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Abstract. We study the structure of the large events which control the tails of the pdf
of the velocity derivatives in

an
helium experiment. For R~ < 700, we

find that these events

have
a

remarkable structure, which is consistent with that of intense vortex filaments ("worms")
observed previously in numerical studies. The characteristics of such objects (form, size and

circulation distributions, scaling with the Reynolds number)
are in good agreement with reported

numerical findings. These objects do not contribute significantly to the overall dissipation but

they control
an important part of the intermittency in the inertial range. Above R~ m 700, the

structure of such events dramatically changes;
we interpret this observation

as an
instability. We

finally offer a
physical interpretation of

a
previous experiment showing that around R~ m 700,

the flatness of the velocity derivatives shows a
transitional behaviour.

1. Introduction

The small scale structure of fully developed turbulence is a major issue which has been discussed

at length for at least three decades ill. Much progress has been done on the subject these last

four years, and we now have some crucial informations, coming both from numerical simulations

and real experiments. It has been shown, in numerical experiments [2j, that the small scale

structure of turbulence includes intense filaments, named "worms". These objects turn out

to control the tails of the pdf (probability density function) of the vorticity distribution, so

that they play an important role in the determination of quantities such as the flatness and

hyperflatness factors of the velocity derivatives, which depend on the characteristics of such

tails. Concerning the low order moments of the velocity gradients, such as the dissipation,
their contribution is found to be small. To the best of our knowledge, their influence on the

inertial range intermittency has not been investigated so far. On the (physical) experimental
side, vortex filaments have been identified in a counter rotating disk experiment, by using
bubble visualization technique [3j, pressure fluctuations measurements [4j and studying the

correlations between local pressure and velocity [5j. According to [5j, one can define a primary
population of vortex filaments with sizes extending from the Taylor to the dissipative scale, and

resulting from the partial rollup of stretched shear layers; there also exists a second population
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of filaments, which results from the instability of the first one. These are smaller, and they

may correspond to the worms observed in the numerical studies.

In the present experiment, which is a low temperature flow of helium gas driven between

two counter-rotating disks, we investigate the structure of the events which control the tails of

the velocity derivatives. We shall show that these events can be reasonably identified as the

worms previously found in numerical simulations. Once they are identified, their contribution

can be isolated and analyzed. As the Reynolds number increases, we observe that, above

a certain threshold, the structure of such objects abruptly changes, suggesting instability.
These observations allow to offer a physical interpretation of previous results obtained on the

same system [6j, and which showed that the flatness factor of the velocity derivatives shows a

transitional behaviour around the same threshold value of the Reynolds number.

2. Experimental Set-Up

Since the two set-ups we use have been described elsewhere [7j, we give here a brief presentation
of them. The flow is confined in a cylinder, which is limited axially by two counter-rotating
disks, driven by DC motors. There are two set ups: in the larger one (cell 2), the working
volume is lo cm in radius, 13.I cm high, and in the smaller one

(cell Ii, it is 3.3 cm in radius

and 5.5 cm in height. The two cells have thus slightly different aspect ratio height over radius

o.60 and o.76 respectively for cell I and 2. Each cell is enclosed in a cylindrical vessel, in

thermal contact with a liquid helium bath. The temperature of the experiment is regulated
at a constant value, comprised between 4.2 to 8 K. The vessel is filled with helium gas, at a

controlled pressure, ranging from o up to 6 atm. The thermal stability is remarkable: in the

working volume, the root mean square of the local thermal fluctuations does not exceed I mK.

In both cases, the local velocity is measured by "hot"-wire anemometers, made from a

