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Abstract. We describe the behaviour of grafted polymer layers in strong solvent shear flows

within
a

model where only
a

subset of chains
are

exposed to the flow (hence to the tension arising
from hydrodynamic drag forces), leaving the remainder protected. We show that for quite small

values of the shear rate, I, the system reaches a self-regulating state where the lowest possible
fraction of grafted chains is exposed to the flow. This brings quantitative corrections to previous
models (all based on the assumption that the chains behave alike) which correspond to a

higher
susceptibility of the layer to shear fields: the onset of significant swelling occurs at a lower

shear rate and at high shear rates the asynlptotic value of the relative swelling is sonlewhat

larger. Furthermore
we

find that the behaviour of the layer strongly depends
on

both the index

of polymerisation of the chains and the grafting density. In particular, for thick brushes,
our

model predicts
a discontinuous (first order) swelling transition at a

critical shear rate. The nlodel

is used to study the rate of desorption of individual chains grafted
ma compact end-stickers and

insoluble polymer blocks. In both cases, there is a strong increase in desorption at the swelling
transition. For the

case
of end-sticker grafting,

we
find the desorption rate 7Z obeys 7Z

-J

i~
for large shear rates; while in the case of diblock grafting, we find that the barrier height to

desorption is
a strong function of shear rate, leading to an

exponentially enhanced desorption

rate for large I: 7Z
~W

ei"

1. Introduction

Polymers at interfaces show remarkable properties from both a scientific and technological point
of view and have been the subject of numerous recent studies. One of the most investigated

(*) Author for correspondence (e-mail: Aubouy@ext.jussieu.fr)
(**) URA n° 792 CNRS

(***) UPR n° 343 CNRS

@ Les #ditions de Physique 1996



970 JOURNAL DE PHYSIQUE II N°7

situations is preferential adsorption, when polymer chains are grafted by one end to a repulsive
surface. At sufficiently high coverage, the chains stretch away from the interface to avoid

excluded volume interactions, this elongation being counterbalanced by an elastic restoring
force of entropic origin. The resulting layer formed from these stretched polymers is often

referred to as a polymer brush. Both scaling and self-consistent field approaches have been

used to model the static properties of polymer brushes, which are now well understood 11, 2].

Polymer brushes in good solvent conditions are rather diffuse and soft structures, and hence

are very sensitive to external perturbations. In particular, there is experimental evidence that

polymer brushes swell in sufficiently high shear-rate solvent flows [3,4]. This behaviour was

rationalized by Barrat [5], who considered carefully the Rabin-Alexander model [6j of the poly-

mer brush deformation in response to applied boundary shear forces. In this approach, the

response of the layer to a fixed shear force £jj applied to the free end of each grafted chain

was investigated by assuming that all chains behave alike and are uniformly stretched (the
Alexander-de Gennes ansatz ii, 8]), and by making use of the Pincus scheme [9] for describing

a chain under traction. The result is a non-linear increase of the thickness of the layer as a

function of the applied force. However, quantitative comparison with experiment is difficult

since the shear rate I is the experimentally relevant parameter, whereas the effective boundary
shear force £jj is unknown. Recently, a more complete scaling model was proposed [10] which

allows non-uniform stretching of the chains [11,12] and calculates, in a mutually consistent

manner, the deformation of the layer and the solvent velocity profile. The results of refer-

ence [10] can be interpreted in terms of a
(simplified) "quasi-monoblock" picture where each

chain is composed of a tilted, linear string of small Pincus blobs terminated by a larger blob

of size (end, typically of order the average seppration between grafting points, (o, when the

shear rate is not too large. The shear flow, which only penetrates a distance (o into the layer,

exerts a drag force on each chain £jj Gt 6xq§(( % iTo kBT/(o, where q is the solvent viscosity,
kBT is the thermal energy and To % nil /(kBT) is the characteristic Zimm relaxation time

of a blob of the unperturbed brush. The relative swelling of the brush as a function of the

relevant parameter §To shows an asymptotic value of % 25% for iTo » 1, in accordance with

Barrat's calculation [5]. However, a rough comparison between theory and experiment shows a

discrepancy of one order of magnitude in the value of § required to produce the experimentally
reported brush swelling of % 20%. As pointed out by the authors of reference [10j, an inher-

ent limitation of their approach remains the Alexander-de Gennes ansatz ii, 8j which assumes

that all chains behave alike. This approximation is appropriate when considering properties
which are not sensitive to the detailed structure of the layer, but several important features

are absent. For equilibrium brushes, self-consistent field calculations [13,14] show that the free

ends are in fact distributed in the whole layer, rather than concentrated at its extremity. This

means that the effective number of chains per unit surface in the outer fringe of the brush is

lower than the value
a =

a~/(( at the grafting surface, and we thus might expect a decrease

in the value of iTo at the onset of swelling (since iTo
~J

a~~/~).

