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Abstract. We present a new type of bifurcation scenario where nonlinear saturation of
a

stationary instability takes place only because of the competition with an oscillatory one. This

is shown
on

the example of convection at zero Prandtl number between stress-free boundaries.

We show with direct numerical simulations that time-dependent wavy rolls
are

generated at the

onset of convection. Using a Galerkin model,
we

analyze the nonlinear interactions between rolls

and
waves

and find that they maintain the system in the vicinity of the oscillatory instability

onset, thus preventing the blow~up of the growing nonlinear roll solution. An interesting feature

of this type of dynamics is that the system is self-tuned in the vicinity of a transition point.

The dynamics of thermal convection in the Boussinesq approximation involves two kinds

of nonlinearities. The first, v Vv, describes the self interaction of the velocity field v; the

second, v
V9, results from the advection of the temperature disturbance 9 by the velocity

field. The relative importance of these nonlinearities is measured by the Prandtl number,
P

=
u/~c, where u is the fluid kinematic viscosity and

~c is the heat diffusivity iii. For P

very large, v. Vv can be neglected; for P very small, which is a limit of interest in the

astrophysical context (P
+~

10~8 for convection in stars) or for liquid metals (P
+~

10~~),

one expects that v. V9 could be neglected [2]. The small P limit is however subtle and

might involve a singular limit problem very similar to the one of infinite Reynolds number

in incompressible fluid dynamics. In particular, there exist flow regimes (inertial convection)
for which the

v
Vv nonlinearity is compensated by a pressure gradient and thus is unable

to saturate the instability [3,4]. This problem exists at convection onset with stress-free

boundary conditions because the linearly unstable roll modes are exact nonlinear solutions if

v V9 is neglected. Because of the existence of these exact solutions growing in time, it has

been considered for a long time that the zero-Prandtl number approximation which amounts

to neglect
v

V9 was not realistic. However, it has been shown recently by direct numerical

simulation of these zero-Prandtl number asymptotic equations, and comparison with the full

(*) Author for correspondence (e~mail:fauve@physique.ens-lyon.fr)

(** CNRS-GDR 1024

(*** CNRS-GDR 1024

@ Les (ditions de Physique 1996



946 JOURNAL DE PHYSIQUE II N°6

Dberbeck-Boussinesq equations, that this approximation leads to accurate results [5]. We

show in this letter, that just above the onset of convection, two-dimensional (2D) rolls saturate

by developing a three-dimensional wavy instability. The nonlinear flow regime is thus time-

dependent, although the convective instability is a stationary one. We use a simple Galerkin

model to describe qualitatively how the growing roll-modes are saturated by transfering energy
to three-dimensional (3D) waves. The analysis of the stabilization mechanism shows a new

and interesting bifurcation structure: the energy transfer from rolls to waves automatically
tunes the roll velocity in order to keep the system in the vicinity of

an instability onset, thus

preventing blow-up.

We consider a horizontal layer of fluid of thickness d, heated from below by imposing the

temperatures Ti and T2 at the bottom and top horizontal conductive plates. We assume that

the fluid motion is described by the Dberbeck-Boussinesq equations in the limit of zero Prandtl

number, as discussed in [5]:

vt + v Vv
=

-Vp + V~v + R9e3

V-v
=

0 (1)

0
=

u3+V~9.

where viz, y, z, t)
=

(vi, u2, u3) is the velocity and 9 ix, y, z, t) is the deviation from the diffusive

temperature profile. The units chosen for this dimensionless formulation are d for length,
d~ Iv for time and (Ti T2)u/~ for temperature. R is the Rayleigh number, and e3 is the

vertical unit vector. We impose horizontally periodic boundary conditions, which introduce

two fundamental wave numbers k along z and q along y-axes. The free-slip boundary conditions

imply 0zui
=

0zu2
=

0 and u3 =
0 at z =

0 and z =
1.

We perform numerical simulations of this system with a pseudo-spectral code based on

a Fourier decomposition in the horizontal, on cosine or sine decomposition in the vertical,
and on a poloidal-toroidal representation of the velocity field (see [5] for details). In this

letter, we investigate values of R which are very close to the onset R~
=

270r4/4 m 658. In

order to study the very long transients that exist at these values of the control parameter, we

have chosen a small spatial resolution of 8~. We have checked, on test cases, that the same

results were obtained with higher resolutions. This low truncation is equivalent to a Galerkin

approximation of 64 consistent eigenmodes of the convective instability. For k
=

k~, here

k~ =

or/vi is the critical wave number at the convection onset, q =
0~25 k~ and R

=
1.005 R~

ii-e- R m 660) we observe the limit cycle shown in Figure la. In this regime, the 2D convective

mode u3(x,y,z,t)
= wioi It) cos(k~x)sin(orz) is oscillating around a mean value, while the

vertical vorticity mode ~a3(x,y,z, t)
=

(ojo(t)sin(qy) exhibits a standing wave pattern along
the roll axis. The frequency of the roll mode wioi is twice that of the vorticity mode. This flow

regime traces back to the one generated by the oscillatory instability in small Prandtl number

convection [6]. The oscillation is observed at the onset of convection here, whereas it occurs as

a secondary instability for R R~ finite when P is finite [7,8]. We stress the stabilizing effect

of the vertical vorticity, since, without it, the amplitude of the 2D convection rolls would grow

to infinity as said above. We have observed this standing wave oscillation over thousands of

periods, which is reasonably long, at this value of R close to the onset.

