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Abstract. We report an
experimental study of the temporal fluctuations of the total power

injected in a
swirling flow generated in the gap between two coaxial disks, counter-rotating at

a fixed velocity. We use either a
free geometry in air or a

shrouded one, I.e. with the disks

enclosed in a
cylindrical vessel. We show that the fluctuations of the power injection are large

in both cases (rms amplitude up to 10% of the mean
value), but that their statistical properties

are qualitatively different. When the flow is confined in a
cylindrical vessel, we find that the

PDF of the power fluctuations is strongly non-Gaussian and we study the correlations between

the power fluctuations and the pressure field at the boundary.

1. The Problem of Temporal Fluctuations of Spatially Averaged Quantities

The drag on a solid body moving in a turbulent flow, the torque on a disk or on a fan rotating
at high speed in a fluid, or more generally the total power required by a turbulent flow,

are quantities of great practical importance in fluid mechanics, and there exist a considerable

amount of data on the behaviour of their mean values as functions of the flow Reynolds number

[I]. However, the temporal fluctuations of these global, I. e. spatially averaged quantities, seem

to have been overlooked. We consider this problem by performing measurements of power
fluctuations in turbulent swirling flows generated in the gap between two counter~rotating

co-axial disks [2].
We will first use the rotating disk flow example to set up the problem we are addressing.

Consider a disk of radius R rotating about its axis with a uniform angular velocity fl in a fluid

of density p and kinematic viscosity v. From dimensional analysis, we get

f
=

pR~Q~ f(Re), (1)

for the average torque applied on the disk by the surrounding fluid, or equivalently,

fl
=

ffl
=

pR~fl~ f(Re), (2)
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for the average power required to maintain the rotation rate fl constant. At this stage, f(Re)
is an arbitrary function of the Reynolds number, Re

=

R~fl /
v.

Its exact expression is known

only in the laminar regime where f(Re)
«

lllfi. It is strongly believed, and this is an

important assumption of the phenomenology of fully developed turbulence, that the transport
properties of the flow behave in a well defined way in the limit Re

- cc; the simplest choice

f(Re)
- constant is supported by empirical evidence, in the case of a rotating fan or a disk

fitted with blades for instance, and leads to a torque proportional to the square of the rotation

rate, a behaviour known as the "centrifugal torque" in the engineering literature, and similar

to the related law for the drag being proportional to the square of the velocity. The situation

is much more complex for a flat disk for which f(Re) decreases when Re is increased in the

turbulent regime until the surface roughness becomes important [3].
Note that equation (2) also reads

fi
=

R~Q~ flRe)
=

~flRe), 13)

where (eI is the power injected per unit mass of the fluid and V
=

RR is the characteristic large
scale velocity ii-) stands for the average in space and an overbar for the temporal average).
In fully developed turbulent flows, V is usually replaced by urms, the rms value of turbulent

velocity fluctuations, in the definitions of (eI) and Re. This is an important distinction for some

flow geometries, flows along a smooth plate or disk for instance, for which, as mentioned above,
f(Re) decreases until the surface roughness becomes important [3]; in these regimes, we do

not expect urms to be proportional to V. Anyway, it is believed that at least for homogeneous
isotropic turbulence [4, 5], (eI) « u)~~ /R when Re

- cc. This quantity plays a central role

in the phenomenology of turbulence, which usually considers the properties of small scale

quantities such as the local viscous dissipation, Ed (r, t),

or the velocity increments, 6u~ e ~~(r) u~(r + d), and studies their statistical characteristics

for a fixed value of (eI).
We address here the problem of the temporal fluctuations of (eI). The evolution equation

for the kinetic energy E per unit mass is easily obtained by multiplying the Navier-Stokes

equation by the velocity ~1~, and taking the average over the flow volume. One obtains