7 ~m thick carbon fiber, stretched across a rigid frame; a metallic evaporation covers the fiber

everywhere except on a spot at the center, which thus defines the active length of the probes.
Based on the length of the spot, the spatial resolution is three Kolmogorov lengths in the

worse case and o.20 Kolmogorov lengths in the best one. The time response of the probes
is an important issue, which is discussed, in some detail, in reference [6]. We determine it

by applying square wave test; depending on the probe, the overheating, the cable length and

the electronic circuitry, it varies from 3 to 16 ~s, so that the frequency domain which can be

explored ranges from 10 to so kHz The frequency response of the probe is found acceptable
for microscale Reynolds numbers ranging between lso and lsoo, over the whole range of scales

down to the dissipative range we explore. However, in a few cases, especially for values

of the Reynolds numbers larger than lsoo, we have been led to apply a correction procedure,
which accounts for the finite value of the time response of the probe; above 3200, we are still

in position to investigate the inertial range of scales (sometimes introducing corrections), but

not the dissipative one. The velocity is measured at several points, in the two set-ups. The

signal is digitized on a 16 bit converter, controlled by a Digital Signal Processing card, and

the ratio signal over noise of typically 70 dB. The records are of various sizes, from a few

ten millions to several hundred of millions. Table I displays typical experimental conditions

(here u is the kinematic viscosity, U is the mean local velocity, ~' the fluctuation (its rms

value), Re is the Reynolds number based on the disk radius and the disk angular speed, R~

is the microscale Reynolds number (based
on a dissipation determined by using Howarth-Von

Karman-Kolmogorov relation), I is the Taylor scale and q the Kolmogorov scale).
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Table 1

Cell u U Re R~

2 1.6 x 39 8 41000 lsl o.20 3000 127

2 2.I x 284 94 2.3 x 674 o.33 1520 26

2 4.6 x 128 4.7 x 2300 o.29

2 3.3 x x 2

x 5 x 1550 o.20 262 3A

1.I x 64 13 2 x 822 o.21 680 12

1 2.7 x l18 29 16700 188 o.25 1740 64

1 2.6 x 27.4 6.1 4.3 x 879 o.22 187 5
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Fig. 1. Log linear plot of the pdf of the longitudinal increments of velocity, calculated for
r =

2~
(where ~ is the Kolmogorov length); the flow parameters are ~ m 25 ~lm, and Rx m 659.

3. Structure of the Large Events Controlling the Tails of the pdf of the Velocity
Derivative

Figure I shows the pdf of the velocity increments for a separation scale r m 2q, for R~ m 659.

Here, the pdf is renormalized so as to ensure that the standard deviation is equal to I. Since r

lies in the dissipative range, one can consider that the pdf of Figure I accurately represents the

distribution of the velocity derivatives. We consider here the extreme part of the tails of such a

distribution, corresponding to probability levels such that the area comprised below the tails is

2.6 x
lo~~ (1.3 x

lo~~
on each side of the pdf). This number has a physical interpretation: it is

i-elated to the volume fraction covered, in the physical space. by the high level velocity gradients
defined above. For the particular pdf of Figure I the corresponding probability level is 10~~

(see the dashed line). We choose somewhat arbitrarily this threshold, because it turns

out that it is difficult to identify remarkable structures from the signal at higher probability
levels. Then for the rest of the paper, we shall dename the events corresponding to such parts

of the tails of the pdf as corresponding to "intense" velocity gradients.

A typical "intense" event observed at small and moderate R~ is shown in Figure 2a. The

large velocity derivative takes place in the central part of this object, around t m 17.8 ms.

One can see that it is embedded into a remarkable structure, which evokes the derivative of a

Gaussian curve. Such structures form roughly 40% of the observed ones (the percentage given
here is a very crude value). One can have other objects, less symmetric, but they have the
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Fig. 3. Representation of
an

isolated vortex filament, of axis normal to the plane (x,y), crossing
the hot wire (black rectangle), at a

speed U, with
an angle

a
and a distance vortex center probe

equal to 6.

same shape. For a small part of the intense events (roughly 20$lo) it is difficult to identify any
remarkable structure.

As mentionned above, such characteristics are observed in the lower range of Taylor Reynolds
number, comprised roughly between 150 and 700. Above 700, the events have a completely
different structure. This is shown in Figure 2b, where one typical event is represented. Here

the large velocity derivative is located at t m 8.05 ms. In this case, the structures associated

to the large events are essentially fronts preceded and followed by some rapid, small amplitude
velocity fluctuations. It is difficult to define in this case a particular structure.

