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Abstract, We investigate the motion of an interface between a nematic liquid crystal phase
and the isotropic phase of the same fluid. In this simplified model

we assume the nematic liquid
crystal to have one order parameter only and also suppose the system to be isothermal and ini-

tially quenched into the metastable r4gime of the isotropic phase (TNT > T > T*). What results

is the time-dependent Ginzburg-Landau equation, with domain wall solutions, corresponding

to phase interfaces, which interpolate between static isotropic and nematic minima. These do-

main walls move with a unique velocity which depends more or less linearly on the degree of

undercooling. For real liquid crystals this velocity is of the order of cm
s~~. We also exam-

ine the relaxation mode solutions of the Ginzburg-Landau equation, and present a
complete

phase-diagram of these solutions.

1. Introduction

This paper investigates aspects of the dynamics of formation of
a nematic liquid crystal phase

when the isotropic fluid is cooled quickly, or quenched, to a temperature at which the nematic

phase is thermodynamically stable and the isotropic phase is not. In fact this particular
problem is one of many analogous problems in which a disordered phase is cooled through a first

order phase transition to a region where an ordered phase is more stable thermodynamically.
There has been much work in this general area, and where possible we shall call on relevant

analogies from similar physical systems [1-5].
The process whereby the new ordered, nematic, phase replaces the disordered, isotropic,

phase is extremely complex. First it is important whether the quench is to a region where

the disordered phase is thermodynamically metastable, or rather into an unstable rdgime. In

the context of liquid crystals, where the phase transition is at temperature TNI, the crucial

temperature is T*, the temperature at which the susceptibility to nematic fields would diverge
if only the isotropic fluid could be cooled so far. For T < T* the isotropic phase is thermo-

dynamically unstable. Nucleation of the nematic phase takes place through a 'phase-ordering'
kinetic process [6, 7], in which the ordering takes place quickly locally, although the system
retains topological defects which it gradually expels. By contrast, for TNI > T > T* the

isotropic phase is metastable. This is the region on which we concentrate in this paper. Let
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us discuss qualitatively the process whereby the nematic phase replaces the isotropic phase.
Thermodynamic fluctuations drive small regions of the system, 'droplets', into a nematic phase.

In general these droplets are small, and the free energy price of putting in a nematic-isotropic
interface is sufficiently large that the nematic droplet is unfavorable from a free energy point of

view, and disappears. The relative cost of the droplet surface decreases, however, and eventu-

ally, a sufficiently large droplet is thermodynamically favored. Occasionally a
sufficiently large

droplet is 'nucleated'. The important, and rather difficult, physics, concerns the nucleation

rate.

With droplet nucleation the first stage of phase transformation is over. In the second stage
of phase transformation the droplets grow, because larger droplets have lower free energy. The

speed of growth depends on the degree of undercooling, or equivalently, the difference in free

energy between the nematic and isotropic phases. This speed is the subject of this paper. If

one looks at one part of the surface of the droplet it looks more or less flat, and we study
the movement of this flat interface. In fact the growth of the droplets is complex, because

the latent heat released as the interface moves actually heats up the system, rendering the

assumption of constant undercooling inexact.

A third l'late') stage of phase transformation occurs when the droplets coalesce, making
larger droplets, which in turn coalesce... A complication particular to nematic liquid crystals,
which we shall not discuss further here, involves the free energy price paid when the droplets

join together, because the directors in adjacent droplets point in different directions.

Many features of the static nematic-isotropic interface can be understood in terms of the

phenomenological Landau-de Gennes theory [8]. This theory is a tensor theory. Once the

fi.ee energy is minimized with respect to the director orientation at the interface, however, a

scalar theory more or less suffices. In order to discuss a moving interface we use the dynamic

analogue of the Landau-de Gennes theory [9]. In the one order parameter limit, which we justify

in more detail below, this becomes the well-known time-dependent Ginzburg-Landau theory
(TDGL), which has found wide application in the kinetic theory of phase transitions [10, iii,
the propagation of signals in electric circuits [12] and theoretical population biology [13]. A

solution to the resulting equations describes a moving nematic-isotropic interface.