E
=

jeI) led), 15)

~~~~~

uie~) it)
= 7ri~i n~ dS + ~ Is ~~'° ~~ ~~

is the rate of working of the forces exerted on the surface S enclosing the fluid volume l/, with

_p ~1~ 0~1~ 0uj
~

p
~

2 '
'° 0xj ~

0x~

Both the pressure p and a~ are strongly fluctuating quantities at the solid boundary S.

In any experiment, the three quantities in equation (5) fluctuate in time. This is usually
overlooked since the equivalence between spatial and temporal averages is assumed "statistical

stationarity"). Although it is obvious that the mean values in time are equal, T
=

G> large
temporal fluctuations for (cl) should be expected in any realistic flow.
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We thus expect a large scale intermittency related to temporal fluctuations of characteristic

size 6eI of the power injected per unit mass in the flow, and we address thb following problems:
Ii) what is the probability density function (PDF) of (eI) It)?
(ii) What is the behaviour of 6eI/(eI)

as Re
-

cc?

(iii) Do the fluctuations of (eI)(t) affect the dissipative range, I.e. cd (r, t)
or the measured

small scale intermittency?
The power measurements in a von Karman flow generated in the gap between two counter~

rotating disks presented below, are a first step toward the study of the above questions.

2. Experimental Set-Up

We use two aluminium horizontal coa~ial disks of radius R
=

10 cm, a variable distance H

apart. The disks are fitted with a set of 8 vertical blades, perpendicular to the disks surfaces,
with height hb

"
2 cm and thickness 0.5 cm, in order to increase entrainment. The disks are

driven by independent 450 Watt d-c- motors, the rotation frequencies of which are adjustable
from 0 to 45 Hz and controled by a feed-back loop. For some measurements (specified in the

text), light wooden disks with 8 blades have been fitted directly on the motors' shafts in order

to reduce inertia effect and thus increase the high frequency cut~off of the system. Air is the

working fluid, in a free geometry [6] or in a shrouded one, I.e. the disks being enclosed in a

cylinder 23.2 cm in diameter. The largest achieved values of the Reynolds number are thus

about 10~.

Velocity measurements are performed using TSI subminiature hot-film probes with a sensing
element 10 ~tm thick and I mm long, as already discussed in earlier studies ii, 8].

Pressure fluctuations are measured by a piezoelectric transducer PCB103Ao2, mounted flush

with the lateral wall. Its active diameter is 2.1 mm, its low frequency cut~off at -5% is 0.05 Hz

and its rise-time is 25 ~ts [9,10].
For the measurements of the fluctuations of the power consumption by the turbulent flow,

it is important to discuss first the various possible parameters which one could maintain at a

constant value:

Ii) a first possibility is to keep the rotation rate of the disks, I.e. the integral Reynolds
number, constant.

(ii) Another way of forcing the flow is to keep constant the torque applied on the disks. The

rotation rate, I.e. the integral Reynolds number, then becomes a fluctuating quantity.
(iii) A third, more complex possibility is to keep constant the injected power itself. Then,

one has to look at fluctuations of other global quantities such as the torque or the rotation

rate. The last two possibilites will be investigated in a forthcoming work, and the effects of

different large scale forcings of the flow will be studied.

We choose here to keep the rotation rates of the disks constant through a feedback loop. We

measure the power required to keep the disks rotating at given angular speeds. The current

in the stator is fixed while the voltage and current in the rotor are varied and measured for

each rotation frequency. We have also repeated the measurements in the absence of disks and

blades to obtain the power losses in the bearings and we have measured the voltage drop in

the rotor to obtain the losses in the windings. These values are subtracted from the raw power

measurements to obtain the power necessary to maintain the flow alone. Figure la displays the

direct time recording of the power injection into the flow when the wooden disks are used; the

rms fluctuations are roughly 10% of the mean, eventhough the Reynolds number is constant.

