

(~tla2)H, leading to an

effective bending energy

lj(I
=

F~ k
/ d~xfiH~ (39)

2
A~

where k
=

(~t)~la2. When k » ~
(large t),

we may neglect F~ in equation (39) and the

effective bending energy is always negative for non-vanishing (H~). The latter is stabilized by
the surface tension term F«, leading to buckling with wavenumber q) m a/k m

aa2/(~t)~ (in
the small amplitude regime).

We conclude that the "small buckling" states (appearing for t > tc), either the stripe for

nearly symmetric compositions or the hexagonal for non-symmetric compositions, are induced

purely by the composition-curvature coupling, as in the study of Leibler and Andelman [16].
In the "long fingers" (large buckling) state (t < tc), on the other hand, the shape is determined

mainly by the average spontaneous curvature ©~, and the local composition is "slaved" to this

preferred shape. (This latter case is somewhat similar to the study of Seifert [34] of curvature

induced segregation in two-component vesicles.) Our theory thus appears sufficiently general

to show a crossover between these two behaviours when the coupling strength t is varied

relative to the average spontaneous curvature ©~. The latter can be easily achieved by varying

simultaneously the two spontaneous curvatures
C)° and C)~l

4. Tilt-Curvature Coupling

A single component monolayer, sitting at the liquid-air interface, can also have inplane de-

grees of freedom which may couple to the local curvature, similar to the two-component case

discussed in the previous section. An important degree of freedom for a monolayer in its liq-
uid condensed phase is the molecular tilt with respect to the surface normal [1,35,36]. (For

oil-water interfaces tilt is unlikely to occur because the oil molecules can fill up the space in-

between the chains and thus minimize the van-der-Waals energy.) In fact, the tilt curvature

coupling may be thought of as a mechanism for spontaneous curvature for chains which are not

flexible enough to minimize their van-der-Waals energy by folding randomly in space [21,37].
Recently, the tilt-curvature coupling was used to explain the appearance of the ripple phase

(Pp>) of phospholipid bilayers [21]. Here we shall use a similar approach for Langmuir mono-

layers. This involves two differences. First, unlike for bilayers in solutions, we may not assume

that the surface tension is zero. Second, non-symmetric terms, which vanish for a bilayer on

the basis of symmetry, must be taken into account when dealing with a monolayer.
We shall use the projection m of the tilt vector onto the local tangent surface as the order

parameter. If we denote the surface normal as
fl, the unit vector along the chain axis as fi,

then the in-plane order parameter is m =
i1- (l~l i1)li (see Fig. 5). Similar to 3D liquid

crystals [38], the free-energy density for m is assumed to have the following Landau-Ginzburg

type expansion [21,35]

Here, the (V m)~ and (V x
m)~ terms reflect the energy cost for in-plane splay and bend

deformations of the tilt, respectively. The (V~m)~ term is required for stability (D > o) in

case Cl or C2 are negative. The )m)2 and )m)~ terms compose the usual Landau free-energy
which can describe a transition from zero (b > 0) to non-zero (b < 0) average tilt, but for

simplicity we shall take b > 0 only, I-e-, the average tilt vanishes. (Nevertheless, the quartic
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Fig. 5. Surface normal unit vector fl, tilt unit vector it, and tilt projection vector m.

term with /J > 0 is required for the stability of modulated structures, as shown below.) The

last term, )m)2(V .m), favors a splay deformation of m and is allowed here because of the head-

tail asymmetry [35, 39]. This differs from the bilayer case studied by Mackintosh et al. [21],

for which ~s
=

0 due to the bilayer symmetry. In the latter case fm has a simple Lifshitz

free-energy form which is known to describe equilibrium modulated phases if either Cl or C2

are negative. As shown below, the presence of this cubic order term for a monolayer allows for

the buckling transition to be first order.