This paper is arranged as follows. In Section 2 we
describe the basic model. In Section 3 we

present the solutions to the TDGL equations which describe the moving interface. In Section 4

we discuss the implications of this work on the isotropic-nematic surface tension. In Section 5

we
discuss some related aspects of nematic domain formation, In Section 6 we present some

further 'relaxation mode' solutions [14-16] of the TDGL theory. Finally in Section 7 we present

some brief conclusions and perspectives for further work.

2. Model

Here we briefly recap on the phenomenological Landau-de Gennes theory of nematic liquid
crystals Ii 7]. The local state of a nematic liquid crystal at position r is described by a traceless

symmetric tensor Q~(r). For the conditions we consider,

Qv
= jSl3ninj 6vl, Ill

~vhere the unit vector n is the usual nematic director, and S is now a scalar order parameter.

In the problems we consider in this paper, we shall suppose n to be fixed in space and time,
and the relevant physics is given by Sir).
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The equilibrium statistical mechanics is governed by the free energy functional:

F[Q]
=

/dr fb(Q)
+

~~
(0kQiJ0kQq) +

~~ 0jQq0kQik))
,

(2)
2 2

where Li and L2 are elastic constants, related to the Frank-Oseen elastic constants in the bulk

nematic. The bulk free energy 16 (Q) is given by:

~~~Q~~Q~~ ~CQ~~Q~~Q~~ + ~b(Qjo~j)~, (3)
3 3 9

where
7 =

T T" is a temperature unit.

The equilibrium configuration is given by the condition that the symmetric part of the

molecular field Hj be zero, where Hj is the variable thermodynamically conjugate to Q.
Equivalently:

((
=

-Hs
=

0. (4)

The static isotropic-nematic interface has been much studied, going back all the way to

de Gennes Ii?] in 1971. Normally the elastic constant L2 > 0, and this condition ensures

that the director aligns in the plane of the interface Ii?]. The planar anchoring is sufficiently
strong that we may suppose that the director to be fixed in the problem. The small amount of

biaxiality in the surface region is not important for the surface free energy. The only relevant

parameter is then the scalar order parameter S(~), where ~ is the direction perpendicular to

the interface. We suppose in this paper that this remains true, even for an interface moving in

the z direction, and it can be shown that this is a mathematically consistent assumption. In

the dynamical version of the theory we shall thus be seeking S(~, t)
=

S(~ ut) where v is the

interface velocity.
The dynamical generalization of this theory has been written down by Olmsted and Gold-

bart [9], and in general involves coupling between the order parameter Q and the fluid velocity

u.
When no velocities are induced, the time dependent equation for the order parameter Six, t)

reduces to:
~~~ ~~~ ~'

~~~

where the effective elastic constant L
=

~ Li + (L2, and the transport coefficient fl cf 'fi /(9Sb~ ),
where'fi > 0 is the rotational viscosity of the corresponding nematic liquid crystal and where

Sb is the equilibrium value of the scalar order parameter [18].
This is the time-dependent Ginzburg-Landau equation [10-12j. Hohenberg and Halperin [19]

have used this equation with a Gaussian white noise term as 'model A' in their classification

of dynamical universality classes. TGDL can be regarded as the simplest dissipative dynamics
allowed by this statistical mechanics. It can also be derived more directly from a master

equation approach as the most probable evolution path of the dynamical variable Six, t) from

an initial value So into a final value Si (10].
In order to carry out further calculations it is convenient to scale variables in the following

,vay [20] :

~ "
~~S(

7 #
~(~7( 16

"

~~~
lb- (6)

In this system of units, ?
=

z/(, with (~
=

8b~L/c~, and I
=

t/t*, with t~
=

8flb~/c~; the

natural units of length and time are now ( and t*. Now eliminating overbars in subsequent
calculations, in these units:

16
"

7~~ 2~~ + ~~. (7)
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The isotropic-nematic transition now takes place at 7 =
to a nematic phase in which the

scaled order parameter q =
I. Substituting equation (6) into equation (5),

we obtain:

~ ~
=

-(~
=

-27~ + 6~~ 4~~. (8)
t ~

This is the fundamental equation of the model. In the next section we discuss solutions to

this equation.