An interesting aspect of this problem, in terms of the underlying physics, is the possibility
that the system might respond to shear flows by exposing a subset of chains to a higher tension,

leaving the remainder protected from flow, rather than exposing all of them to an equal but

lower tension. This could lead to a modified flow response, which we wish to explore in this

paper. Such effects could be particularly important in processes like desorption, which may

depend critically on the state of the most highly deformed chains. Unfortunately, a complete
theory of the brush response to shear flows involves allowing all possible configurations for the

grafted chains, and therefore is a formidable task. Furthermore, self-consistent field models are

based on arguments which are very sensitive to any perturbation of the equilibrium structure

and cannot be easily generalized.
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Fig. 1. Sketch of the dual-chain brush configuration. A fraction f of the chains are extended and

tilted by the shear flow; we assume that they form
a

quasi-monoblock layer of dragged chains. The

remaining fraction 1 f lie deeper in the adsorbed layer, where the flow is screened;
we assume that

they form
a quiescent Alexander-de Gennes brush in the volume left unoccupied by the dragged ones.

In the present paper, we therefore consider a simplified "dual-chain" model in which only
two types of chains are present (see Fig. i):

a fraction f of the chains which are extended and

tilted by the shear flow (hereafter called the "dragged" chains), and the remaining fraction

i f which lie deeper in the adsorbed layer, where the flow is screened (hereafter called

the "quiescent" chains). We assume, following reference [10], that the dragged chains form a

quasi-monoblock-like layer, while the screened fraction form a quiescent Alexander-de Gennes

type brush amid the lower sections of the strongly deformed chains. This model is clearly
oversimplified, but goes part of the way to relaxing the constraint that all chains behave alike.

We believe it may offer some useful qualitative insights into the full problem.
Due to a conservation law for the shear stress arising from flow (the total shear force acting

on the layer per unit surface area is independent of chain conformations), each of the dragged
chains experiences a force £jj % nil Jo). The dragged chain fraction is not fixed at the

onset, but rather is determined through the minimization of an effective free energy, subject to

suitable constraints. The deformation of the dragged chains in response to Ijj competes with

excluded volume and chain elasticity effects throughout the brush to determine the dependence
of f on the applied shear flow, and the resulting structure of the grafted layer as a whole. This

process is analysed in detail in Section 2. We will show that with increasing shear rate,
fewer chains participate in the upper layer, with f decreasing towards a low, self-regulating,
limiting value at high shear rates. As for the global properties of the layer, a somewhat higher
susceptibility of the brush to shear fields is predicted than in the one-component Alexander-

de Gennes-type picture presented in references [5,10] the onset of significant swelling occurs at

a lower shear rate and the asymptotic value of the relative swelling is larger. These predictions
offer quantitative but not qualitative corrections to previous models. In some circumstances,
however, f may undergo a (formally discontinuous) "jump" as the shear rate is increased.

Another qualitative difference is that in our approach, the behaviour of the layer under shear

flows depends strongly on the degree of polymerisation N of the chains; whereas previous
models were either independent of N [5j or weakly dependent on N [10j.
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In addition to the swelling effect there are some other properties which may depend strongly

on the details of shear-induced deformation. One such case arises in the analysis of the desorp-
tion rate for chains in a grafted layer subject to shear flows, which we explore in some detail

in Section 3. (We are unaware of previous discussions of this subject even within the simplest,

one-component brush models.) Brush formation is generally caused by the preference for one

extremity of the chain to associate with the grafting surface. Experimentally, the anchoring end

group can be a strong sticker le. g. an adsorbed zwitterionic group or a weak covalent bond),

or a section of insoluble polymer of different chemistry (e.g. a diblock copolymer in selective

solvent). In all cases, the work of detachment of the anchor AU must be large compared to

kBT to overcome the osmotic interaction between the chains in the brush (for which we pre-

sume the solvent is good). The desorption of a grafted chain occurs by the detachment of its

anchoring end, followed by the expulsion of the chain from the layer [15]. In the absence of flow,
detachment is a thermally activated process involving, due to osmotic pressure effects, a high

potential barrier AU, and so may be extremely slow. The application of a shear flow, which in

effect puts the chains under an external tension (arising from hydrodynamic drag forces), can

strongly increase the desorption rate. In Section 3 this shear-enhanced desorption process is

analysed in the context of our dual-chain model for both the strong sticker and diblock copoly-

mer grafting mechanisms. The results for the one-component Alexander-de Gennes-type brush

are included as a limiting case. (Hence the reader interested in desorption kinetics but not in

the dual-chain model can formally set f
=

in Sect. 3.) Section 4 contains our conclusions.