The total free-energy density of the system includes surface tension, bending energy, the

above tilt free-energy, and a coupling between the curvature and the tilt. The bending energy

will be described according to equation (7) but with C~
=

0, since an
effective spontaneous

curvature already emerges in this model as a result of the tilt curvature coupling. Hence it will

be sufficient to use this free-energy only to quadratic order in h. We shall also take the lowest

possible order for the coupling [21,40]

fc
=

A(V~h)(v m) (41)

The total Gibbs free-energy of the monolayer, which includes the area constraint (2) and is

analogous to equation (5), is

G«
= [~o + Jo II) a] A (~o flex Ao + Fhm (42)

with

F~m
= a

/ d2~fi + F~ + Fm + Fc (43)
A~

and where Fm
=

f d2~fifm and Fc
=

fd2~@fc.
We may now follow the same approach as in Section 2, but in addition to minimizations over

A, A~, and (h(x)) we now have to minimize also over
(m(x)). Minimizing over A and A~ we

find again that at the buckling transition the surface tension coefficient is simply
a = ~~ flex.

Because the free-energy Fhm is now taken only to quadratic order in h, we can first minimize

exactly over h (or, equivalently, integrate out h), to give the linear relation in Fourier space

hq
=

~~~ ~~
,

(44)
a + ~q

where hq and mq are the Fourier transforms [32] of h(x) and m(x), respectively. Thus any

modulation in m(x) necessarily leads to a modulation in h(x), with just the same periodicity.

Inserting equation (44) into Fhm yields an effective free-energy for m

~jm) ~
i £ A~q~(q 'mq)(~ '~~-~~ (45)

eR m 2 a + ~q2
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It can be seen that the coupling reduces the effective coefficient of the m2 term and so helps
to destabilize the unmodulated (flat) state. If ~~ =

0, a disorder to modulated (buckling)
transition of second order type may occur at sufficiently large A. When ~s # 0, which is

possible for a monolayer, the transition will be first order.

Consider now the two following limiting cases: (I) When surface tension dominates over

bending energy at the relevant wavelengths q ~J q~, I.e., if a » ~q], the effective free-energy
density in real space simply becomes

(Ql
=

/ d~~ fm
~~

(V(V
))~)

(46)
2a

It is thus clear that large A~ la can induce a buckling (ordering) transition, which is either first

(~s # 0) or second (~s
=

0) order. Otherwise, for small A~ la and small D the phase diagram
should be identical to that discussed by Mukamel et al. [39]. (ii) For small surface tensions

a < ~q), equation (46) has the same form as Fm with C[
=

Cl (A~/~) replacing Cl For

~s
=

0 it is identical to the one used in reference [21] for achiral lipid bilayers. For positive C[
and non zero ~s this effective free-energy is identical to the one used in references [35, 39] to

describe modulated tilt structures in flat monolayers.
We now wish to calculate the critical pressure IIc for the first order buckling transition.

We use again a variation approach in which both h(x) and m(x) have hexagonal symmetry
taken to the first harmonic. (In the single harmonic approximation, the stripe and 2D square
lattice buckling symmetries will have higher flex than the 2D hexagonal symmetry, because

the gradient-cubic term )m)~(V m) vanishes for the former shapes.) h thus obeys equation
(19), and m is chosen, according to equation (44), to obey the vorticity condition V m ~J

V2h

(or m m~

Vh), leading to

m~ = m~
sin(q~) sin q

~ ~ ~~
+ sin q~ ~ ~~

,

(47)
~ ~ ~ ~

~

my =

(m~ sin q
~

~~
+ sin q°~

~/~
(48)

This tilt modulation is depicted in Figure 6. We can see that
m has a vortex when h is a local

maximum and antivortex when h is a minimum. Substituting these expressions in equation
(43) and minimizing over h~, leads to (similar to Eq. (44))

h~
=

~°~~ (49)
a ~q

and to the effective free-energy density

~
A2q4 ~j 3~~qm( + )~~~ ~~°~~jp)

=

3
(I + ciq~ + Dq

la + ~q~l ~

This free-energy density periuits a first order transition to mo # 0. We now have to miniiuize

f)$~ over mo and q. This is done in two stages. First, we miniiuize over mo and solve f)$~
=

0

(using
a = lo fl~x) for the q-dependent critical pressure

nclq)
= lo + ~q2

A~q~

~ + c ~2 + ~ 4
~]

~

(51)

~ g $q
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Fig. 6. Vector order parameter m in the hexagonal buckling state. Note that
a vortex of m

corresponds to a
maximum of h, and

an antivortex to a minimum of h.

From this expression we obtain the condition that the minimal flc(q) (varying q) be smaller

than lo

&2 ~2
Cl +

2fi
< + ~ (52)

~ 18/L

To be more explicit we expand (51) for small q to obtain

flc(q)
= lo + ~q~ cq~ + dq~ (53)

(in which we assume d > 0) where

~2
~ ) (~~)

and

~2 ~2
d

= $ (cl
~)

(55)
b 18/l

Upon minimization over q we obtain

qc =

~ ~ ~~~
(56)

and [41]

Hc
= lo