3. Travelling Phase Transformation Waves

Let us briefly discuss the solutions to the TDGL equation (8) in the temperature region
0 < 7 <1. In this rAgime both nematic and isotropic phases can exist. Equivalently equa-

tion (8) has time and space independent solutions. These occur at:

vi =
o; ~2 =

~li 4~l; ~3 =
~li + 4~l, 191

where 4l
= 11 87/9)1/~ The solutions ~i and ~3 correspond respectively to the isotropic

and nematic minima of 16, with IN < II, or equivalently, the isotropic phase is metastable,
whereas the nematic phase is stable. The function fb(~) Possesses only these two minima, with

a maximum at ~2. We note that in the region 1 < 7 < 9/8, 0 < 4l < 1/3, the nematic phase is

superheated and metastable, while the isotropic phase is stable.

The solution which interests us is a domain wall solution which interpolates between the

isotropic solution, valid for ~ - cc, and the nematic solution, valid for ~ - -cc. Because for

0 < 7 < 1 the nematic solution has lower free energy, the nematic region advances into the

isotropic region with velocity u. These domain wall or travelling wave solutions have the form:

~l~,tl
"

~l~ utj
=

~jo~'j, j10j

where x' is a spatial variable moving in the frame of the domain wall. It is now convenient to

transform to this variable, yielding:

'~ (
+

u'~~
=

'~~
=

27~ 6~~ + 4~~, ill)d~' d~' d~

subject to the boundary conditions ~(-cc)
= ~3 and ~(cc)

= ~i

This is now an ordinary differential equation in the variable ~'. The equation has been much

studied in the literature [13-15].
The solution is

,

~~~'~ ~~ ~ ~~~~ ~~~~~o ~' ~~~~

with the characteristic thickness of the interface given by:

~5/2
"° 3(1 + All' ~~~~

and its velocity given by:

vi =
(134~ 1). l14)

We now discuss briefly some notable features of these solutions. Equation (14) yields a

positive velocity so long as 4l > 1/3, or equivalently when 7 < 1. This confirms that the
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~lJ ~l~©j (~~)

~~~
/~ik ~~~ ~ ~~~ 6~j ° ~~~~

afj
= ~([~~ ojow 1221

where pi is a kinetic coefficient related to the rotational viscosity of the nematic.

The homeotropic boundary condition enforces uniaxial order. We thus have Qi
=

Q~~
=

i~;Q2
=

Qyy
=

-~/2;Q3
=

Qzz
=

-~/2 and Qq
=

0 for I # j. We use the one constant

approximation for the elastic free energy (L2
"

0).
The nondimensional forms for the bulk free energy density fb and for the elastic free energy

density fg are now respectively:

16
"

~7Tr Q~ ~Tr Q~ + ~(Tr Q~)~, (23)

and

fg
=

~Tr(dQ/dz)~. (24)

The mean field H~ is given by:

with symmetric part

Hill
=

-(7Qv + 8jQi~ j6v1YQ21- (~Qv1YQ2 + ~[jiJ 1261

Using equation (22) the distortion stress tensor is now given by:

Hence

«~~ =
-fliH(~) + a]~ P

~ ~

(28j

~~
~~~

~~~ ~
~~

~~~
~~~

~"

azz =
-pi Hjj

p =
pi (- ~7~ + 2il~ ~il~ +

~~()
p; (29)

3 3 3 d°S

and

azz a~ =
fill- II

+

[i
+

it
)~

=

Pill + it)~. 1301

The surface tension is now:

~

j~
~~~~ ~~~~~a~ ~i

ii iidx + il~~~/~. ~~~~
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Fig. 3. The dimensionless surface tension a as a
function of temperature T.

Changing the variable to ~'
= ~ ut we obtain

a =
-Piui~Jicci J~i-oJii +

(
=

Piu~J~ +

(
132j

It is clear from equations (31,32) that the surface tension is ~ncreased from its equilibrium value

if ~ is increasing with time, u > 0, 7 < and T < TNI whereas it decreases for T > TNI.
Using the relations ~3 =

3(1 + 4l) /4 and u =
3(34l 1) /2~/~, we obtain:

a =

/[~~~~
ii + 4l)(34l 1) + lj (33)

This formula shows explicitly that the surface tension decreases below its equilibrium value

above TNI, in the region where the isotropic phase advances into the nematic, The nematic

phase loses its stability at 7 =
9/8

=
1.125. What happens to the behavior of the surface

tension in this limit? This depends on the numerical value of pi Letting
7 =

1 AT, we can

linearise the surface tension, yielding:

a =

~( ~~
A7fli + 1) (34)

The surface tension goes negative for -AT > 2fli/27. We can estimate the value of the

dimensionless parameter pi in a plausible nematic from the relation pi
=

3~31/2 (Eq.(4.9a)
in [9]), with I

=
1.04, yielding pi

~S 0.78. In Figure 3 we plot the surface tension as a function

of temperature with this value of pi There is strong temperature dependence of a. The surface

tension goes to zero at 7 =
1.057, about halfway to the point where the bulk nematic phase

loses its stability. Conversely, it increases dramatically at temperature is decreased toward the

isotropic spinodal point.
We now ask how much credence to attach to this result and what the physical consequences

might be. We do not attach very great significance to the detailed numbers primarily because

we adopt here a grossly simplified model, in which there is no coupling with the thermal,
hydrodynamic, or orientational degrees of freedom. A more sophisticated calculation including
these features may rescue a positive surface tension. It does, however, seem likely that the

result that the surface tension is strongly temperature dependent is robust against changes in

the model; we should not adopt the equilibrium value of the surface tension uncritically as one

might expect to do in a continuum calculation.



N°6 KINETICS OF THE NEMATIC-ISOTROPIC INTERFACE 881

5. The Critical Nucleus

The critical radius of a spherical nucleus of nematic immersed in an infinite bulk of isotropic

phase is given by (see [10]),
~~

~~
f(~l ~~f(~3) ~~ ~~~~

where we have used dimensionless quantities. In our case, the equation (35) becomes,

4vi 1
(36)~C

" f 34~ 1

If T > TNI (4l < 1/3) for R > R~ the nucleus will grow and for R < R~ it will disappear in time.

If T < TNI (4l > 1/3) then no positive R~ exists. Finally, if T
=

TNI (4l
=

1/3) then R~
= cc,

and nematic and isotropic phases coexist with a planar surface of contact. Thus, in the vicinity
of TNI Ii. e. for small supercooled and superheated domains, which is experimentally true for

the real nematics) the planar interphase constitutes a good approximation.
This order of magnitude estimate is, however, only indicative. A droplet with planar bound-

ary conditions everywhere is topologically forbidden. Boojum defects must appear at the poles
of the droplet, and at these defects planar boundary conditions should obtain. The region

around the defect should then as discussed above expand more quickly (by
a factor of

about 2 in our calculation) than the rest of the droplet, causing it to adopt a prolate shape.
A nkive estimate, based only on kinetic factors would suggest a stable cylinder with a length
roughly twice its diameter; this would be mitigated by energetic effects preferring

a smooth

(and spherical) surface with a small homeotropic surface region.

6. Relaxation Modes

In this section we discuss, for completeness, the relaxation mode solution of equation ill ).
The relaxation mode solution interpolates between the nematic solution ~3, and the maximum

of fb(~), 1J2. The physical relevance of these solutions is unclear at this stage, though they

may be important in the region where the isotropic phase is thermodynamically unstable.

The relaxation modes have a continuum of possible velocities, can be both monotonic and

nonmonotonic [14-16], and are given by

~ ~, ~3 /2