The corresponding power spectrum is shown in Figure 16; it is flat at low frequencies and

displays a
f~~ cut~off, related to the high frequency filtering effect due to the inertia of the

disks. This clearly leads to an underestimation of the high frequency power fluctuations. Note
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Fig. 1. a) Time recording of the power consumption of the motors driving wooden disks in the

shrouded geometry: fi
=

f2
=

40 Hz, H
=

27.5 cm.
b) Frequency spectrum of the power fluctuations.

The spectrum is flat up to 20 Hz above which the inertia of the disks generates a
f~' fall-off. Note

that the rotation frequency and its harmonics
are

clearly visible.

that in the case of wooden disks, we have no filtering nearly up to the rotation frequency,
so

that fluctuations up to the integral timescale are recorded.

3. Power Fluctuations in the Free Geometry

3.I. DISKS WITHOUT RIMS. We first present our results in the case of free disks with

blades but without rims. The PDFS of the power fluctuations Pi,2 of both disks are displayed
in Figure 2a (solid and dashed lines) together with the PDF of the total power consumption,
P

=
Pi + P2 (dash-doted line). The PDFS related to each disk are strongly asymmetric with

a tail toward low powers. However, the PDF of the total power consumption, P, is almost

Gaussian. This remarkable effect is due to a strong correlation between Pi and P2 as shown

by the joint PDF displayed in Figure 2b; one clearly notices that the large values of Pi are

related to the small ones of P2> and vice-versa- An inspection of the flow shows that the large
intensity shearing zone, roughly in the mid-plane between the two disks, undergoes coherent
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Fig. 2. a) PDF of the power fluctuations Pi,2 of each motors (solid and dashed lines) and PDF of

the total power fluctuations P (dash-doted line). fi
=

f2
=

34 Hz, H
=

40 cm, disks with 8 blades

without rims. b): Joint PDF between Pi and P2. The iso-probability fines are plotted for the following
values: [0.0001, 0.0003, 0.0005, 0.0007, 0.0010, 0.0020, 0.0030, 0.0050, 0.0100, 0.0300].

vertical oscillations at about I Hz and is thus alternatively closer to one of the two disks.

The coherence between Pi and P2 is 0.6 at I Hz but falls to less than 0.05 on each side

of the oscillation frequency. Pi and P2 oscillate out of phase, thus their corresponding low

frequency peak cancel each other in the frequency spectrum of the total power P. The above

measurements show that the dynamics of this large scale structure generate a non-Gaussian

behaviour of the PDFS of Pi or P2 considered alone, but the total power fluctuations are almost

Gaussian.

3.2. POWER-VORTICITY CORRELATION. Noting that equation (5) could also be written in

the form

l/ E
=

/
7ru~ n~ dS + u (u x w)

n
dS

u

/
uJ~d~x, Ii)

S u

where w is the vorticity, it is tempting to compute the cross-correlation between the large
scale vorticity and the fluctuations of power. The dynamics of the horizontal vorticity of the

mid-plane shearing zone can be probed using ultrasound scattering ill,12]. The flow is probed
with an ultrasonic beam at frequency 20 kHz generated by a Sell-type acoustic transducer [13]
of size 16 x 16 cm. The scattered wave at angle 60° is detected by an identical transducer. The

scattering volume is about 25% of the total volume within the two disks. The scattering plane
being vertical, it is an horizontal component of the vorticity, perpendicular to the scattering
plane, which is probed. More precisely, in the Born approximation, the Fourier transform of

the scattered pressure field is proportional to the Fourier transform of this vorticity component

at the scattering wavenumber q =
3.7 cm~~ [14]. The cross-correlation between the scattered

pressure and the power fluctuations is displayed in Figure 3. As expected, we observe a

correlation which shows that the dynamics of the large scale vorticity sheet in the vicinity of

the mid-plane affects the power consumption. The time delay for which the cross-correlation

is maximum does not provide any quantitative information, mostly because of the frequency
filtering due to the inertia of the disks.