4. Geometrical Interpretation of the Intense Events for R~ < 700

The event of Figure 2a can be interpreted as a Burgers type filament crossing the probe with

some angle a. To show this, let us first consider a vortex filament, characterized by a vorticity
field uJ(T), whose axis is perpendicular to the plane (see Fig. 3);

we suppose that it moves at
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velocity U, with an incident angle cx and that its center passes at a distance b from the probe;

cx and b completely define the impact. The hot wire (which is assumed to be parallel to y axis)

can be assimilated to a point on the scale of the filament. Let us use a frame ix, y) moving
with the filament, whose origin is at the vortex center; this amounts to consider that the probe

moves along a straight line of equation:

y=ztgo-
~

ji)
case

If we assume that the probe is sensitive only to the velocity component normal to the wire,

one finds that the measured quantity Sit) is:

Sit)
= Uoir)) 12)

with r =
(z~ + y~)~/~ and in which (according to Taylor hypothesis),

z is given by

z =
Ut cos a (3)

In (2), Uo(r) is the azimuthal velocity induced by the filament, defined by:

1 dirUoirjj
j4jL°ir)

" p d~

In the particular case where the vortex center hits the probe, we have
=

0 and therefore (3)
simplifies to:

Sit)
=

Uo (r) sin a (5)

In Figure 4a, we represent the vorticity field uJ(r) corresponding to a Burgers vortex of radius

R, intensity uJo, defined by:
~2

~°~~~ ~°° ~~~ 2R2 ~~~

and in Figures 4b and 4c, we show the function Sit) /uJoR (where (
=

Ut /R, computed from (2)
and (4)), for various values of b and cx. When b

=
0, the expected response Sit) is symmetric,

and shows two extrema separated by a distance equal to 3.2. As b increases, Sit) becomes

more and more asymmetric; the extreme case with b
=

2R would be rejected by our conditional

sampling, which captures only the events associated to large amplitude velocity derivatives.

It is remarkable that both the amplitude and the distance bet~&~een the two extrema of the

large events we select are almost insensitive to variations in b. The dependence of Sit) with

the incidence angle o is shown in Figure 4c, for b
=

0. It turns out that this angle essentially
controls the amplitude of Sit), without affecting its form. Here again a filament crossing the

probe with a small angle would be rejected by our conditional sampling, because it does not give
rise to a large velocity derivative. One may argue that the incidence angle is fairly constant,
since it cannot be too small (otherwise the event is rejected), neither too large (because it is

controlled by the large scale velocity fluctuations which have Gaussian distributions). A crude

estimate of o, obtained directly from the signal, is 8 + 3° for a fluctuation rate of 20~ [8j. As

will appear below, the corresponding standard deviation of sin a is smaller than that of the

quantities characterizing the worms, so that this parameter can be considered as a constant.

The problem of the orientation of the axis of the filament with respect to the wire requires

a discussion: in particular, the fact that the worm is inclined with respect to the probe axis

does not change the form of the signal which is produced, but may alter the measurement of

its radius. We shall return to this point later.
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Fig. 4. a) Vorticity profile w(r) Iwo for a Burgers vortex, according to expression (6); b) Sit) given
by formula (2), for

o =
o and different values of 6: (a) 6

=
o, (b) 6

=
0.75R, (c) 6

=
2R; c) Sit) given

by formula (2), for 6
=

o and two different values of
a.

It turns out that S(() shows strong similarities with the observed signal below R~
=

700

(see Fig. 2a). The event of Figure 2a can thus be reasonably interpreted as an intense filament

called a worm crossing the probe at some angle, with centers passing close to the sensor.

We wish to perform a q~antitatite analysis of such events; to do that, we introduce the two

following quantities: /ht, the time separation between the two extrema of the observed signal.
and /hS, the corresponding peak to peak amplitude. We further assume that we have Burgers

type filaments, and that their axis is normal to the plane formed by the sensor and velocity

vector U; under these conditions, the relation between these /ht, and the vortex size R is:

/ht m 3.2R/U (7a)

The interpretation of AS is more delicate. The simplest approach is to express it in term of

the maximum orthoradial velocity Un~w inside the filament; we thus obtain:

AS
=

2 sin oUn~w (7b)

We shall then use the following expressions to deduce, from the measurements of At and AS

the values of R and U:

R
=

0.31UAt and Un~w =
AS (8)
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Fig. 5. Size distributions of the worms, for different Rx: lo) 225; (x) 151; 1') 718; (+) 255;
(.) 359; (U) 507; full line is an

averaged distribution, obtained from reference [2].

and further take sin a =
0.14.

