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PACS.ll.30.-j Symmetry and conservation laws

Abstract. A relativity postulate states the equivalence of rationalized systems of units,
constructed as power laws of the scale I. In

a
scale invariant system, described by a

random

physical field #, this relativity selects the set of similarity transformations coupling I and #.

Acceptable transformations
are

classified into six possible groups, according to two dimensionless

parameters: an exponent C characteristic of the physical system, and A describing the small

scale / large scale symmetry breaking. Symmetry severely constrains the successive moments of

#, and hence the shape of its probability distribution. For instance, the Newtonian case
CIA

-

cc
corresponds to self-similar statistics, the ultra-relativistic

case
CIA

-
0 to deterministic

fields, and the
case

A
=

I to a
log-Poisson statistics. These cases are

applied to hydrodynaniical
turbulence in the companion paper.

Rdsumd. Un postulat de relativit6 6tablit I'6quivalence des systAmes d'unit6s rationali-

s6s, qui sont construits comme des lois de puissance de l'6chelle I. Dans un
systAme invariant

d'6chelle, d6crit par un champ physique a16atoire #, cette relativit6 s61ectionne l'ensemble des

transformations de similaritA qui couple I et #. Les transformations acceptables sont classAes

en
six groupes possibles par deux paramAtres

sans
dimension: un exposant C caract6ristique

du systAme physique, et A qui d6crit la brisure de sym6trie entre petites et grandes dchelles.

La sym6trie contraint fortement Ies moments successifs de #, et donc la forme de sa distribu,

tion de probabilit6. En particulier, le cas newtonien CIA
- cc

correspond h une statistique
self-similaire, le cas ultra-relativiste CIA

-
0 h un champ d6terministe, et le cas A

=
I h

une statistique log-Poissonnienne. Ces cas sont appliqu4s h la turbulence hydrodynamique dans

l'article joint.

1. Introduction

Scale invariance usually refers to systems conserving the same properties or shape at different

scales. The most famous examples are fractal sets iii. Strictly speaking, only infinite size
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systems can be fully scale invariant. This is the case considered in the present paper. Breaking
of the exact scale symmetry by introduction of a minimum and/or maximum scale will be

discussed briefly in Section 5.1.

Consider then a field #(x) measuring a physical characteristic, such as e-g- a velocity or

a density field, of a scale invariant system. Then # is invariant under a family of dilations

Sh(~)
: x -

~x; #
-

~~#, for any ~ and h. Equivalently, we will define below the field #g ix)
at scale I. This symmetry then appears as invariance by arbitrary change of units for I and #g:
I

-
~i; #g -

~~#g. For a random homogeneous scale invariant field, the moments of #g(x)

are power laws off:

14ilz)")
OC

i~l"~, Ii)

where ((n) is a concave function of n
(see [2] and appendix E).

Our goal is to show that the scale symmetry only is sufficient to impose strong constraints on

statistics of scale invariant systems. We explore the consequences on a scale invariant system, of

a postulate, analogous to the equivalence principle of special relativity. This postulate, stated

in Section 2, generalizes the existence of equivalent systems of units, by defining equivalent
"reference fields". When combined with general properties stemming from the scale invariance,

the postulate yields generic constraints on the statistics of random processes in scale invariant

systems and selects the possible shape for the exponents of the moments, ((n) (Eq. ii)).
We classify all possible models using two parameters (Sect. 4) an exponent C characteristic

of the physical system, and a large scales / small scales symmetry-breaking parameter A. The

results are applied in [3] to the special problem of hydrodynamic turbulence, which motivated

the present article. The analogy with special relativity was inspired by Nottale and Pocheau

although there are many differences with their work [4-6]; in a forthcoming paper we will

examine in more details this analogy, and extend it to general relativity by letting ~ vary with

the scale [7].

2. From Units to Reference Fields

2.I. UNITS AND EQUIVALENCE OF UNITS SYSTEMS. Our results are based on a natural

generalization of the notion of units. A measure of a physical quantity is a dimensionless num-

ber multiplied by a unit. Accordingly, units are usually chosen according to the phenomenon
observed, to deal with numbers of order one: for instance, astronomers use parsec to describe

distances, while nuclear physicists use Fermis. This freedom is allowed by an intuitive basic

postulate: all systems of units are equivalent to describe the laws of physics.
A few universal laws require to compare measurements at different scales: to check his law of

gravitation, Newton had to go through conversions between his earthly units and astronomical

units. Such operation is of course simpler in rationalized systems, in which successive units

are in a constant ratio: whether decimal systems like the MKS or the CGS, or duodecimal,

or binary, for instance. Physics itself is of course independent of our choices: planet trajec-
tories around the Sun are ellipses anyway, but using kilometers-meters-centimeters makes the

physicist's life easier than miles-yard-inches to demonstrate it.