We consider a minimal Galerkin model to describe the saturation mechanism of the growing
2D~rolls in presence of 3D-perturbations. For a model able to treat the oscillatory instabil-

ity [6,9], we expand the vertical velocity u3 and the vertical vorticity ~a3 in Fourier series,
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Fig. I. a) Oscillatory regime observed with the pseudo-spectral code, at q =
0.25 kc and

r =
1.005.

The time evolution of the roll mode amplitude wioi and the vertical vorticity mode amplitude (oio are

displayed. Time unit is viscous timescale. b) Oscillatory regime observed with the six~mode Galerkin

model at
"

0A kc and
r =

1.005.

compatible with the equation of continuity and with free-slip boundary conditions, as

3(x, y, z,t)
=

wioi(t) cos(k~x) sin(orz) + 2wiii(t) sin(k~x) cos(qy) sin(orz) +

1°3(X> Y, Z>t)
"

(010(~) Slll(~Y) + ~lT(ill(~) C°S(~cX) Slll(QY) C°S(ITZ) (~)

+20r(o12(t) sin(qy) cos(20rz) + 5(210(t) cos(2k~x) sin(qy) +

We insert these expansions in the hydrodynamic equations ii) and project on these modes to
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get the following dynamical system:

Tfi
"

lr I)U + °~~ la< + Cf + dX) U + bfll( + f +'fX)Q

~~
"

l~ + ~Q~)
~

pji /yq2~3 ~
°~~ l( + ff + f'fX)

U

r(
=

-rq~( +
~'

low ~)
u

~
13)

T4
"

II + TQ~)Q 1( + 3f 5X)U

rj
=

-(b + rq~)( (
(au q) u

Ti
"

-I + TQ~)X
j

1°fl'U + §Q) U,

Where (U, U, iJ)
"

fi (WI 01, WI11, (1II ), ((, f, 2X)
"

i ((010, lT(012, (210 ), r "
R/Rc IS the

reduced Rayleigh number, a =
q/k~, fl

=
k) /(k) + q~ ), fl'

=
q~ Ilk) + q~), 'i =

5q~ /(4k) + q~),

r =
1/(or~ + k)),

a =
2r[20r~fl (or~ k))], b

=
40r~/(or~ + k)),

c =
2T[(30r~ k)) 20r~fl'],

d
=

2~yr[20r~fl + (or~ k))], f
=

(b rq~)/(I + rq~) and g =
4(b + 6rq~) lib + 8rq~).

We perform numerical integration of this six-mode Galerkin model with a standard fourth

order Runge-Kutta method. For q/k~ less than roughly 0.5, and close to the onset of convection,

we observe the same oscillatory flow regime as the one obtained above with direct numerical

simulations (see Fig. lb). A quantitative agreement is obsei~ved in the vicinity of the onset

convection, the validity of the Galerkin model being obviously limited by its truncation at

higher values of r. This limitation of the model is more severe when q -
0 (r 1 < O(q~)).

As said above, the roll mode u(t) oscillates around its mean value at a frequency 2~a whereas

all the other modes which describe the 3D-waves have zero mean and oscillate at frequency
~a.

The oscillation amplitude A of the 3D~velocity mode u(t), and the one of the roll mode u(t), B,

are displayed in Figure 2 for q =
0.4 k~, on one decade in r -1. In the vicinity of the instability

onset A scales as
fi whereas B scales as r -1. The mean roll-velocity jumps abruptly to

an order one value at the instability onset and slightly decreases when r is increased.

Let us now understand the saturation mechanism of the 2D rolls by the oscillatory instability.
The oscillatory instability corresponds to the generation of 3D-disturbances involving vertical

vorticity; it occurs at long wavelength (I. e. small q) for a critical value of the roll velocity [6].
For r I and q small, the Galerkin model involves two types of modes u, u and ( which

are nearly marginal, and q, ( and x which are linearly damped. Adiabatic elimination of the

damped modes gives three equations for the marginal modes; keeping terms up to order q~, we