Now let us generalize this calculation to the case where the worms are inclined, by an angle
ii, #) with respect to the probe axis and the velocity vector U; we define these angles in such

a way that when # is zero and # non zero, the worm is perpendicular to U and shows an angle

~fi
with respect to the hot wire, whereas in the other case, the worm is normal to the hot wire,

but shows an angle # with respect to the velocity vector; # and # would correspond to the

pitch and roll angles usually defined in hot wire anemometry. The measurement is independent
of the roll angle ~fi, but depends on the pitch angle #. Assuming a uniform distribution of pitch
angles #, it is possible to write a relation between the distribution of worm radius po(Rw), and

that, defined by p(R), measured by the sensor: the relation reads:

2 «/2
FIR)

" p
/

Po Ill C°sqJ)dqJ j9j

We shall use this formula to interpret the distributions of worm radius we obtain. We shall

not apply this approach to interpret the circulation measurements.

5. Size and Worm Reynolds Number Distributions for R~ < 700

We first investigate the distributions of R determined by formula (8). The result is shown in

Figure 5, for various values of R~, from lsl to 718. In Figure 5, the radii R have been rescaled

by using Kolmogorov scale q, which is measured independently [7] note that this length varies

by one order of magnitude between the extreme values of R~ shown in Figure 5. The statistics

has been established over typically 25000 objects. There is some scatter, but the trend which

emerges from Figure 5 is that the size distributions collapse reasonably well on a single curve

for various R>. This result shows that the size distribution of the worms radius R is controlled

by the Kolmogorov scale in this range of Reynolds numbers. It is interesting to compare
such distributions with the numerical study of reference [2]. Here, we have used a fit of the

numerical results of reference [2j together with formula (9) to determine the worm distribution

size "seen by the probe", in a domain comprised of R/q between o and 20. The comparison
is shown in Figure 5. Let us underline there is no adjustment factor for the R/q axis, but we
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have renormalized the ordinate so as to optimize the collapse between the experimental and

numerical curves. Under such conditions, it is fair to say that the experimental distributions

agree with the numerical one, within the error bar (the experimental error on the measurement

of R, and the statistical error of Ref. [2j can be roughly estimated to 20%). One may emphasize
that all the important characteristics are the same in the numerics and in the experiment: in

particular, the maxima are located at the same place (the numerics is 2.8 and the experiment is

3.5) and the forms of the two distributions numerical and experimental are similar. Ours

actually is closer to a log normal distribution than in the numerics. By determining po(R/q)

we can propose an experimental estimate for the mean worm size: we find R
=

3.5 q (to be

compared, in the same units to 2.8 ~ obtained numerically)
The distribution of the maximum internal velocity of the worm Un~w is displayed in Figure 6,

for various R~ (including values larger than 700, which we shall discuss later). In this case

for the sake of comparison with reference [2j we use
RfllG instead of Un~w, where Rf is

the Reynolds number of the filament, defined by:

Rf
=

UmwR/u,

in which v is the kinematic viscosity. This number is proportional to the Reynolds number

based on the circulation, introduced in reference [2j. We find that the distributions collapse
reasonably well, in good agreement with the numerical findings of reference [2j. This im~

plies, among other things, that the worm Reynolds number increases as
Ri~, which is also in

agreement with previous findings. This does not prove that this scaling accurately holds (the
scatter of Fig. 6 allows other possibilities), but this shows consistency with the numerics. Thus,

on the basis of the good correspondence between the size and Reynolds number distributions

in the numerics and the experiment we may conclude that the "worms" of the numerics

and the objects which we study are the same.

6. Dynamical Role of the Worms

To investigate the dynamical role of the worms, we remove them from the signal and recalculate

the statistical characteristics of the system. The procedure consists in: I) detecting the worm.
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iii tracking the positions of the velocity extrema, iii) defining a center as the middle between

these two extrema, iv) defining a region, of size 9.6R, centered on the preceding point and v)
replacing the signal by a straight line, joining the two extremities of this region.