2. Deformation of a Polymer Brush Under Shear Flows

In this section, we analyse the behaviour of the dual-chain model brush described in the

Introduction, and depicted iii Figure 1. The brush is subject to hydrodynamic drag forces

which we assume to affect only the outermost blobs of the fraction f of the dragged chains. As

discussed in the Introduction, each chain supports a force Fjj T nil (Jo). The total drag force

per unit area which must be supported is determined by the solvent shear gradient outside

the brush, and is f-independent. (The value-of f does however affect the displacement of the

upper surface of the layer and hence the work done by the drag.) Following reference [5j, we

treat the drag forces as if they arose through an external thermodynamic perturbation, and

minimize the resulting effective free energy within a suitable ensemble. (This would not be

possible if the total drag force per unit area depended of f.)
The effective free energy F of this system is the sum of an osmotic contribution, F~~m,

involving excluded volume interactions, and an elastic contribution, Fej, involving the confor-

mations of the deformed coils. These are estimated by representing the chains as linear strings
of non-overlapping excluded-volume blobs (Pincus blobs [9j). The typical blob sizes of the

dragged and protected chains are, respectively, ii and ii. In this approach, the elasticity of a

stretched chain may be computed as if it was a Gaussian string of Pincus blobs [9]. This leads

to an elastic energy per unit area of the form

Tel % ~kBT
~

~~ ~~
fL~/~ + (1- f)E~/~) (l)

where the first and second terms are the contributions of the dragged (upper) and quiescent
(lower) layers, and where we have neglected the contribution from the single larger blob at the

extremity of the upper layer. In this equation, L
=

(H( + H()1/~ is the magnitude of the

end-to-end vector (Hjj, Hi of a dragged chain, E is the end-to-end distance of an untilted,
protected chain, and N is the polymerization index (the

same for all chains). In the spirit of

references [5, 6,10], the excluded volume interactions are computed as if the layer was a fluid of
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independent blobs of two different sizes. To lowest order in a virial expansion, this gives three

terms in F~~m corresponding to the self interactions (it and ii) and the mutual term (I j):

~2
Llii % 2kBTpf~vji(Lla)~/(Hila)

~2
Ui

i k 2kBTj(1 f)~vii(Ela)~
N

~2
Ui1 % 4kBTj f(1 f)ui i(Ela)~/~(Lla)~/~ (2)

N

where vii, vii, and vii denote the respective excluded volume parameters. Two identical

blobs behave as hard spheres, thus vii =

(( and vi i =
((. (We suppress various order unity

prefactors here and below). As shown by Lapp et al. [16j, this is not the case for two blobs of

different sizes, and we should instead write vii =

((((i Iii )~/~. (The idea is that the excluded

volume between a small coil and a large one is equal to the volume of the small one multiplied
by the number of times it can be replicated in the large one.) Inserting these into equations
(2) and using the Pincus scheme to write ii and ii in terms of L, E, N, and a, we find an

osmotic contribution to the free energy of the form

~

jf3/2 (1 j)2 f2 ~l /2 j(i j) ~l /2
~~°~~~~~~~

~2 J~l/2
~

jf~
~~

jf~ ~~~

The behaviour of the system is now given by the minimization of the pseudo thermodynamic
potential

=
F fa£jjHjj, where F

=
Fej + F~~m and Fjj % nil fa). Using equations (1)

and (3), this may be written in a dimensionless form as

4 Q ft~/~ + )(i f)e~/~ + 2
~~i/(~~

+ 2f(2 f) (iTo)hjj (4)

where, 4
=

a~G/(kBTNa~~/~), hi
#

Hi /Lo> hjj = Hjj /Lo, t
=

(h) + h ()~/~,
e =

E/Lo> and

Lo
#

aNa~/3, the thickness of a static Alexander-de Gennes brush iii].
Minimization of the pseudo-potential equation (4) with respect to hi hjj, e and f results in

the following set of four coupled equations

1(2
ii~

=
2 1- ~ (5)

212

~~~~~ili/~
=

hP/~ Ii +
b)

(6)

d
=

(7)

1/6 f ~~~

f

~

° ~~~
2 f p/2

+
~

~~~~~~) II
(~fi

f

written in terms of the rescaled variables

~ll " j~

))i/3
~l

" (2

j)1/3
~ " ji _~)i/3 (~)

We have solved these coupled equations numerically as a function of )To
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Fig. 2. Plots of the pseudo thermodynamic potential
versus f for different values of the dimen-

sionless shear parameter: iTo =0 (highest curve), o-1, 0.23, 0.4 (lowest curve).

We first note an interesting result that emerges when we consider the solution of these four

equations in the zero-flow limit: the fraction f which minimizes the potential is fm(§To
=

0) £t

0.62. We recover here, using a rather unusual approach, the well-known result that, at equilib-
rium, the solution f

=
1 (associated with the Alexander-de Gennes ansatz) is unstable. Rather

than finding the true equilibrium state (in which the chain ends are distributed throughout the

layer [13,14]), our model finds the best compromise between excluded volume and stretching
within a dual chain description.