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Fig. 3. Cross correlation between the fluctuations of power and horizontal large-scale vorticity
measured ma ultrasound scattering.

3.3. EFFECT OF RIMS FITTED ON THE DISKS. We observe that the above coherent os-

cillation is prevented when the disk8 are fitted with rims 3 cm in height. Indeed, the power

spectra of Pi,2 do not show any characteristic frequency as above. Strikingly, the PDFS of

Pi or P2 are then Gaussian (see Fig. 4a); Pi and P2 do not display any anticorrelation (see
Fig. 4b) such as in Section 3.1.

4. Power Fluctuations in the Confined Geometry

In the free geometry, we observe that the lateral extension of the flow is larger than the diameter

of the disk8 and strongly fluctuates [8]. We thus consider the effect of confining the flow and

enclose the disks in a
cylinder 23.2 cm in diameter. The PDFS of Pi,2 and P are superposable

as in the free geometry with rims, but they are strongly asymmetric and skewed toward low

values of the power, although the flow does not involve any large scale oscillation. The shape
of the PDFS of power fluctuations looks like the one

of the pressure PDF when measured far

from the blades (see below). Thus, confining the von Karman flow generates a non Gaussian

behaviour of power fluctuations. More precisely, the values of the skewness and the flatness

are respectively, -0.72 and 4.10 in the confined configuration, compared to 0.04 and 2.94 in

the free geometry with disks fitted with rims. When the flow is confined, the relative rms

fluctuations with respect to the mean power increases from 3% to almost 10%.

4. I. POWER FLUCTUATIONS vERsus THE REYNOLDS NUMBER. When the Reynolds num-

ber is varied, the PDFS of P/Q~ do not collapse on a single curve, but if the reduced variable,

H
=

IF fl) /Prms is used, all PDFS obtained for different Reynolds numbers in the rotation

frequency range [25, 45] Hz do collapse (see Fig. 5). This shows that, contrary to fl [15],



N°7 POWER FLUCTUATIONS lies

o 46

-o.5 44
"

-1

~ ~~
42

ii
-2 j/40 .~

f~
-2.5 ~

)
$~

3
fl7 ~~

'~
j~

36 I

~
34

4

_5 32
5 -4 -3 -2 -1 0 2 3 4 5 26 28 30 32 34 36 38 40 42

(P-P)/Pnns P~ pV]

a) b)

Fig. 4. a): PDF of the power fluctuations Pi,2 of each motors (solid and dashed fines) and PDF of

the total power fluctuations P (dash-dotted line). fi
#

f2
#

40 Hz, H
=

40 cm, disks with 8 blades

with rims. b): Joint PDF between Pi and P2. The iso-probability lines are plotted for the following
values: [0.0001, 0.0002, 0.0005, 0.0010, 0.0030, 0.0050, 0.0700, 0.0100, 0.0300, 0.0400, 0.0500j.
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Fig. 5. PDF of the total power fluctuations in the shrouded geometry. fi
"

f2
#

25, 30, 35, 40,
45 Hz, H

=
27.5 cm. When the reduced variable H

=
(P fl) /Prn,s is considered, the PDFS obtained

for different rotation frequencies collapse on a a
single curve.

Prms does not scale like fl3. However, this Reynolds number range is too small to detect an

asymptotic behaviour of Prm~ IA.
Thus, this range is too small to be able to answer the question (it) we addressed above about

the behaviour of bet/(ei) as Ite
~ cc. However, even with this limited range, the following

behaviour can be ruled out: a possible assumption is that bet/(ei) decreases with increasing
Reynolds number because of the increase in weight of small scale motions which smooth out

more and more efficiently the fluctuations bet. The most naive prediction would be to assume

that, like in statistical mechanics, bet/(ei) is inversely proportional to the square root of the
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Fig. 7. Cross-correlation between the fluctuations of the pressure, p, and the power, P, in the

shrouded geometry. The pressure is measured with
a

transducer flush to the cylindrical wall enclosing
the disks: a) transducer 3 cm

above the mid-plane; b) transducer 4.5 cm
above the lower disk. Note

that the correlation is larger close to the disk
as expected, but also that its sign is reversed.

the dominant contribution to jell- We have measured the pressure 4.5 cm above the lower

disk and 3 cm above the mid-plane. As expected, the cross-correlation between pressure and