~~~ ~~~~ (/ji~ ~~~~~~~
(57)
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The relative width of the plateau in the pressure area isotherm is obtained as

vjjx2(2c
~i~(c

+ kfi) ~~~~

Note that for ~~ =
0 the plateau disappears and the transition becomes second order.

As mentioned earlier, the tilt,curvature coupling which we have considered here as a iuech-

anism for buckling is siiuilar to the iuechanisiu suggested for the rippling transition of phos,
pholipid bilayers [21]. We eiuphasize again the differences. Because of the inversion symiuetry
of bilayers, the gradient-cubic (~~) term in the free-energy is missing. So the transition from

flat to rippled bilayer is of second order, instability, type, whereas for a monolayer it is al-

ways first order. Monolayers also endure surface tension, and so the pressure fl~x is another

controlling paraiueter for the transition. The bilayer ripple symiuetry can be either lD or 2D

square lattice, whereas for a monolayer the 2D hexagonal symiuetry is preferred. It could have

been expected (contrary to our
findings) that to buckle a Langiuuir iuonolayer should be more

difficult than to buckle a bilayer (in equilibrium) which is made of the same aiuphiphile, as

the surface tension teriu contributes a positive energy for flex < lo However, because of the

presence of the ~~ teriu, the transition is facilitated and becomes first order for non-zero ~~.

Finally, because of the possible applicability to the experiiuent of reference [5], we would like

to comment on the case of a solid (crystalline) monolayer with a nonzero tilt. In this situation

we may expect that (m( (namely the tilt angle with respect to the surface noriual) remains

constant because of the large energy penalty which opposes deviations from the preferred value.

However, rotations of m may be possible with a lower energy cost, and could be described by

the free-energy (40). (This case is similar to the P()J of Chen et at [21].) Then, all terms

involving (m( just contribute a constant; the ~~ term becomes linear in the tilt modulation and

vanishes after integration. In order to satisfy (m(
= m~ =

const. we must choose [21] a stripe
modulation (say, in the z-direction) in which m completes one rotation in a buckling period,

m~ =
m~cos(qz), my =

m~sin(qz), h
=

h~sin(qz)
,

(59)

leading again to the relation (49) upon minimizing over h~. The effective free-energy for m

simply becomes
~ ~

f)Q~
=

ICI + C2)q~ + 2Dq~
~ ~

~

m( (60)
4 a + ~q

A second order buckling transition to a stripe phase is obtained when the coefficient of m( first

becomes negative. (Higher order gradient terms, such as (V m)~,
can be added for stability.)

Solving for the q-dependent critical pressure, and minimizing over q we find the wavenuiuber

at the transition

qc "