The evolution of the system as a function of the shear rate can be understood from Figure 2,
where the variation of the pseudo-potential 4 with f is plotted for different values of the

parameter iTo. As iTo is increased from zero, a second minimum appears at f
=

0 and the

original one, fm ()To ), is progressively shifted to lower values. This continues until (§To + 0.23,
where the original minimum disappears entirely, and the system can, within the approximations

so far made, continuously decrease its potential by lowering f to zero. Clearly, however, the

layer cannot explore the very low f region due to coverage constraints: for our model to be

valid, there must always be enough chains participating in the upper layer to screen the flow

from the lower layer, which is presumed quiescent. In practice, this effect will stabilize the

system at a nonzero value of f. Let fc~ denote the crossover fraction, below which the shear

flow perturbs the bottom layer. Any perturbation which would lower f below fc~ will result

in the penetration of the flow into the lower layer. In response to this flow, some of the

"protected" chains will feel drag forces causing them to stretch and become participants in

the upper layer, leading to an increase in f. This argument suggests that, to find the physical
value of f, we should choose the value that minimizes our effective potential subject to the

constraint f > fc~,
We now proceed to estimate the crossover value fc~, below which the shear flow is not

efficiently screened by the upper layer. A rigorous estimate would involve a complete de-

scription of the hydrodynamics in the outer portion of the layer and lies beyond the scope of

our simple model. A plausible candidate for the crossover fraction is obtained by demanding
that the height difference between the upper and lower layers, Hi E, is larger than the

characteristic hydrodynamic screening length in the upper layer, ]~c, hence we set f
=

fc~
when Hi E l% ~~c. According to our description, the dragged chains form an Alexander-

de Gennes brush, with area grafting density fa, exposed to a shear field. A scaling analysis
of the hydrodynamics inside these layers is provided by reference [10] and results in an es-

timate of the screening length as roughly the average lateral separation between chains Ii. e.
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Fig. 3. Plots of g(f)
=

(I f)~/~+nj~ f~~/~ and hi( f) (for different values of the shear parameter:

iTo #0.01 (lowest curve), o-1, 0.23, 1 (highest curve)). For a given iTo> the threshold fco is obtained

from intersection of the g(f) and hi(f)
curves.

]~c £t a( fa)~~/~ in our
case), independent of the shear rate. Using equations (7, 9), the cri-