2.2. A REFERENCE FIELD FOR MEASURING FIELDS

2.2.1. Definition. We want to generalize what precedes to the case of a random field #(x),
involving many different scales of length which may or not affect each other. Note that what

follows will be trivially true for deterministic fields. There are many equivalent ways to define

the "field at scale I". If # is regular enough, for instance, we can simply derive a coarse-grained
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field #g through a spatial average on a sphere:

i~ix)
=

j (
~

iix y)dDy. (2)

y <

From now on, we consider for convenience only positive fields, by dividing, if needed, the field

into its positive and negative parts:

4ilx)
=

4[+~lx) 41~~lx), 13)

where the #j~J are positive and treated separately.
At each point x and at each scale I, we can select a unit well suited to measure #g lx). The set

lZg(x) of all these units is itself a field, and we call it a "reference field". If the field is random,

so can be its reference field (see e.g. Sect. 5.2 for an interpretation within the context of multi-

fractal theory). It has the same physical dimension as #, e.g. a velocity if # is a velocity field,
and is also positive. The result of the measurement of #g is then expressed through the ratio

#g/lZe, or, for an homogeneous field measured with an homogeneous reference field, through
the average (#g/lZg) on the realization of this ratio, which only depends on the scale I.

2.2.2. A Special Class ofReference Fields. Being more general than the simple notion of unit,
the set of all possible reference fields has no reason to obey the equivalence principle satisfied by
the units. There is an exception for a subset of the reference fields, namely homogeneous scale

invariant fields. In that case, measurements performed at one scale are physically equivalent

to measurements performed at any other scale up to a scale invariant factor. This set of

reference fields, associated to a power law of the scale I, then appears as a generalization of the

rationalized unit systems discussed in Section 2.1. Then, in the same way that binary systems

are equivalent to decimal systems, we may postulate that all homogeneous scale invariant

reference fields characterized by their associated power laws (Eq. (I )) are physically equivalent.
This extrapolation is the basis of our postulate, stated in Section 3.1.

2.2.3. Examples ofHomogeneous Scale Invariant Reference Fields. Consider a scale invariant

system, with a physical property described by an homogeneous field #(x). One may generate

an arbitrary number of homogeneous scale invariant reference fields. Indeed, since #(x) is scale

invariant, all moments of #g(x)
are power laws of I. Then, the maximal value of experimental

realizations, defined e.g. as:

~n+1~
4max(I)

"
/ji~

~jn~
(4)

I

is also a power law off:

#max Ii)
Ol

i~, (5)

where A is a characteristic exponent. Being independent on x, #m~x is trivially homogeneous.
It is then easy to check that the family of fields (#(~"#$~~,0 < a < I), is composed of

homogeneous, scale invariant fields with same physical dimension as #. Any member of this

family can then be used equivalently to measure #g, or any field with same dimension as #.

2.3. CONVENIENT NOTATIONS. To make use of what precedes, we introduce new notations

dedicated to our argumentation. More precisely, rather than multiplicative constants on I and

#, we prefer to deal with their logarithms and thus turn to additive constants.

In the literature, an usual way to define the scales is to provide a discrete slicing in the scale

space. The n~~ scale is then in
=

ioK"; here n is an integer number, io the unit chosen for the
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scales, and K the chosen resolution. Here we generalize n as a continuous variable, the real

number T:

T
"

i~ ~() 16)
o

and similarly

X(T)
=

In
))

,

(7)
f

where denotes an average on realizations.

In the neighbourhood of a given scale, and for homogeneous fields, we can define a local