power fluctuations is non zero for some finite time lag, and the corresponding peak decreases

when the distance front the disk increases (see Fig. 7). Although the correlation is rather small

at large distance, we have checked that the correlation peak remains constant whereas the

background noise decreases when the averaging time on which the cross-correlation is computed
is increased. Again, the exact value of the time lag does not provide any information because

of the response time of the mechanical device due to the inertia ofthe disks. Note that the sign
of the correlation is reversed when the pressure is measured close to the blades. The shape of

the pressure PDF also depends on the location of the transducer (see Fig. 8); when recorded in

the vicinity of the mid-plane,it is strongly asymmetric with a stretched exponential tail toward

low pressure due to vorticity filaments, as already observed in previous studies [9,10,17]. On

the contrary, the pressure PDF measured in the vicinity of the blades (4.5
cm above the lower
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Fig. 8. PDF of the pressure measured with a transducer flush to the cylindrical wall enclosing the

disks: a) transducer 3 cm above the mid-plane; b) transducer 4.5 cm above the lower disk.

disk) is roughly symmetric with exponential tails on both sides. We believe that the high

pressure part is due to stagnation points generated by the flow ejected by the disks toward the

lateral boundary where the pressure transducer is fitted.

5. Concluding Remarks

We want to emphasize that the total power injection (El) or dissipation led) in a turbulent

flow are not constant in time, as often assumed in the phenomenology of turbulence, but

display temporal fluctuations. Correspondingly, the mean kinetic energy per unit mass E also

fluctuates according to equation IS)

E
=

lfi) led)- 15)

It would be interesting to compare the PDFS of (El) and led ). Although their mean values in

time are obviously equal, ed is a positive quantity whereas one could expect rare events with

jell < o, I.e. energy given back by the fluid to the driving device through the work of the forces

exerted on the surface enclosing the fluid. Thus, one expects a wider distribution for jell and
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we emphasize that viscous dissipation is not the only mechanism to remove instantaneously
kinetic energy from the flow [8].

Although power fluctuations are clearly related to the geometry and the dynamics of the

large scale flow, the effect of fluctuations of jell
on the small scale dynamics of turbulence is

not clear, and the statistical properties of dissipation and velocity increments conditioned to

jell will be made to answer this question.
We only considered in this paper the problem of the fluctuations of jell and showed the

importance of the confinement of the flow. The way the flow is forced may also have some

effect. In the case of a rotating flat disk, either term on the right hand side of equation (6)
could be dominant depending on the magnitude of the roughness compared to the thickness

of the boundary layer. When the roughness is important, and in particular in the presence of

blades, (El) is proportional to V3/R. On the contrary, in the case of a smooth disk
,

only the

second term on the right hand side of equation (6) contributes to the injection of energy, and

f(Ite) in equation (3) is a decreasing function [3]. The influence of the roughness of the disks

on the fluctuations of jell will be investigated.
In the case considered in this paper, the flow is forced through moving boundaries whereas

energy is dissipated in volume. In the case of a flow generated by a
force per unit mass f(r, t),

lfi)lt)
=

If Ul, 191

so that power fluctuations depend on the fluctuations of the velocity itself (both in amplitude
and direction) instead of the fluctuations of the velocity gradients or the pressure at the bound-

aries as in equation (6). It might be interesting to study the influence of a volumic forcing

on the energy injection dynamics. Moreover, in a numerical simulation it could be possible to

tune f(t) in order to keep (El) constant and to study the resulting dynamics of the flow.
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