terion that Hi E
=

~sc at f
=

fc~ can be written as the following implicit equation for

fco

hi (fco)
=

(i f~~)1/3 +
~~~

(lo)
nbfco

where nb #

Na~/~ is the average number of blobs per chain in the brush at equilibrium, and

where hi (f) is obtained from the solution of equations (5, 6). For each value of §To, there is a

different function hi (f), hence a different crossover value fc~ (see Fig. 3 for a graphical solution

to Eq. (10)). The resulting function fc~(iTo) monotonically decreases towards an asymptotic
value at high shear rates. Both the initial value f~~ ((To

#
0) and the asymptotic limit strongly

depend on nb, with fc~
-J

np~ in the limit iTo » 1.

The dependence of the fraction f of dragged chains on the reduced shear rate iTo can now be

understood from Figure 4, which shows plots of fc~, fm, and Jo as a function of fiTo. Here we

have introduced a quantity Jo such that 4( Jo
"

G(fm)I whenever the curve is nonmonotonic

(so that a minimum exists at fm), fo denotes the point at which the curve recrosses below the

local minimum at fm as f is decreased. The two points at fm and fo annihilate each other at

~tTo " 0.23 as mentioned previously; beyond this, the curve is monotonic. (The precise value of

~tTo is model dependent.) The physical behaviour depends on the relative values of Jo and fc~.
A low shear rate, fc~ is higher than Jo and so the fraction which minimizes the potential f is

simply fm. As the shear rate is increased, however, Jo and fc~ may cross, leading to a situation

where fc~ is lower than Jo In this case there exists a region at low f, not excluded by our

requirement of screening of the quiescent chains (so that the constraint f > fc~ is fulfilled),
where the effective potential is lower than its value at the local minimum fm. Beyond this shear

rate, the fraction f which minimizes is then given by fc~. Thus, f "jumps" discontinuously
from fm to fc~ at the shear rate for which fo and fc~ coincide. Note that we do not expect any

"phase separation" between high- f regions and low- f regions in this situation. This scenario

applies so long as nb is sufficiently largej for small enough nb, in contrast, Jo and fm annihilate

before fc~ can fall below Jo- The division between these regimes is prefactor dependent, but

with our choice of prefactors the first scenario applies for all reasonable nb (I.e., nb > 4).
Accordingly, within our model, the discontinuous jump in properties is a generic feature

which becomes more and more pronounced as nb is increased. This is displayed Figure 4,
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Fig. 4. Plots of the functions fco (for nb =
4 (highest curve), 5, 7~ and10 (lowest curve)), fm and

fo (the fraction below which f is lower than its value at fm, see Fig. 2) versus iTo. The function fm
(resp. fo) is the upper (resp. lo~ver) branch of (fm, fo). The analysis in the text indicates that the

physical fraction f satisfies f
=

fm for fo < fco, after which the fraction becomes f
=

fco.

which shows that the variation of the fraction f with §To is essentially independent of the

brush characteristics at low shear rates (below the jump) but strongly dependent on nb at

high shear rates. As nb is increased, the "jump" occurs at progressively smaller §To and its

magnitude increases. We emphasize that the numerical details of the discontinuity as presented
above are a consequence of treating our requirement that the quiescent chains be screened as a

"hard" constraint: f > f~~, In reality, the constraint is not hard. However, so long as there is

some effective free energy penalty (or soft constraint) which prevents the system from attaining
f < Jo we would still have a sudden jump in behaviour corresponding to a transition from

fm to a new minimum of in the neighbourhood of f
=

Jo Therefore this qualitative aspect
does not depend on the details of our arguments concerning screening. Of course, the result

may also be a consequence of our adopting the dual chain modelj it is possible that in a more

detailed treatment the first-order transition would be replaced with a (perhaps fairly sharp)

crossover in brush properties.

Figure 5 shows plots of the relative swelling bh
=

(hi ho) /ho, where ho is the brush

height in the zero shear limit, versus )To for nb =
4, 5, 7 and 10 (solid curves). For comparison,

the one-component Alexander-de Gennes result, obtained by imposing f
=

1, is also plotted
(dashed curve), In both cases we have a non-linear swelling followed by a saturation at large

§To. There are, however, several notable differences between the two cases. First, qualitatively,

our model predicts a stronger dependence of the behaviour of the layer under shear flow on

its static characteristics: not only the average size of the blob, to (which determines To) but

also the average number of blobs in the static layer, nb, are the key parameters. In contrast,
in the previous models the behaviour under shear flow is either entirely determined by the

knowledge of To (5j, or only weakly dependent in addition on nb [10j. Quantitatively, the

onset of significant swelling is at a much lower value of )To than in the f
= case, e.g. for

nb =
7, )To Gt 0.16 versus §To Gt 1.0, though of course the prefactors here are subject to model

uncertainties. (It is physically clear that any reduction in f will increase the response to a given
shear since, in effect, To is increased.) Our model also predicts somewhat stronger asymptotic

swelling than in the previous Alexander-de Gennes-type approaches (up to 50%
verslls 25%).

The latter fact can be directly seen from equations (5, 9) if we realize that the value of the
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Fig. 5. Plots of the relative swelling 6h
=

(hi ho) /ho
versus § To for the dual-chain model. The

solid lines are for nb =
4 (lowest curve), 5, 7, and 10 (highest curve), while the dashed line is for the

case where we impose f
=

1.

scaled height always asymptotes to ii
-

21/3, implying that hi
-

21/3(2 f)1/3, regardless
of the value of f. Since our model predicts small f for §To » 1, this leads to enhanced swelling
compared to the f

= case. Similarly, we can understand the earlier onset of swelling directly
from equation (6), which can be mapped onto the f

= case by introducing an effective shear

rate parameter:

(i~o)~~
= ~ ~~

i~j~~~~ (ii)

Within this mapping, the onset of swelling occurs at ()To )eR Gt 1, regardless of the value of f.
However, with decreasing f, this corresponds to a decreasing value of the actual dimensionless

shear rate iTo.
The most surprising aspect of our predictions concerns the sharpness of the transition be-

tween weak and strong swelling as § is increased. Indeed, within our dual-chain model, we

predict a first-order stretching transition, whenever nb iS 4. This is associated with a dis-

continuous jump in the fraction f of dragged chains. In the limit nb » 1, this leads to a

picture where an infinitesimal applied shear flow would pick out very few chains (a fraction

f
~J

np~) and drag them significantly, leaving the remainder undisturbed. Of course, in this

limit, one should be concerned about possible non-linear behaviour associated with the finite

extensibility of the coils. Nevertheless, the result is an interesting one since if this instability
is present in our dual-chain model, it may well be present also in a more detailed theory based

on a parabolic brush profile (based
on a continuous and self-adjusting distribution of chain

ends within the brush). Obviously, this would imply, for large nb, a very strong breakdown of

the Alexander-de Gennes ansatz (that all chains behave alike) under flo~v conditions. Further

efforts toward a fully self-consistent theory of brushes under shear would therefore be of urgent
interest.

3. Detachment of a Grafted Chain Under Shear Flows

We now turn to the question ofthe desorption ofindividual grafted chains in a brush submitted

to a shear flow. We examine this process in the context of our dual-chain model for brush
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deformation and we focus on one chain belonging to the upper dragged layer. As argued below,
the detachment process is hastened by putting the chain under extra tension. Hence, we expect
that the global rate of chain desorption from the brush is dominated by the contribution of

the dragged chains rather than the quiescent ones. We first consider the case of a compact
end-sticker and then the case of diblock copolymers grafted via an insoluble block. Note that

in this section lengths are not in units of Lo
Desorption of one chain initially attached by a compact end-sticker to a surface supporting

an equilibrium brush has been recently studied by Wittmer et al. [15j. Their results for Rouse

chains in good solvent conditions indicate that the release of one chain can be interpreted
in terms of a two step process. First, the sticker must detach from the grafting surface and

escape from a potential well of depth of order kBT by diffusing a distance of the order of to,
the size of the first blob for equilibrium brushes (also the mean distance between two grafted
chains). Once the end-sticker has moved to away from the grafting surface, the motion becomes

deterministic and the chain is expelled from the brush by a net force due to chain tension and

osmotic pressure effects. The crucial point is that the limiting step is the first one, and hence

that the rate of desorption may then be written in the form

Req £t
I

exp [-AU/kBTj (12)
Teq

where Teq is the characteristic time for the unbound sticker to reach the other side of the

first blob, and AU is the effective barrier height. Equation (12) indicates that desorption is

dominated by a local process, independent of N, which is related to the dynamics of the first

blob.

One possible estimation for this time is Teq = To the characteristic relaxation time of the

blob, and, indeed, the results of reference [15] for Rouse chains are in rough agreement with

this choice. We note, however, that this is certainly not a trivial assumption since Teq is

associated with the diffusion of one end through the first blob, rather than the relaxation of

the blob itself. For Zimm chains, this choice for Teq in equation (12) leads to Req
~J

(p~.
The underlying physics of the equilibrium desorption process studied in reference [15j is that

neighbouring blobs do not play a significant role in the initial stage of the detachment process;

the characteristic length is that of a section of chain storing kBT of stretching energy, I-e-

the Pincus blob size [18j. We may generalize this approach to sheared layers by using the

appropriate Pincus blob size ii in equation (12), leading to

T
~

Req
~

fi(iT0))~
~~~~Tq R (0

