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PACS.47.27.Gs ~ Isotropic turbulence; homogeneous turbulence
PACS.47.27.Jv — High-Reynolds-number turbulence

Abstract. — We apply the general formalism of equivalence of reference fields in scale invariant
systems (Dubrulle and Graner, preceding paper [1]) to fully developed isotropic turbulence.
Scale symmetry, the postulate of equivalence and regularity select the only physical solutions:
the log-Poisson distribution, and its Hmits, the beta model and the Kolmogorov solution. The
parameters left free by the symmetries are selected in relation with physical constraints applied
on the turbulent flow. The link with previous models and experimental measurements of the
scaling exponents is briefly discussed.

Résumé. — Nous appliquons le formalisme général de Péquivalence des repérages dans les sys-
temes invariants d’échelle (Dubrulle and Graner, article précédent [1]) & la turbulence développée
1sotrope. La symétrie d'échelle, le postulat d’équivalence et la régularité sélectionnent les seules
solutions physiquement admissibles: la distribution log-Poisson, et ses limites, le modele beta et
la solution de Kolmogorov. Les parametres laissés libres par les symétries sont sélectionnés en
liaison avec les contraintes physiques imposées aux flots turbulents. Nous discutons briévement
le lien entre nos résultats, des modéles récents et des mesures expérimentales des exposants.

1. Introduction

1.1. MOTIVATIONS. - Over half a century, experimental progresses have motivated attempts
to generalize the simplistic and celebrated Kolmogorov approach of turbulence. Basically,
Kolmogorov tried to catch the essence of turbulence [2] with a very stringent scale invariance
hypothesis: namely that the rate of energy dissipation is independent of the scale, in the
inertial range where both the forcing and viscous dissipation are irrelevant. As pointed out
by Landau [3] and noted by Kolmogorov himself [4], this hypothesis appears too strict to be
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realistic, and one can expect actual variations of the energy dissipation. This is believed to be
the source of the deviations from the Kolmogorov prediction observed in increasingly accurate
experimental measurements of the scaling exponents of the moments of velocity differences {4].

Among the various attempts to explain these deviations, the most successful often satisfy
in a broader sense the scale invariance. Good examples are the multi-fractal model [5], or
the She-Lévéque model [6], which was later shown to be equivalent to assuming a log-Poisson
statistics for the energy dissipation [7,8]. With this motivation in mind, we have developed
in the preceding paper [1] a formalism for systems which are scale invariant in a statistical
sense and obey a general principle of exponent relativity, generalizing the notion of equivalent
systems of units. The aim of the present paper is now to apply this formalism to turbulence
in order to constrain the scaling exponents.

Our argumentation proceeds as follows. In Section 1.2, we present well-known and newly
derived scale symmetry properties of turbulence. We then use the classification of scaling expo-
nents determined by general arguments in the preceding paper [1], using the same definitions
and notations, and apply them to turbulence (Sect. 2). This selects the possible statistics
for energy dissipation and velocity increments in the inertial range. We then discuss the link
between our results, previous models and experimental measurements. (Sect. 3).

1.2. SCALE SYMMETRY OF NAVIER-STOKES EQUATIONS. — The Navier-Stokes equations
are:
du+(u-Viu = —-Vp+uvViu+f,
Vou = 0, (1)

where ¢ is the time, p the pressure, u the velocity field, v the viscosity and f the external force.
Turbulence [2] is defined as a statistically stationnary regime of the Navier-Stokes equations
where an external forcing balances the viscous energy losses. However, it is often assumed that
the scales ranging between the forcing and dissipation scales are correctly described by the
force-free inviscid approximation (f,v — 0): this “inertial range” increases with the Reynolds
number Re [4]. Tn this limit, and taking into account the statistical stationnarity, the Navier-
Stokes equations become invariant under the family of spatial dilations with arbitrary similarity
exponent A and scale factor A : u — Au, x — A%, where x is the space coordinate. We
have not written the transformation rule for the pressure because it can be eliminated by the
divergence-free condition (1b).
In applying the results derived in [1], we are led to consider two coarse grained fields at scale
¢, the energy dissipation and the velocity gradients d,u, (or, by isotropy, equivalently 9,u,
or d.u.). Specifically, we consider a one-dimensional line with coordinate z, and define the
energy dissipation at scale ¢ via [9]:
1 ;1 , , .
eo(r) = dr’ = Spui(x’) ui(z'), (2)