~~~~°~'~
4

~~ ~~~~~
~[~

~' °~~~ 34l '
~~~~

with the velocity given by u2 "
3 Il.

Solutions of equation ill) correspond to the trajectories in the (~,ifi) phase-space of the

system, ~
~' 'l~ ~~ ~ ~~~ ~~~ ~ ~~~' ~~~~

The system (38) defines three equilibrium points (steady states): (~i,0), (~2, 0) and (~3,0).
The roots of the characteristic equation for the first and third steady states are both real but

have opposite signs, so these two equilibrium points are always saddle points. For the second

steady state, the roots can be (depending on the value of the velocity vi either both real and

negative or both complex, so that the second steady state can be either a stable node or a stable

focus. The critical value of the velocity ii-e-, the value u~ for which the second equilibrium
point transforms from a stable focus iv < u~) into a stable node iv > u~)) is given by,

uc =

3fi. (39)
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Fig. 4. The (T, vi phase diagram of the solutions of TDGL equation; region I: unbounded solutionj
region II: nonmonotonic relaxation mode; region III: monotonic relaxation mode; region IV: unbounded

solution.

For T
=

TNI (4l
=

1/3) the critical value of the velocity is uc =
2, the well-known result [14,15].

The (7, vi phase diagram is presented in Figure 4. For small values of u
iv < VII the

separatrix is an unbounded solution (region I in Fig. 3). There is an unique value of u
iv

=
VII

for which the separatrix becomes a saddle-saddle connection I, e., the relaxation mode becomes

domain wall. For values of u such that vi < u < uc the separatrix is a saddle-focus connection,
the relaxation mode being nonmonotonic (region III. For uc < u < u2 the separatrix connects

the saddle point and the stable node, the relaxation mode being monotonic (region III). Thus

uc is the minimum value of velocity for which relaxation mode is monotonic. For u > u2

(region IV) the relaxation mode becomes again an unbounded solution.

7. Conclusions

Firstly we make some numerical estimates of the quantities we have calculated. We use pa-

rameters reasonable for the low molecular weight nematic fluid N-[p-methoxybenzylidine]-p-
butylaniline (MBBA). Vertogen and de Jeu [21] cite the following values for the material

parameters entering the Landau-de Gennes theory: a =
75 kJm~~ K~~, b

=
169 kJm~~,

c =
90 kJm~~, L

=
9 x10~~~ kJm~~ and fl

=

10~~ kJsm~~. Using these param-

eters we find the following values for the units of time, space and velocity, respectively:
t" 1

10~~
s; ( cf

10~~
m and (/t*

cf
10~2 m8~~. The velocity of the moving front is thus of

the order of cm 8~~, the interface thickness of the order of 10-~m. The critical radius of the

nematic droplet at T
=

T* is also of this order and remains so for
7 < 0.5; however it increases

as T approaches TNII by
7 =

0.95, for example, R~/(
+~

10.

In this paper we have discussed the growth of nematic droplets in a supercooled isotropic
fluid. We have concentrated on the moving nematic-isotropic interface at the surface of these

droplets. We have constructed the simplest phase field theory model of this interface. In this

simplest theory there is only one relevant order parameter. This is the largest eigeni,alue of the

liquid crystal ordering matrix. The principal axes of this matrix are not spatially dependent
in this simplest model.

We have written down the travelling-wave profiles which move with a constant velocity
and conserve their initial shape. These are solutions of the one-dimensional time-dependent
Ginzburg-Landau equation for the nematic-isotropic phase transition. When the isothermal

system is initially quenched into the metastable rAgime of the isotropic phase (TNI < T < T*)
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the time evolution of the order parameter is a domain wall solution of the TDGL equation.

Domain walls constitute the simplest form of topological defects and are surfaces planar in

our case which separate domains of the two equilibrium phases.
The domain walls propagate with a unique velocity, which depends more or less linearly

on the degree of undercooling. The thickness of the interface depends significantly on the

temperature. We have also estimated the surface tension for the stationary and mobile nematic-

isotropic interfaces. In the latter case we have obtained an unexpected result in the sense that

for
7 > 1.06 the surface tension is negative, though the significance of this result is unclear.

The velocity is sufficiently slow that the experimental inability to supercool isotropic fluid can

be definitively attributed to rapid nucleation rather than invasion of the nematic phase.

An expression for the critical radius of a spherical nucleus of nematic immersed in an infinite

bulk of isotropic phase as function of temperature has also been determined. We have also

discussed the shape of the true critical droplet.
We have also discussed the relaxation mode solutions of the time dependent Ginzburg-

Landau theory. These have a continuum of possible velocities and can be both monotonic and

nonmonotonic. We have obtained the complete temperature-velocity phase diagram for the

solutions of TDGL equation.
The two main approximations used in this paper involve the decoupling of the temperature

field, and the neglect of all but the very simplest features of the orientational degrees of freedom.

Nevertheless this simple time-dependent Ginzburg-Landau model gives some insight into the

behavior of the moving interface, and is a necessary prerequisite for further work.

This simplified model, of course, omits crucial features of the relevant physics. The thermal

coupling (including the effect of the latent heat emission at the interface) must be correctly
treated in all theories of moving interphase regions, and as shown by Schofield and Oxtoby [5]

this can have rather profound consequences. Competition between the bulk and surface liquid
crystalline textures as a result of the effect of external fields or the thermal gradient, related

instabilities of the flat nematic-isotropic interface, and the coupling between a changing nematic

tensor order parameter and velocity fields in the medium, are all specific to the moving liquid-
crystalline interface. We shall address both these aspects of the problem in future work.
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