where T is the characteristic desorption time. An extra tension on the chain decreases ii and

thus hastens the detachment. Within the Pincus scheme for a chain under tension, ii
~J

L~3/2.

Hence, the dependence of R/Req on §To is directly related to L(§To), which may be deduced

from the analysis of Section 2. Figure 6 shows plots of T/$q versus iTo, both for the case of

our dual-chain model (for nb "
4, 5, 7 and 10, solid curves) and for the Alexander-de Gennes

limit of f
=

1 (dashed curve). The dual-chain model results indicate an nb-dependent and

potentially sharp drop in the characteristic time T for iTo < 0.2, corresponding to the onset

of strong brush swelling (cf. Fig. 5). The analogous f
=

1 results show a more gradual drop
in T occurring for iTo ib 1.0. These results suggest that an experiment which measures the

rate of detachment as a function of shear rate and of nb should be sensitive to the difference

between our dual-chain model and the model of reference [10].
The case of diblock copolymers (polymers A grafted to the surface by an insoluble block of

polymer B) is quite different. We presume that the solvent is good for polymer A and poor for
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Fig. 6. Plot of the inverse desorption rate 7Zeq/7~ versus iTo for the dual-chain model for chains

grafted by
a compact end-sticker. The solid fines

are
for nb =

4 (highest curve), 5, 7, and 10 (lowest
curve), while the dashed line is for the case where we impose f

=
1.

the anchor. In a simplified view, we assume that the B-chains form a dense, molten layer near

the surface from which we may extract any of the anchoring blocks independently. Driving
the junction between the A and B blocks into the solution results in a free energy cost due

to partial exposure of the B-chain to a poor solvent. If the extracted B-chain is pictured as

a string of collapsed molten blobs of size d, then assuming an energy of kBT per blob gives
d % (kBT/r)1/~, where r is the effective surface tension of the B-monomer /solvent interface.

The energy of a string of such exposed blobs of length then scales as

F~h % kBT (14)

At equilibrium (zero-flow limit), this penalty is not compensated until I k to, when the last

blob of the A block emerges from the layer and stored elastic energy in the A block begins to

relax through the formation of a large coil protruding into the solvent region. Once > to the

center of
mass of the grafted chain is then driven out of the brush by a constant tension of

order kBT/(o Since in practice d « to, one always has kBT/(o < kBT/d. We thus only expect

a small change in the slope of Fch versus I until the B block anchor leaves the molten layer of

B monomers. This occurs at I
=

lc Gt NBd/(dla)3, where NB is the index of polymerization of

the B-chains.

The presence of a shear field modifies this picture substantially (see Fig. 7). The idea is that

the large blob which appears at the top of the layer during the detachment process is subject

to hydrodynamic drag from the solvent flow. As the detachment process progresses, this blob

is fed by the A-chain and increases its size. Thus, the hydrodynamic drag force on the chain

also increases. The net result is that the chain is now driven out of the layer by an increasing
tension.