get

~
~

r

~ ~ ~~ ~ ~~
4

~~u2 ~~ ~~~~~
~

~~
4

/3u2 ~~ ~~

~ ~~ ~~
~

~ ~~~4 ~3u2~ ~~ ~
~~~~~~

~~'~~

~
4 3~2 ~ ~2

~
4 + 3u2

~
2k~ ~~' (4.3)
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Fig. 2. Oscillation amplitudes above the onset of convection from the six-mode Galerkin model at

"
0A kc. A: amplitude of the 3D-velocity mode will, B

:
amplitude of the oscillatory part of the

2D~roll mode wioi

with -~r
= r -1- 3r~q4. The model is valid if u remains linearly damped, thus r 1 < 3r~q4

otherwise additional modes should be taken into account.

At the onset of convection only the roll-mode u begins to grow and would not saturate if u

and ( are not excited. If
r I m 0, the growth rate is vanishingly small and we first consider

u nearly constant. The equations for u and ( can be written up to terms of order q~

+ q~A(u~)@ +
~~ u~u

=
0, (5)2~

with A(u~)
=

~$ flu~. Thus u obeys a Van der Pol equation and the u =
0 solution is

unstable for a critical value uo such that A(uo~)
"

0, I.e. uo * 0.8. For u > uo, an oscillation

of frequency
~a =

fiuq is generated by the roll motion.

We will show on
(4) how the transfer of kinetic energy from 2D-rolls to 3D-waves saturates the

roll velocity [10]. To wit, we write

u =

uo+e~(U+fi)

u " f@,

where r 1
=

~te~, with ~t is of order one and r 1
-

0. fi is the oscillatory part of u and fi

is the correction to the mean value uo for the onset of the oscillatory instability. The above

scalings follow from inspection of equations (4) and are consistant with the results of figure 2.

We have to leading order

fi
=

B cos (2~at + #)

=
Acos~at.

Taking the mean of equation (4.1) gives at leading order A2
=

~t(4+ 3~() /24r2q4. Substracting
the mean of (4.I) from (4.I) and solving for fi gives B m

-A2 /2uo. Finally, multiplying (5) by
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Fig. 3. Relaxation oscillation regime observed with the six-mode Galerkin model at q =
0.6 kc and

r =
1.004. Time unit is viscous timescale.

and averaging on one cycle gives fi m
-A2 /4uo. The mean value of the 2D-roll velocity thus

decreases when r is increased, as observed by numerical integration of the model. This is how

the stabilization mechanism operates: the mean roll-velocity is kept below the critical velocity

uo for the oscillatory instability onset; u is larger than uo only on one part of the limit cycle
since B m 2fi. This prevents the blow-up of the oscillatory modes. The transfer of kinetic

energy from the roll-modes to the 3D-~vave modes prevents the blow~up of the rolLmode.

For q/k~ greater than approximately 0.5, numerical simulations of the Galerkin model shows

relaxation oscillations at the onset of convection (see Fig. 3). The period of this relaxation

oscillation tends to infinity for r -
I, and decreases when r increases; the regime then contin-

uously evolves to a harmonic oscillation like the one observed for small q. Chaotic relaxation

oscillations are observed for large q. These behaviors are also in qualitative agreement with

the regimes observed in the direct simulations for any q up to k~.

The interesting new features of the dynamics we have described above, I-e- the abrupt jump
to a finite value of the roll velocity at the convective instability onset without any hysteresis,
and the self tuning of the system in the vicinity of the oscillatory instability, crucially depend

on the existence of a growing linear mode which happens to be also an exact nonlinear solution

of the problem.

In the case of rigid boundary conditions, 2D-rolls are no longer an exact growing solution of

(I). However, it is known that there exist 2D flow regimes (inertial convection) for which the

v Vv nonlinearity is unable to saturate the flow [3,4]. As pointed out in [8], (1) could be

also used to study inertial convection for a 3D flow in the zero P limit; a manifestation of

inertial convection would be either unbounded growth or a subcritical bifurcation at a certain

Rayleigh number. This is not observed up to R
=

128000 in [5], and the existence of 3D inertial

convection is an open question.

Another limitation should be discussed in the case of stress-free boundaries. It is known

that the monotonous skewed varicose and the oscillatory skewed varicose instabilities restrict

the range of stable two-dimensional rolls, which shrinks to zero when the Prandtl number

is decreased below 0.543 [11]. However, these instabilities are strongly inhibited when the
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horizontal extension of the fluid layer is not large compared to its height. Consequently, as

observed in three-dimensional direct numerical simulations for P
=

0.025 with a small aspect
ratio of the horizontal periodicity interval, stable steady rolls exist and undergo the oscillatory
instability as the Rayleigh number is increased [12].

In conclusion, we have shown that the zero-Prandtl number asymptotics ii)
can be used

to model 3D-vorticity dynamics at the onset of convection in fluids of small Prandtl number

with stress-free boundary conditions and a small aspect ratio geometry. The fact that 2D-

rolls are an exact nonlinear growing solution makes the bifurcation structure at the convection

onset strongly nonlocal; the rolLmode abruptly jumps to finite amplitude whereas the wave

amplitude grows continuously from zero. Energy transfers between rolls and waves are triggered
through triad interactions and keep the system in the vicinity of the waves instability onset.

We thus expect a similar situation in other problems of fluid dynamics or plasma physics which

commonly involve triad interactions as a governing mechanism. An interesting feature of this

type of dynamics is that the system is self-tuned in the vicinity of a transition point.
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