~~ ~ ~~ ~~~

la 1)~/~ (61)
2D

provided that 8 > 1, where
~

~
ICI + C2 )~

~~~~

The critical pressure is found to be

flc=lo-)~(~+(-l)
(63)

2

and is smaller than i~ as expected. We note that for a solid monolayer ~ is usually very large,

~ m~

100kBT. We may also expect that [42] A
m~

Ci
m~ ~.
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5. Discussion

5.I. OIL-WATER INTERFACES. From the viewpoint of interracial bending free-energy, we

have found that spontaneous curvature permits the stability of very long fingers at positive

interfacial tensions. However, since in our approach no overhangs were
allowed (only single

valued functions h(x) were considered), it reiuains to explore the stability of these fingers
against their own deformations. First, we note that when spontaneous curvature is not in-

cluded, the usual Rayleigh instability in a cylindrical finger of radius R cd
Cj~ cannot occur

because the surface tension is smaller than the minimum required [43] (3/2)~/R~. However,

when spontaneous curvature is included in the bending energy [44], linear analysis shows that

a ltayleigh-like instability will occur provided that RC~ > I (using
a =

1/2~C().
Moreover, the energy of siuall separate droplets can be lower than the energy of a cylindrical

finger even if the Rayleigh-like instability does not occur. If, for exaiuple, we equate the

volume of a long cylinder of radius RC~
=

o-g to the total volume of spherical droplets of

radius l~, take
a =

1/2~t7j and neglect for simplicity the Gaussian rigidity R, we find that

for 1.81 < R~t7~ < 2.26 the interfacial energy of droplets is smaller than that of the cylinder.
(This is true also for Rst7~ > 163. The two states are

therefore connected by an energy barrier

and one needs a thermal fluctuation to initiate the transition. In addition, the free-energy of

droplets in the bulk is further reduced by their entropy of mixing. We may thus conclude

that the long finger profile can only be a metastable state. This conclusion is supported by
roughness measurements of the interface between an oil phase and a droplet microemulsion

phase in coexistence [45] (I. e., in the regime of eiuulsification failure). The droplet radius can

be used as a measure of t7j~ In this case the surface tension is close to 1/2~t7j but the

interface roughness was found very small [45].

5.2. AIR-WATER SURFACES. Considering pure Langmuir monolayers, the long finger solu-

tion is clearly hardly relevant. First, one needs to get very close to the spinodal point for it to

be accessible by a thermal fluctuation; this occurs at high pressures, flex > lo Second, even

if such a state is obtained, it is not likely to stay stable against multilayer formation. Hence,

the monolayers which are expected to buckle are those involving tilt order parameter which

usually is the case in the liquid condensed phase and those having iuore than one component,

e.g., the binary iuixture discussed in Section 3.

Our predictions in the latter case involve only experiiuentally iueasurable quantities: the

bending rigidity and the spontaneous curvature of each component. Thus the coupling strength

t and the average spontaneous curvature ©~ (Sect. 3) can be found. Depending on the ratio

of these two variables, the preferred buckling shape is either of siuall aiuplitude qh~ < I or of

large aiuplitude qh~ » I. The transition is first-order in both cases.

Most experiiuents, such as those done on lung surfactant [2] or fatty acid [10,12,13] iuono-

layers, appear at present too limited to allow for a detailed coiuparison with the theory. It

might be possible to interpret, in terms of our binary mixture theory, the experiiuent reported

in reference [4] on a chlorosilane monolayer, in which a buckling state has been observed by
grazing incidence X-ray scattering. The reported buckling amplitude is of order nm and the

wavelength is about 10 jxiu, both in rough agreement with our "small amplitude buckling"
results. The interpretation involves a few assumptions. First, we regard the partial polymer-
ization (Si-O-Si backbone), which is believed to take place in this systeiu, as reversible, I.e., of

equilibriuiu type. Second, we postulate that the polyiuerized doiuains have a different spon-

taneous curvature than those which are not polymerized. We note however that this "binary
mixture" viewpoint is not entirely adequate for this system, and more direct observations are

clearly needed.



1020 JOURNAL DE PHYSIQUE II N°7

6. Conclusions

In this paper we examined the stability of flat monolayers against their buckling. We consid-

ered both pure and mixed monolayers, in both cases the bending energy plays a major role.

Our predictions suggest that, in the absence of molecular tilt with respect to the surface nor-

mal, a pure monolayer at the air-water surface will usually not buckle at positive tensions. In

the presence of tilt, as in the case of iuany liquid condensed phases, the monolayer may more

easily buckle via a mechanism siiuilar to the rippling of a phospholipid bilayer. In mixtures, the

monolayer can easily buckle to periodic structures due to a corresponding iuodulation in com-

position. The transition is almost always first-order due to the inherent up-down asymmetry
of the monolayer, and so can be observed as a plateau in the isotherm.

A pure monolayer at the oil-water interface may buckle to a state of extremely long fingers.
However, this state is likely to be metastable with respect to its breakage into droplets. It

therefore remains to study the growth dynamics of these fingers which is competing with their

breakage kinetics into droplets. Such a process has been previously suggested as a iuechanism

for spontaneous emulsification [6]. Since the radius of these quasi-cylindrical fingers is close

to the spontaneous radius of curvature, so will be the radius of the droplets formed in such a

process. The sign of the spontaneous curvature clearly determines if it is fingers (or droplets)
of oil in water, or water in oil, which are foriued, so that the iuicroeiuulsion obtained in this

way would be similar to its final equilibrium state. This is left for a future study.
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