exponent ~ ~~~~~~~~
~~~

Of course, we may also measure in a similar way the local scale variations of any power of #,
which is also an homogeneous field. When the measured field is scale invariant, with moments

following (I), and is measured using the reference field #~~"#$~~, the local exponent becomes

constant and takes a simple expression:

dX d In (#/#~~"#$~~)
4 dln(ilio)

"
~°A + (1°). 19)

We call this quantity "the intermittency function of #". Since it is a function of a only, we

note it b((a):
((a)

=
ah + b((a). (10)

3. Axiomatic Derivation of the Similarity Transformation

Our goal is now to derive the possible similarity transformations, using measurements of a

scale invariant field with respect to two different reference fields. This requires only two simple
postulates, stated in the next section, expressing the scale invariance and the equivalence

of reference fields. To allow a linear reading of the axiomatic derivation of the similarity
transformations, we reject all computations in appendix.

3. I. POSTULATES. Our notations turn particularly useful to express simply the scale invari-

ance and the equivalence of reference fields: Postulate I (scale invariance)
:

The log-coordinates
(X,T)

are invariant ~nder global translation, I.e. under an arbitrary choice of their origin
(Xo, To) the (X, T) coordinate space is homogeneous. Postulate 2 (equivalence) Among all

imaginable reference fields, there exists a contin~o~ts class of eqmualent reference fields b~ilt

on scale invariant fields. When describing a given field in two different reference field lZ and

lZ',
one must link (X,T) and (X',T'). Going from one reference field to another involves

only one number characteristic of their relative variation V7zj7z, this number is the exponent
corresponding to the measure of the field lZ with respect to the reference lZ'. The set of such

similarity transformations thus forms a (at least semi-) group.

3.2. GROUP STRUCTURE. These symmetry considerations constitute the cornerstone of

the analogy with mechanics exposed in paper [7]. To exploit them, we closely follow in Ap-
pendix the very pedagogical derivation of special relativity given by Levy-Leblond [8] and Not-

tale [4], with suitable adaptation of the notations, and determine the class of possible reference
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transformations. The main points are demonstrated in appendix:

.
postulate implies that transformations are linear;

.
since nothing forbids a coupling between field and scale, their most general representation is

a 2 x 2 matrix coupling intervals in X and T;

.
if scale symmetry is continuous these matrices are real [9];

.
postulate 2 implies that their determinant is 1.

.
thus there are 3 free parameters. We arbitrarily choose the corresponding notations as follow,

with no loss of generality. The first one labels the particular transformation; it can be shown

to be equal to the variation of the second reference field to the first one V7z,j7z. The two

remaining ones characterize the group associated to the physical system: the second is noted

C to maintain analogy with usual Lorentz notations, the third is noted A. Omitting the indices

on V7z, 7z
for simplification, the transformation then writes:

where P(V) ensures a determinant 1:

P(V)~~
=

2A( + (A~ 1) ~~. (12)

Composing two transformations between reference fields lZ and lZ', then lZ' and lZ", leads

to a third transformation between lZ and lZ", labelled with

V7z,,j7z = V7z,>j7z, tl V7z,j7z, (13)

where tl is the composition law:

v + V' 2AVV'/C
j14)~ ~ ~'

l (A2 1)VV'/C~

Although we assumed only a semi-group structure, it actually turns out to be a group, which

is moreover commutative: each element has an opposite Vl~ll
=

-V/(1 2AijC), where we

note VIP]
=

V Q V tl.. @ V (p times). Here V
=

0 is the neutral element.

3.3. INTERPRETATION OF PARAMETERS. Our notations can now be interpreted:

.
C is an exponent, typical of the average of the fixed points for the composif.ion law o:

C+
=

~~ C-
=

~~ (15)

To identify our formalism with physical quantities, we state Postulate 3: these fixed points
C~ are the codimeY1sion of the most intermittent struct~res in the system. Justification of this

postulate comes from an identification with the mono-fractal case, see Section 4.2. There can

be zero, one or two such codimensions.

.
A characterizes the symmetry-breaking bet~v-een small scales and large scales. In fact, in the

case A
=

0, composition laws would be invariant under X
-

-X, V
-

-V, T
-

-T, I-e-

t
-

1Ii. Note that adding this symmetry of course selects the Lorentz composition law [7].
Similarly, CIA

- co selects the Newton composition law.

.
Within continuous, exact scale invariance, codimensions are positive, real numbers, smaller

than the space dimension D (see however [10] for codimension larger than D). Requiring
positive values of the invariant codimension(s) selects:

C 2 0 and A / 1, (16)
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or equivalently:
0 < C- < C+. (17)

Here we have used the restriction (B.8) allowed by the symmetries.

3.4. MOMENT RELATION. The transformation (I I can be used to derive a relation between

successive moments of lg. Indeed, measuring #g with respect to #~~P#[~~ and #~~~#[~~,
writing the corresponding transformation using the same origins (see Eq. (AA)) and going
back into physical variable I and #, we get:

IA ljrb(/C jl 2Ab(/CjrI' 4~
~~ ~

~

i

10 4Lax

10

~p jq r -b(r

4Lax 4Lax ~

10
~~~

where we note b(
=

b((q p) and, according to (12):

P(b()
=

(19)
b( b(

C- C+

This transformation is the main point of the present paper, and links successive moments of

statistical quantities in any scale covariant problem. This coupling between the moments of

a physical quantity and the length scale is difficult to understand intuitively. In the generic

case, however, there is no reason for these exponents to be independent. This is a powerful
formalism as we now demonstrate by examining its predictions.

4. Consequences

4.I. INTERMITTENCY FUNCTION

4.1.I. Composition. The composition law between reference fields (13) can be used to derive

an analog composition law for the intermittency function. Indeed, it may be checked that the

variation of the reference field #~~"#$~~ with respect to the reference field #~~~#f~~ is simply
b((fl a). Composing then two successive similarity transformations, we then get from (13):

b((fl a)
=

b(lfl ~y) @ b(l~y a), 120)

for any a, fl,
~T.

4.1.2. Values. The shape of the composition law (20) selects the possible intermittency
functions b((p) in a scale invariant system. They depend only on three parameters: the two

invariant codimensions C+ and C-, and the value in one point other than o, say b((I).
Applying equation (20) recursively with a =

0, fl
= n and

~y = n I, provides the value of

the function b( on integers:
Inl

b(I»)
= ~b(li)) 121)

The shape of the corresponding function depends on the invariant codimensions. In order to en-

sure consistency with earlier notations [I I], we introduce the auxiliary function fl, transforming
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the composition law (20) into a multiplication. The three cases are:

.
for C+ and C- real and different (case A~ # I), we have:

I(jn)
j

c+ c-
i -(11)"

~,

~~
c+ I(j~~-~c

~~~~~

~)
= c I(ji) c[ (22)

Note the divergency occurring at

~~

~~~j)~
~~~~

.
for C+

=
C-

=
Co real (case C, A

- co, CIA
=

Co ), we have:

~ n co I(ji)
~i»~

= co + in i)iii)
flji)

j
1. j~4)

Here, the divergency occurs at

~~

~b(~~~~
~~~~