¢ |z—z!|<t “
and the velocity gradient 8, u, at scale £:
1 f .
dug = = 2’ dpug(x'). (3)
4 |z—z'|<t

Note that the interest of considering velocity gradients averaged over size ¢ was already stressed
by Eyink [10], using an analogy between turbulence and field theory. Only at the end of the
calculations will we come back to the (longitudinal) velocity increments dug(x):

bug(x) = (u{x + £) —u(x)) - -fi (4)
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thanks to:
b (x) = fduy. (5)

The dilation symmetry then implies the scale symmetry for the energy dissipation or the
velocity increments at scale ¢, in the limit f,v — 0:

Sp(A): L= M du — Ndu, € — N2 (6)

with arbitrary scale factor A and exponent h.

2. Scaling Exponents in the Inertial Range

2.1. SUCCESSIVE MOMENTS. — We now consider the scale invariant range, i.e. the inertial
range where the inviscid force-free approximation applies [4], in which dug, du; and ¢; obey a
power law:

(67) o (l‘r(n)7
(dup)y o M)
(Gul) o X)), (7)

The scaling exponents £(n) and 7(n) fully characterize the possible statistics of the velocity
increments or energy dissipation, in the sense that prefactors are unimportant [11]. We now
examine what constraints the scale symmetry imposes on the scaling exponents in turbulence,
and therefore on the possible statistics.

2.1.1. Possible Statistics. -~ As discussed in [1], the scale symmetry amounts to a prop-
erty of homogeneity in the “log-space” defined by the two tramslation-invariant variables
(In(due/R). In€). Here, the “reference field” R is a scale invariant system of units, i.e. based
on a power law of the scale /. The same holds for the two translation-invariant variables
(In{e/R),In ¢).

Reference [1] combines this “log-homogeneity” with a postulate of equivalence of scale invari-
ant reference fields that generalizes the intuitive notion that systems of units are equivalent.
The final result is that the only possible scaling exponents in a scale invariant system fall
within three classes: a generic and a degenerate class characterized by divergence of high pos-
itive or negative moments; and a regular class corresponding to a log-Poigson statistics {7, 8].
All classes admit as limiting cases the Kolmogorov and the fractal (B-model) solutions.

2.1.2. Selection of log-Poisson. — These various classes correspond to a different geometry of
the most intermittent structures in the system: there are two types of intermittent structures,
with different codimension, in the generic case, while there is only one type of intermittent
structure in the degenerate and log-Poisson case. This difference provides physical motivations
for the selection of the possible scaling exponents in turbulence. Several numerical simulations
[12] and experiments [13] indicate that the most intermittent structures in turbulence are only
under the form of vortex filaments. This would already rule out the generic case. There is
also a somewhat general consensus that moments in turbulence are regular although there are
some claims [14] of evidence of moment divergence in geophysical flows, which however cannot
be considered as isotropic homogeneous turbulence. If we accept both beliefs, we are left only
with the log-Poisson case. The log-Poisson case therefore appears as the only case compatible
with the fundamental requirement of turbulence, namely the scale invariance, the geometrical
constraints and the regularity of moments. Its Kolmogorov or fractal limits are of course also
acceptable.
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2.1.3. The General Solution. — The energy dissipation is always positive. The velocity gradient
can be either positive or negative. Keeping this difference in mind, we predict that x, and 7
take the log-Poisson type shape:

T(’IL) = nA(f) + C((‘) <1 - (ﬁ(e))n) :

x{n) = min

n

mw”+ww(p4m@w);m¢0+cw(1~wﬁww)} (8)

where (' is the codimension of the most intermittent structures, A is the exponent character-
izing their scaling properties, and (3 a yet free parameter, likely related to the conservation
laws [15]. The subscript + and — label respectively the positive and the negative part of the
velocity gradients. The superscripts (u) or (¢) have been explicited to recall that symmetry
only predicts the shape of the scaling exponents, and not the values of the parameters, which
may depend on the physical quantity. This expression calls for several remarks:
e the velocity increments, characterized by scaling exponents {(n) = n + x(n) are also log-
Poisson;
e if § = 0 one obtains the 8 model [16] 7(n) = nA + C;
e if C = 0, i.e. when the intermittent structures invade the whole space, one recovers the
Kolmogorov limit &(n) = n/3, provided AW = —2/3.

The scaling exponents for the velocity increments and the energy dissipation each depend
on seven parameters: A(f), Ale)] [3(;), B() and C. The case where both positive and negative

gradients have the same scaling properties (A_(f b= A = A idem for 3) provides a
significant simplification:

‘(n) TZA(u) + C(u) (1 _ (ﬁ(u))n) ,

r(n) = nAY 4 ct (1 - (,8(‘))") . (9)

We adopt this simplification from now on; if it turned out to be in contradiction with experi-
mental observations, it could be relaxed at the price of more tedious computations.

2.2. SYMMETRY CONSTRAINTS ON THE SCALING EXPONENTS. - We may use one geomet-
rical and three analytical constraints, to further restrict the range of possible parameters:

e whatever its definition, e.g. (2), ¢ is defined in term of velocity, so that it seems natural to
assume that the geometry of their most intermittent structures is the same:

ct =l = . (10)
e the statistical stationarity implies conservation of energy:
(€0) = €0, (11)

where €g is the input of energy per unit time and mass forced externally into the system. This

means 7(1) = 0 and, using (9):

Al
-

e the scale symmetry (6) suggests that A and Al°) are linked by:

Bl =1+ (12)
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e the Kolmogorov four-fifth law can be obtained exactly from the Navier-Stokes equations, in
the inviscid limit [4]:
A 4
{(6ue)?y = —g6oﬁ (14)
This implies {(3) = 1, and thus, using (13) and (12):
(01 3A00 42
(BU) = 14 P

To summarize these constraints, only two parameters suffice to quantify the turbulence: the
codimension ' of the most intermittent structures, and the “singularity” exponent for velocity
increments 14+ A(® = A, In term of these two parameters, the scaling exponents are then:

= p. (15)

x(n) = nlhm-1)+C <1 — ,(3“/3) ;
7(n) = n(3hy—1)+C01 - 3", (16)
where: Sho 1
=1+ — (17)
Note that (16) means that the exponents of the velocity increments follow
§(n) = nhum +C (1= 677}, (18)
and are therefore linked to the exponents of the energy dissipation via:
&n)y=7(n/3)+n/3. (19)

This relation, also known as the Kolmogorov refined similarity hypothesis [17], is usually
obtained from a generalization of (14). Here it directly arises from the geometrical hypothesis
(10) about the intermittent structures, independently of the values of the parameters. It can
serve as a good test of the validity of our simplification (9). If for instance A, # A_ and/or
By # B~ for the velocity gradients, a reexamination of the conditions (10-14) taking into
account (8) shows that one should observe a range of value of n for which this relation does
not hold.

2.3. VALUES OF THE PARAMETERS. — To be able to completely specify the scaling exponents
in turbulence, one must assign some numerical values to the parameters hy, and ¢. We
stress that these values can not be obtained from further symmetry considerations: as usual,
symmetry only constraints the shape of the physical laws in a system, not the value of the
corresponding parameters. The constants should then be computed from the Navier-Stokes
equations, or measured in experiments or simulations.