The analysis of this process is greatly simplified by assuming that the tilt angle remains

essentially constant during the expulsion [19]. With this simplification, the effective free energy
of a detaching chain can be written in the form

$ch % kBT + U(1) (15)
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Fig. 7. Sketch of the detachment of one
diblock in a shear flow.

where U(I) represents the work done by the drag force during chain pull out. In the first stage
of this process, U(I)

can be written as

~(~)
m Id j

~.
) l

~BT to f ~~
d

~°~ ~ ~~nd (16)

where fend £t (o/f~/~ is the size of the large end-blob before the desorption process begins.
As in the case of equilibrium desorption, this initial stage involves a free energy penalty
which is linear in I, but with a reduced slope due to the work done by the hydrodynamic
drag force. Once I > fend> the end blob size becomes larger than fend, scaling as lend

~J

(~nd Ii + ((I / (end)~/~(l fend) /(I)~~~ In this region, U(I) is rapidly dominated by the hydro-
dynamic drag on this new larger end blob and then has the form

for (e,id < I < lc. In this equation, fend % to /f~/~ and lc is the limiting length scale correspond-
ing to complete B-chain pull out. Note that f, ii and 9 in equations (16, 17) are functions of

the shear rate determined by the analysis of Section 2.

Figure 8 shows the resulting potential $ch
versus for different values of iToi Parameters

are chosen so that lc/(o
=

10. Notice that the slope of the potential continuously decreases

as soon as the shear rate18 non-zero; however, at low shear rates the maximum value of rich
is still attained at