.
for C+

= co; C-
=

C/2 real (case A
=

1) we have:

b((n)
= b(li)~~B())),

~j~~
~

~_w
~~~~

c-

Same, for C-
= co; C+

=
-C/2 real (case A

=
-1), fl(1)

=
1- b((1)/C+. These cases present

no divergency.

4.1.3. Comments

.
Note that the special cases b((n)

=
0, b((n)

=
C~, b((n)

=
nb((1) appear as limits of the

preceding cases.

.
Generalization to n non integer is straightforward: first for

n
rational, by using the replace-

ment b((n)
=

b((p x n/p) for any p integer; then to n real by continuity.

. Note that in all cases, the function fl obeys:

fljn)
j

flji)n, j~7)

so that the function fl is an exponential. However, since the intermittency function is real,
only cases corresponding to fill) > 0 can be considered.

.
This constrains the possible values of b((1):

C- § b((1) § C+, for C-C+ < 0,

~)~~ § 1 or ~)~~ 2 1, for C-C+ > 0. (28)
+

.
The shape of the codimension function in the generic, degenerate or log-Poisson cases is given

in Figure 1 for typical values of the parameters. Note that in all cases, b((n)
-

C- or C+
when n - or +co.
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Generic Gcncric
20 30

15
~~

lo

~
lo

b((n) o
S(ni o

~

j~
lo

lo

~~
15

20 30

6 4 2 0 2 4 6 8 6 4 2 (J 2 4 6 8

n

a)

log-Poisson log-Poisson
20 5

o o

20 5

6((n)
~~

b((n)
~~

60 15

80 20

loo 25

120 30

6 4 2 0 2 4 6 8 6 4 2 0 2 4 6 8

n n

b)

Degenerate Degenerate
lo

4

5
2

bj(n) o
bj(n) o

2

4

lo

6 4 2 0 2 4 6 8 6 4 2 (J 2 4 6 8

n n

C)

Fig. I. Typical shape of the intermittency function
as a

function of the parameters C~ and 6((1).
Only the part in which the function is concave is physically admissible. a) Generic case C+

=
2;

C-
=

I for two values of 6((1) corresponding to fl(1) =1/2 (top)
or fl(1)

=
3/2 (bottom). Note

the change of concavity and the divergence occurring at n« in both
cases. The intermittency function

tends towards C+ for
n - ~cc in the first case, and for n -

+cc in the second case.
b) Log-Poisson

case
C+

= cc; C-
#

2 for two values of 6((1) corresponding to fl(I)
#

1/2 (top)
or

fl(1)
#

3/2
(bottom). The intermittency function tends towards C- for n - cc in the first case, and for

n - -cc

in the second case. c) Degenerate
case

C+
#

C-
#

Co
#

1; for two values of 6((1) corresponding to

n« =
1/3 (top)

or n« =
-I (bottom). Note the change of concavity and the divergence occurring at

n~
in both

cases.
The intermittency function tends towards Co for

n -

+cc in both
cases.
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<
~ g
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~
de eier

e
~f ~~~r;c

lfi
ultra-re ativi c

°
A

Fig. 2. The two disjoint domains for possible values of C
as a

function of A. The generic domain

is for A > I, and is limited by 0 < CIA < D (1-1IA), where D is the dimension of the physical

space. The log-Poisson domain corresponds to A
=

1 and is limited by C < 2D. Ultra-relativistic and

degenerate limits correspond to CIA
-

0 and to C
- cc, CIA finite. The limit CIA

- cc
forms the

Newtonian group, also acceptable. The mono-fractal
case is the

n - cc limit of all preceding cases.

Note that,
on

this graph, the Lorentz group A
=

0 would appear as
the upper limit of the ordinate

axis.

4.1.4. Concavity. The function b((n) is concave only for n belonging to a certain interval.

This is the physically admissible range. The point where the second derivative of b( changes
sign is singular. In all cases, the first derivative of the intermittency function b((n)

us. n is

of constant sign: b((n) is either strictly increasing, or strictly decreasing. On the other hand,
the sign of its second derivative depends on the position with respect to the critical scaling
exponent n~, characterizing the divergency of b((n); results are presented below.

Physically, the graph of b((n)
us. n must be concave, as shown in appendix E: condition (E.3)

implies that its second derivative is positive everywhere. As is easy to check in all cases, this

constrains P and C~ to be real, and (E.3) implies (16,17). Reciprocally, if (16, 17) are satisfied,
the graph of b( is concave in one of the domain delimited by n~ there is a physically admissible

solution for b(. We may therefore say that the concavity requirement or the positivity of the

invariant codimensions are two conditions which are physically equivalent.
The intermittency function diverges at n~ in all cases; in the case of a single root, the diver-

gence occurs at infinity. We can therefore interpret n~ as a critical exponent characteristic of

the system, which is a physical upper/lower bound of the set of allowed scaling exponents. If

we then always constrain the exponents to lay either below or above n«, the intermittency func-

tion will then be characterized by some well defined concavity properties in the corresponding
domain.

4.2. CLASSIFICATION OF THE POSSIBLE STATISTICS. The shape of the intermittency func-

tion determines the scaling exponents of the moments of the fields #g, and hence, its statistics.

Indeed, we recall that:

jn)
~ jn fb((n) (~g)

I
max

and:

(jn)
=

nA + b((n). j30)

The three possible shapes of b( mentioned in equations (22, 24, 26), together with their special
limits, yield six admissible statistics for scale invariant fields (Fig. 2). This classification will

be applied e.g. to Burgers equation (Sect. 6) and to turbulence [3].
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.
General case A > 1: if, for given experimental conditions, two types of intermittent

structures are observed, then there must be two invariant exponents, both between 0 and the

dimension D (except in the case of negative dimensions, [10]). Experimental measurements

thus fix C and A such that 0 < C < (A 1)D.
If in a given system there exists only one type of intermittent structure, we have one of the

two following cases

.
Log-Poisson case A

=
there is only one single invariant exponent C-

=
C/2 < D,

determined by experimental conditions, with C+ disappearing at infinity. The codimension

function and the scaling exponents are defined for any n.
The variable In(#/#m~x) has a

characteristic function:

4l(n)
=

exp[cst(fl(1)" 1)], (31)

where the constant may depend on the scale. Here 4l generalizes the characteristic function of

a Poisson distribution for n real instead of integer [11]. Note that b((1) > 0 ill fl(1) < 1.

.
Degenerate case

CIA finite, C
- co: there is a double root C~

=
lime-oo CIA < D.

.
Newtonian limit CIA

- co and C
- co. It is thus a singular limit of the generic case,

as is reflected in the appearance of new symmetries, namely here the full scale invariance as

well as the large scale
-

small scale symmetry I
-

1Ii. This is a system with no intermittent

structure at all. Alternatively, it can be conceived as a system with infinite codimension of

intermittent structures, which is possible only in a D
- co limit. The intermittency function

is linear: b((n)
=

nb((1).

.
Ultra-relativistic limit CIA

-
0. The intermittency function b( is zero. This case includes

deterministic fields.

.
Mono-fractal b( e C~ in the limit where one of the invariant codimensions C~ is reached

for at least one finite n, the codimension function is constant. This case reproduces the scaling
exponents of a mono-fractal process, which only occurs on a fractal of codimension C~ see [12]

for example of such a model in turbulence. Note that it is the asymptotic n - co limit of all

five preceding cases.

4.3. CASE OF NON-POSITIVE PHYSICAL FIELDS. When the physical field is not a strictly
positive variable, we can separate its negative and positive parts and obtain:

~~~~ ~~~j~~~~(~l~~~~~~ ~~~
i"~~~~~ ~~

= +,n " '

(14ii"1
=

((41~~)") + ((41~~)")

=
A+,ni"~++~~~l") + A- ni"~-+~~~l") j32)

Here, the A~,n are constants which become irrelevant in the small scales limit. Note that

equation (32a) is valid only for integer n, while (32b) also holds for non integer n. The scaling

exponents of # and (i( are then determined by the leading term, I.e. with smallest exponent.

Thus the purely academical zero scale limit yields:

g
_

o (j/)
=

g(In),

((<i(")
"

i~~"~> 133)

with

((n)
=

fin)
=

min nA
+ + b(+ in)

,

nA- + b(~ in) (34)
"

In practice, due to destructive interferences, odd exponents of #~J+~ are not as well defined as

those of j#j~J+~, and experiments may measure a difference between (2j+1 et (2j+1 (13].
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Table I. Differences with Nottale's analogy of speed relativity.

Special relativity Nottale's theory Present paper

coordinates time t exponent T
=

In I

space ~ ln ii X
=

In #g

equivalence inertial frames resolutions reference fields

variable speed ~ log-scale In(I) exponent V
=

dX/dT

absolute limits light speed cosmological and intermittent

-c, +c Planck lengths codimensions C~

5. Link with Other Existing Theories

5.I. NOTTALE'S THEORY. Nottale already developed a relativity theory, insisting on the

dependence of physics with resolution [4]. He is then led to work with a principle of "scale (res-
olution) relativity"

:
the field and the exponent plays the role of the spatial and time coordinate;

the log-scale In(I) is analogous to the velocity ~, and undergoes Lorentz-like transformations.

One important result is the existence of an universal limit scale, which he identifies with the

limit of our perceptible Universe, namely the Planck length at lol~> scales, or conversely at

large scales the length associated to the inverse of the cosmological constant. His theory is

"fundamental" in the sense that it applies to the Universe as a whole, and does not take an

equation of evolution as a starting point, but the possible fractal structure of the space time.

In contrast, our relativity theory only rigorously applies in the idealistic case where the scale

invariance extends from I
=

0 to I
= co, in systems described by effective scale covariant

equations, such as hydrodynamical turbulence. This example led us to use a different form of

relativity, better suited to describe the statistical properties of random processes. Therefore,
both theories are physically well distinct, even though both borrowed their formalism to the

same source. Here, it is T
=

In(I) which plays the role of a coordinate invariant by translation

(Tab. I); the analogous of the referential is labeled by the exponent V7z =
dX/dT. Equation

(20) yields as a limit intermittency the codimension C~.