2.3.1. Values of hy,. — We note that a restriction on the range of values for hn, occurs if one
takes into account a result due to Frisch [4]: if the scaling exponents for velocity increments
&(n) are decreasing for large n, the incompressible approximation breaks down in the limit of
infinite Reynolds number. For this reason, it is often considered that scaling exponents &(n)
should be a non-decreasing function of n. From equation (18), one may check that this is
possible only if h,, > 0, and if 3, as defined in (17), is smaller than 1; i.e.:

0< hm < 1/3. (20)

The upper bound corresponds to Al*) = 0 and B8 = 1, leading to the Kolmogorov solution
£(n) =n/3 and 7(n) = 0. This solution corresponds therefore to case of minimal variance for
the energy dissipation. In contrast, the lower bound h,, = 0 corresponds to a low variance of
the velocity increments.
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2.3.2. Values of C'. — The conditions that C' be the codimension of the intermittent structures
imposes that C' is positive, and smaller than the space dimension [1], i.e.:

0<C<3 (21)

We are not aware of attempts to measure directly C'. If we trust the visual appearance of
the intermittent structures, which look like filaments, we get ' ~ 2. However, Castaing [18]
argues that the codimension of the intermittent structures is Reynolds dependent. This proves
that 3, hm and C' cannot be considered as universal and should be computed directly from the
Navier-Stokes equations, or measured directly from experiments. This leads us to the problem
of comparison of our model with existing data, and the derivation of possible stricter bounds
on the parameters.

3. Discussion

Using symmetry considerations and geometrical and regularity properties of the Navier-Stokes
equations, we were able to predict that both the energy dissipation and the velocity increments
should follow a log-Poisson statistics, characterized by scaling exponents following (8). Using
further analytical and geometrical constraints, we also showed that the value of the scaling
exponents only depends on two parameters characterizing the most intermittent structures,
their scaling exponent, by, and and their codimension, C'. The resulting two-parameters family
of exponent includes for example the Kolmogorov 1941 model, for iy, = 1/3 and C' = 0, or the
She and Léveque model, designed for incompressible 3D isotropic turbulence, for Ay, = 1/9 and
C = 2. It represents however only a sub-class of the multi-fractal models discussed in [5] or of
the log-infinitely divisible models discussed in [8]. Our prediction is therefore more precise and
could more easily be confronted with experimental data. Since we still keep two adjustable
parameters, how can we experimentally confirm or infirm the log-Poisson statistics and/or
determine the possible values of the parameters?

Using the technique of extended self-similarity, Benzi et al. [19] significantly improved the
quality of the measurement of scaling exponents. These data are well fitted by the She and
Leveque model. However, scaling exponents are a very bad way to discriminate between models.
For instance, Nelkin [20] discusses a model based on another statistics proposed by Novikov 121},
which is indistinguishable from She and Lévéque model up to n = 100. Discrimination is much
better on first or second derivatives of the scaling exponents with respect to n [22]. Using
this test, the log-Poisson law seems to be one of the best candidates to fit the GOY shell
models of turbulence [22] and experiments at Reynolds number based on the integral scale
Rey = 800 [23].

Experimental measurements of the parameters of the log-Poisson statistics however raise the
question of the universality of the parameters, a question already addressed in [7,8]. Numerical
simulations on shell models apparented to turbulence indicate that the values of the parameters
strongly depend on the conservation laws [15,24]. Even within the context of 3D incompressible
turbulence, a Reynolds dependence of the parameters cannot be completely excluded. Fitted
values of § =1+ (3hy, — 1)/C, namely 0.79 at Rey = 120 [25] and 0.7 at Re, = 800 [23,26].
are not exactly consistent with She-Lévéque values, but are compatible with our range. Other
available measurements of the scaling exponents [27] can be fitted by a log-Poisson shape, with
constants falling in our range (20)-(21) but different from the She and Lévéque values. Clearly,
some additional work is needed to confirm and understand these variations and firmly assess
the validity of the log-Poisson law.
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