=
ic. At higher shear rates the position im of the maximum of $ch shifts

away from ic to a lower value corresponding to the point where b$ch/bi)i=i~
#

0. Using
equations (15-17), gives in this regime

f-1/2j ~/~ jj 5/6

~~ ~~~~~ ~ ~~ ~i
~

'fT0d~llfl~
~~~~
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Fig. 8. Plots of the free energy of one diblock fch
versus

I/(o for iTo to-I (highest curve), 0.5,

0.6, and o-I (lowest curve). (The parameters are nb =
5, fold

=
10 and lc/(o

=
10 (see text).)

Finally, in the limit of large shear rates, the position lm of the maximum value of $ch(I) is

pinned at lm
=

fend-
Since desorption is thermally activated, we may generally write the rate of desorption in

terms of a Boltzmann factor as

R
~J exp [-A$ch/kBT] (19)

where A$c~
=

tch(tm) is a barrier height corresponding to the maJdmum of the curve
tch(I).

This may be calculated numerically in each of the three regimes described above and used in

(19) to predict R. It is interesting to compare the rates predicted in this way with equation (13)
describing the compact end-sticker situation. In Figure 9, we show sample plots of R versus

§To for grafted copolymers (cf. Fig. 6 for compact end-stickers). In both cases the process of

detachment of an initially grafted chain is hastened by shear flows and subject to the effects

of discontinuous swelling for nb iS 4. (Clearly if f is discontinuous, then so is R in both

cases.) But the behaviour beyond the swelling transition is quite different in the two cases.

In the case of a compact end sticker, the prefactor of the exponential Boltzmann factor is

affected, leading to a power-law dependence of the rate of detachment versus the shear rate.

More precisely, in the limit )To » 1, we have ()To)
~J

f(2 f)1/~ /(2 I[)3R (Eq. (6)) and

L
~J

(2 f)1/3 /(2 I[)1/~ (Eq. (5)). Combining these, we find R
~J

(§To)~. In the diblock

situation, however, the height of the potential barrier itself is reduced by the shear flow and

hence the detachment rate is exponentially decreased [20], the argument in the exponential
being in general a non-trivial function of the shear rate. In the limit §To » 1 however, this

argument becomes a linear function of iTo and thus, roughly speaking, we expect R
~J exp ()To

This difference might be of some relevance in practical situations where the layer behaviour

in shear flows has to be controlled. We have shown that for a given overall adsorption strength
(given nb) a layer formed by end-attachment of stickers is more stable under shear than one

made using diblock anchors. In physical terms, the tension arising from shear forces can lead

to strong distortions of an anchor block (which adheres to the surface by many weak contacts)
which promote desorption. The same force applied to a localized sticker has, in contrast, very

little effect since the binding force is much stronger even for the same binding energy. This

qualitative distinction is generic and does not depend strongly on our dual-chain model. Our
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Fig. 9. Plot of the inverse desorption rate 7Zeq/7Z versus iTo for the diblock copolymer grafting
mechanism (nb

=
4 (highest curve), 5, 7, and 10 (lowest curve) ). The dashed fine is for the case where

we impose f
=

1.

quantitative predictions of course do so and highlight the sensitivity of desorption to the state

of the most strongly-stretched chains (see Figs. 8, 9).

4. Concluding Remarks

In this paper, we have considered a simple "dual-chain" model describing the behaviour of a

polymer brush under shear flow. In this approach, two types of chain behaviour are allowed

for the grafted chains: either they lie deep in the grafted layer, where the flow is screened, or

they stretch under the action of the flow.

Qualitatively, we find two types of layer behaviour. At low shear rates, the majority of chains

stretch while a minority are retracted into the quiescent region of the brush. At sufficiently
high shear rates, however, the lowest possible fraction is exposed to the flow, while the majority

remain screened from the flow. Quantitatively, we find a higher susceptibility of the brush to

shear fields than is predicted in models based on the Alexander-de Gennes-type ansatz that all

chains stretch alike (cf. Fig. 5). In particular, the onset of strong swelling occurs at a lower

shear rate (iTo t 0.23 rather than §To Gt 1) and the asymptotic value of the relative swelling
is somewhat larger. Although the numerical values are sensitive to prefactor uncertainties in

the model, these trend are in rough agreement with experiments [3,4]. Indeed, reference [3]

reports measurements of the forces that act between surfaces bearing grafted polymer layers
in good solvent as they slide past each other. These experiments show that above a certain

threshold the normal forces between them become increasingly repulsive at higher velocities.

This has been interpreted in terms of swelling of the layers and closing the gap that initially
exists between them. Following this idea, in the situation designated as experiment (b) in

reference [3], one has bh Gt 0.24 for nb l+ 8 and §To Gt o.37. A theoretical estimate of bh based

on a model where all chains would behave alike would give bh £t 0.02, whereas in our model

we would predict bh £t 0.35. Although these are rough estimations, we see that the Alexander-

de Gennes approach underestimates the response of the layer by one order of magnitude.
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Furthermore, the transition between weak and strong swelling is also much sharper, becoming
step-like for sufficiently long grafted chains. In fact, the onset of swelling and its asymptotic
value can be mapped onto the results of reference [10] via (I) the "renormalization" of both the

lengths and the shear rate, given in equations (9 ii ), and (it) the knowledge of the variations

of the fraction f(§To) at a given nb. These "renormalizations" shed some light on the nature

of the higher susceptibility of the layer to solvent flows; the discontinuous swelling transition

arises entirely through the f factor. Finally, the behaviour of the layer under shear fields is

more strongly dependent on its static characteristics in our approach than in the previous
studies [5,10] since not only the average size of the blob but also the average number of blobs

per chain at equilibrium are crucially relevant for determining its response to shear flows.

Turning to chain desorption in shear flow, we have shown that desorption rate R is rather

sensitive to flow, both for compact end-sticker and diblock copolymer grafting mechanisms

(cf. Figs. 6 and 9). For the case of end-sticker grafting, we
find at high flow rates a power-law

dependence of R with §To. In the case of diblock grafting, we find that the barrier height is

a strong function of shear rate, leading to an exponentially enhanced desorption rate. Thus,

we expect that chain desorption from these two types of grafted layers would be very different

experimentally. Other predictions for brush structure and grafted chain desorption could also

be subjected to suitable experimental tests. Neutron reflectivity experiments could monitor

brush structure under shear in situ and as a function of time. The results ofsection 2 might be

checked by measuring brush density profiles
as a function of shear rate. In principle, the results

of Section 3 on chain desorption might be tested by measuring the total surface coverage as a

function of time and shear rate.

Clearly, however, our model is only a step towards a realistic theory of grafted layers in

flow, and the numerical values that we get (which depend on many order-unity prefactors
suppressed in our model) are only indicative [21j. An immediate improvement would be to

relax the Alexander-de Gennes ansatz for the lower quiescent chains [22j. However, we do not

expect that this would result in profound modifications of the behaviour of the system, since

the Alexander-de Gennes picture is known to be a fairly good description for the properties
of quiescent grafted chains. A fully self-consistent model would allow an arbitrary number

of chain behaviours rather than just two. Although desirable, this is beyond reach for the

moment. However, the scenario presented is quite rich and we believe that aspects of it (such

as the first order swelling behaviour) might survive in a full treatment.

An interesting topic for future work is the study the influence of polydispersity on our results.

It is unlikely that polydispersity should affect our scenario, but it is possible that this should

smooth the first order type of transition that we get in the monodisperse case. This is because

polydispersity induces a kind of length segregation of the tails [23] the tails stretch away from

the surface and then all the shorter chains will tend to have their free ends closer to the surface

than that off any longer chain. Then, rather than performing a "discontinuous jump in f",
the layer might choose to lower f by progressively retracting the shortest chains present in the

upper layer until the final value of f is reached.

An other very interesting topic for future theoretical and experimental work is the study of

the washing of a polymer brush. Indeed, our analysis suggests that the layer is globally less

sensitive to the loss of a chain than expected from an Alexander-de Gennes-type brush. The

idea is that the layer could react locally to the detachment of a chain by replacing it with a

chain from the quiescent layer, leading to a replenishment of the upper layer. This mechanism

is supported by the analysis of equation (10): if
a

decreases, nb decreases and thus fc~ shifts

to higher values. This implies that some initially quiescent chains are transferred to the upper
layer.
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