A major interest of Nottale's theory is the self-consistent inclusion of possible cut-oils in the

space scale. This opens the possibility to describe the breaking of the exact scale-invariance in

our model using Nottale's theory.

5.2. LINK wiTH THE MULTI-FRACTAL THEORY. We have discussed in Section 4.4.6 the

case of a mono-fractal process, characterized by singularities occurring on a set of codimension

C~, leading to scaling exponents ((n) with a simple affine form. The multi-fractal processes

were introduced by Parisi and Frisch [14] as a generalization of the mono-fractal process al-

lowing for the existence of different sets of singularities with different codimensions. The

multi-fractal processes are then characterized by a function f(h). This function maps real

scaling exponents h to scaling codimensions f > 0 such that for any h, the measure Q(I, h)
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of the set of points on which the process has the scaling exponent h satisfies:

Q(I, h) ~
i~fl~), I

-
0. (35)

A multi-fractal process can therefore be viewed as a superposition of mono-fractal processes

with different codimensions. For each mono-fractal with singularity h on a set of codimension

C~
=

f(h), the scaling exponents ((n, h) have the affine form ((n, h)
=

nh + f(h) (see Sect.

4.4.6). The resulting process is then characterized by scaling exponents given by a Legendre
formula:

(In)
=

qnInh Ah)). 136)

In such case, the function ((n) is not affine anymore, but curved in a way depending on the

function f(h), which may be obtained experimentally from the measure of ((n) by an inverse

Legendre transform as

fjh)
=

min(nh on)). j37)

It has then become customary to call multi-fractal a process in which the function ((n) is not

afline, and to compute the corresponding codimension function f(h) by the inverse Legendre
transform (37).

It is then interesting to note that all six classes of scale invariant processes are multi-fractal

in the sense that the function ((n) is curved and that it leads to a non trivial function f(h) by
application of the inverse Legendre transform (37). In fact, this connection is deeper. Indeed,

one justification of the use of the multi-fractal theory is via a local scaling argument: invariance

of the random field by local scale dilation
x -

~x; #(x)
-

~~l~)#(x), where h(x) is a local

exponent, characterized by the measure (35)~ or equivalently a probability distribution function.

This local scale symmetry can then be seen as invariance by multiplication by an arbitrary
random field i~l~), which is automatically scale invariant, and where all the randomness is in h.

This can be seen as the equivalent of our reference fields lZg(x). Our postulate of equivalence
then would amounts to select only the fields i~(~) such that all exponents h are equivalent.
This additional constraint explains why only a restricted class of multi-fractals is selected.

Note also that all of the six classes are included in the set of infinitely divisible laws. Indeed,
the logarithm of a multiplicative scale-invariant process is itself a process with stationary and

independent increments. Equivalently, it is described by one of the infinitely divisible laws [15],
which includes the normal and Poisson law, and more generally any Levy law.

6. Application to Burgers Equation

One of the simplest scale covariant equation is the Burgers equation of hydrodynamical shocks:

31~t + ~t3~~
=

v3~~~t, (38)

where t is the time, ~ the velocity field, and v the viscosity. For smooth initial conditions

with a single length scale and a single velocity scale (both taken equal to unity for simplicity),
solutions of the Burgers equation display steep variations in the velocity profile, with a width of

the order O(v). In the inviscid limit, these variations steepen into isolated finite discontinuities

in the velocity, called shocks [16].
In the inviscid limit, the Burgers equation is covariant under the family of spatial dilations

Sh(~) with arbitrary similarity exponent h and scale factor ~ [2]:

Sh(~)
z -

~z, ~t - ~~~t, t -
~~~~t. (39)
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Statistically stationary regimes of the Burgers equation may be obtained e.g. b» adding a

random force such that spatial, temporal and amplitude scales are O(1). In the "inertial"

range of scale v < I < 1 they can be studied within the framework of the present theory.
For random homogeneous initial conditions with zero mean value, the scaling properties of the

solutions can be investigated via the velocity gradients over a distance I:

~ljz + I) i1(z)
~'~~(~~ " i

(~°~

These quantities can be seen as the coarse grained average at scale I of the velocity gradient
3~~t.

As discussed in [17], the coexistence of shocks and smooth regions in solutions of the Burgers
equation singles out two exponents and two codimensions. For the shocks, ~t(z + I) tt(x)

-~

Oil) is negative, independent off and occurs at isolated points; this selects A-
=

-I and

C-
=

I for the shocks. In the smooth regions, which occupies most of the space, the velocity is

regular, and takes the form of linear ramps going from left to right. This gives positive velocity
differences, with a linear scaling I-e- ~t(z + I) ~t(z)

-~

I, so that A
+ =

0 and C+
=

0. The

existence of two different codimensions in the problem imposes that the intermittency function

in the Burgers model falls in the generic case. Then, taking into account (34), we find the

following scaling exponents for the absolute value in the limit C
+ -

0:

((n)=(+(n)=0 for 0<n<I,

tin)
=

(- in)
= -n + I for n > 1. j41)

Coming back to the usual velocity differences b~tg =
~t(z + I) ~t(z) over a distance I, we obtain

a similar scaling law:

(jb~tgj") ~
fl'l"), (42)

with

1'(n)
= n for 0 < n < I,

I'(n)
=

I for n > 1. (43)

This results coincides with scaling exponents obtained in numerical simulations or theoretical

considerations, based e.g. on the multi-fractal theory [I ii. In the present context, it is interest-

ing to note that the bifractal shape (43) originates from two effects: the coexistence of negative
and positive fluctuations, with different scaling behaviours, and the existence of two invariant

codimensions. These two effects are physically well distinct, since only the second one is a

generic outcome of our scale invariant theory, I.e. derived from symmetry considerations.

7. Conclusion

In this paper, we develop a formalism to determine the possible statistics of random processes in

a scale invariant system. Our argumentation is based on the combination of a simple postulate
of exponent relativity, based on arbitrary choice of scale coordinates, and some fundamental

properties of scale invariant systems: arbitrary choice of the reference scale and homogeneity in

log-coordinates. In complete analogy with relativity theory, we may then derive the structure

of similarity transformations, linking two systems of scales, provided they involve only regular
functions of only one scale at the time. We find that similarity transformations form a one-

dimensional group depending on one parameter, the exponent V.
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This group is labeled by two real constants, characteristic of the physical system: C is a

typical exponent of order unity; A represents the symmetry-breaking between small and large
scales. These constants determine the invariant element of the group and their associated

invariant codimension C~. The latter are identified with the codimension of the most inter-

mittent structures in the systems, by analogy with fractal processes.

We are then led to a classification of the possible scale invariant processes, their statistics

and their scaling exponents. These processes are characterized by a continuous function b((n),
called intermittency function, describing the scaling properties of their probability distribution

function, and obeying the group composition law. They can be classified into 6 categories, de-

pending on the invariant codimensions C~ of the composition law. The generic and degenerate
classes are characterized by divergences of moments with order lower or larger than a critical

order. The ultra-relativistic and Newtonian classes are their trivial limits. The log-Poisson
and mono-fractal classes are regular.

The present theory is then linked to the relativistic mechanics and to Nottale's theory. It

also applies to hydrodynamics: first to shocks; then to developed turbulence seen from the

point of view of multi-fractal models or, as generalized in [7], using a Lagrangian formalism in

the space of scales.
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Appendix A

Postulates

We define a similarity transformation as the transformation which links the coordinates of a

given scale invariant homogeneous field with respect to two different reference fields lZ and lZ'.

In our log-coordinates, the problem is thus to determine IX' Xi, T' T() once we know the

set of IX Xo, T To ).
We explore here the simplest case where all physical variables depend only on one scale. This

is an essential point raised by Pocheau [6] who discussed why in turbulent fronts, the correlation

length ( in the scale space is infinite, so that a velocity at one scale formally depends on the

velocities at all other scales. In the case of isotropic turbulence, he suggested that ( is zero,

and only one scale should be considered. This amounts to writing that the transformation la~v-

depends only on one single variable, I.e. IX', T') is a function of IX, T) only; this hypothesis is

not fundamental and might have to be relaxed for systems other than isotropic turbulence, see

the paper iii. We thus characterize the similarity transformations of intervals by two functions

F,G and a priori one [19] transformation parameter a

X' Xi
=

FIX Xo, T To, a)

T' T(
=

G(X Xo, T To, a), IA. I
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where, thanks to Postulate I, we can impose:

F(0, 0, a)
=

G(0, 0, a)
=

0. (A.2)

In (A.I), we emphasize the separation into global dilations on one hand, and similarity trans-

formations on the other hand; in these variables they correspond respectively to global and

local translations. We now will derive the precise functional form of F and G using additional

natural assumptions. In particular we assume from now on that F and G are both regular and

differentiable with respect to their variables.

The next step uses again directly the scale symmetry: the similarity transformation of an

interval X2 Xi,T2 Ti depends only on that interval and not of its end points. This

homogeneity holds because scale symmetry amounts to an homogeneity in the log-variables
(see Sect. 3). This homogeneity property precludes the existence of any privileged position
in the scale space. It can be seen as a generalization, in log-coordinates, of the self-similar

property: for a self-similar field ~te(x) the ratio tte~ (x)/~te~ ix) depends only on the ratio fi l12i
this property is heavily used e.g. in the cascade models of turbulence [12].

Considering an infinitesimal interval (dX,dT) the most general transformations may be

written:

~~,
3F

~~
3F

~~
fix

~
3T '

dT'
=

$
dX + ~j dT. (A.3)

Homogeneity implies that the coefficients of dX and dT must be independent of X and T,

so that F and G are linear functions of X and T. Taking into account the condition (A.2),

we may then write an homogeneous transformation (A.I) between two frames with the same

origin, (Xi, T(
=

(Xo, To )1

l~~
=

A4(a)
=

(~~' (~'~' ), (AA)
XT' TT'

where the 2 x 2 matrix A4 only depends on a. Note that the homogeneity implies the linearity,
which does not need to be postulated [4].

Consider now a similarity transformation (AA) linking the coordinates of a reference field

lZ' with respect to another reference field lZ and with respect to itself. In log-coordinates, it

amounts to going from X
= V7z,j7zT, into X'

=
0 for any T'. This therefore imposes the shape

of the ratio A4Tx> /A4xx, as V7z,j7z. It seems therefore natural to use V as the transformation

parameter. Changing notation, we now write the general transformation formulae as (B.I).

Appendix B

Derivation of Similarity Transformations

We will demonstrate that the only possible expression (A.4) compatible with a semi-group
structure is ill ), by generalizing LAvy-Leblond [8] and Nottale [4] to the case where no parity
restriction is imposed.

From appendix A, we can change notations rewrite (A.4) as:

X'
=

P(V)[X VT],

T'
=

P(V)[-A(V)X + B(V)T], (B.I)
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depending on three yet unknown functions P, A and B. The dependence of V in lZ'jlZ is

implicit. We apply (B.I) first with a parameter V, then for V', and require that the resulting
transformation should be associated to a third parameter, noted V"

=
V tl V';

we thus get the

following set of conditions [4]:

~,,
v+B(v)v'
l+A(V)V'

~~~"~ ~~~~~~(~~~~'~

~~~"~ ~~~~~~~)i)~~~~'~
P(V")

=

P(V)P(V')(I+A(V)V'). (B.2)

Taking V
=

V'
=

0 in (B.2),
we find the conditions:

A10)
= 11 + B10)iA10),

B2jo)
=

Bjo),
r~(0)

=
r(0). lB.3)

From (Eqs. (B.3b,c)), B(0) and P(0)
are equal to 0 or I; only B(0)

=
P(0)

=
1 allows for the

existence of nontrivial transformations, including the neutral one
(identity). Then, from (Eq.

(B.3a)), A(0)
=

0 and it is natural to introduce the two new functions a(V) and b(V) defined

asl

A(V)
=

a(V)V, B(V)
=

I + b(V)V. (B.4)

Using these functions, the conditions (B.2) write:

,,

V + V' + b(V)VV'
~

l + a(V)VV'

~~~"~ ~~~~~~~~~~~~~~~~~~'~~~'

~~~"~
~~~~~ ~~~~~ ~~~~~'~'~~~'

P(V")
=

P(V)P(V')(I+a(V)VV'). (B.5)

If A and B, and thus a and b, are continuously derivable functions of V, the composition law

is necessarily commutative, I-e- V"(V,V')
=

V"(V', V) [20]. Therefore a(V)
=

a(V') and

b(V)
=

b(V') for all V, V'. They are constant functions, and we prefer to introduce the two

constants C, A that we use in the text:

b~

@ " ~ + j"
~

=

~~+l. (B.6)

This proves (11). Since a and b are a priori arbitrary real numbers, we note that:

.
C is never zeroj while A

=
0 if b

=
0;

.
if 4a + b~ < 0, then both C and A are imaginary numbers;

.
if 4a + b~ > 0, then both C and A are real; since Ill) is invariant under the choice C

-

-C, A
-

-A, we can arbitrarily decide to choose C > 0.
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Here A and C are yet undetermined; either they are both real numbers, or they are both

purely imaginary; C is never zero (see appendix B). Because of the symmetry:

A
-

-A, C
-

-C, (B.7)

we may restrict ourselves to cases where C has a positive real part:

%~(C) 2 0. (B.8)

Appendix C

Derivation of P

To find P we now note that for all V, V' and V" given by (B.5a),
we have:

II + aVV')~(l + bV" aV"~
=

(l + bV aV~)(I + bV' aV'~). (C.I

We then define g (possibly complex)
as:

T(V)
=

g(V)(I + bV aV~)~~/~
=

g(V)
1

2A( + (A~ 1)~)j (C.2)
~~~

Using (B.5d) and recalling that P(0) =1 we obtain:

iglv")i~
=

ig(V)g(V')i~,

g(°)
" I> (C.3)

for all V", V' and V satisfying (B.5a). There is an obvious solution g(V)
=

I. When is it the

only one ?

It can be shown that it is the only solution when A is real and different from I. Then the

function k(V), given by:

kiv)
=

vi~i
=

v @ v
=

~))l1())[~, iC.4)

has two (possibly equal) stable fixed points C~ solutions of (Eq. ID. I)): C~
=

k(C~). They
satisfy [g(C~)]~

=
l, while the neutral V

=
0 is an

unstable fixed point of k. In that case,

by considering the serie Vn
=

k(Vn-i), converging towards a fixed point for any Vo in the

neighborhood of 0, we find that g(Vn)
=

[g(Vo))~", and so g(Vo)
"

I. Continuity of g is then

sufficient to ensure that g(C~)
=

I, then that g is equal to I everywhere. To summarize,
the group structure ensures that Ill) has a determinant I so that after repeated similarity

transformations X and T remain finite. This achieves to establish Ill ).
On the opposite, when A is imaginary (see Sect. 4.I for discussion) or A

=
I there are

other acceptable solutions, beside g =
I. For instance, when A

=
I, the composition law for r

reduces to a simple multiplication:

rjv @ v')
=

rjv)rjv'). jc.5)

For any real number n, there is an acceptable group:

g(V)
=

(1-2V/C)",

X'
=

(1 2V/C)"~~/~ ix VT],

T'
=

(1 2V/C)"+~/~T,

V tl V'
=

V + V' 2VV'/C, (C.6)
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