One can see that during this sort of chirurgical operation, the region we remove extends

up to 4.8 times the worm radius; one may thus consider that we extract from the field not

only the worms but also most of the dissipation they generate. The results are summarized in

Figures 7a-d for R~
=

659. The dashed lines correspond to the raw signal and the full lines

correspond to the same signal but without worms. We recover the fact that the worms do not

contribute significantly to the energy spectrum Elk): the difference between the cases "with"

and "without" worms is hardly visible. We have calculated that the worm contribution to the

overall dissipation is 8% in this particular case. By contrast, the contribution of such objects
to the intermittency in the inertial range is significant; this is visible when we inspect the tails

of the pdf of the velocity increments. Figure 7b shows that on a scale comparable to Taylor
scale, the sign of the curvature of the tail is inversed after the worms have been removed. The

resulting pdf is closer to what we would expect if the regime was close to a Kolmogorov state.

As a consequence, the high order structure functions of the inertial range are substantially
modified: this is shown in Figure 7c. The difference between the two curves (with and without
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worms), decreases as the scale increases, but the remarkable fact is that the worms affect

the inertial range on scales much larger than their size (which
are typical dissipative scales).

Another consequence, already visible in Figure 7c, is that high order exponents of the structure

functions are modified; this is shown in Figure 7d. The new set of exponents ii-e without worms)
is now closer to the Kolmogorov value p/3. One may therefore conclude that the worms control

a significant part (but not the totality) of the intermittency in the inertial range.

7. Size and Worm Reynolds Number Distributions for R~ > 700

Above 700, the size distributions dramatically change. This is shown in Figure 8: here, we have

plotted the size distribution using Kolmogorov units, for R~
=

2840. One can see a dramatic

change compared to Figure 8: the distribution is much wider. By contrast, no important change
is observed for the circulation (See Fig. 6). It turns out that above R~ m 700, the mean velocity

increment across the filament decreases, while its mean radius increases so that at the end the

circulation does not change. This observation may receive a simple dynamical interpretation
(conservation of the circulation); all this supports the idea that above some threshold value

of R>, those filaments become unstable, fill more space and somehow the system becomes less

intermittent in the dissipative range; it is thus not so surprising to find that above the same

threshold, the skewness and the flatness of the velocity derivatives cease to increase, as shown

in a previous study on the same system [6j.

8. Conclusion

To summarize, we have shown that the events which compose the extreme parts of the tails

of pdf of the velocity derivative have a remarkable structure below some threshold value of

R> which we roughly estimate to 700. Below this threshold, the structure of such events

can be reasonably well associated to intense Burgers type vortices denamed as worms in

reference [2j. To explore their dynamical role, we remove them from the field, by "treating"

a region, centered around the worm, of size equal to 4.8 times the core diameter; if the worm



N°4 EXPERIMENTAL STUDY OF WORMS 583

is a Burgers type vortex, this "ablation" includes both the core and most of the dissipation
associated to it. It turns out that we recover earlier results I-e the worms contribute only little

to the overall dissipation. This fact is interesting in itself, and is consistent with previous work

on the subject [2]. However, the striking result we find is that the worms control a significant
part of the intermittency in the inertial range. The fact that worms

(which
are dissipative

objects if we consider their diameter) affect inertial range quantities can be viewed as a finite

Reynolds effect: at much larger Reynolds numbers, one would expect that their influence

becomes negligible in the major part of the inertial range; actually, the present experiment

suggests that we are still far away from such a state, even at the largest Reynolds number we

can achieve.

Above 700, we observe an abrupt structural change which evokes the onset of an instability.
These results allow to offer a physical interpretation of previous observations made on the

skewness and flatness of the velocity derivatives [6j, and may also answer a question previously
raised on the stability of such objects as R> increases [2j. They support the general view that

we have to achieve extremely high Reynolds numbers to reach an asymptotic state, where all

such objects might be somehow completely "dissolved" in the background. They also show

that it is instructive to investigate the structure of small scale objects on the raw velocity
signal in addition to determining statistical quantities. This is not really new in the context of

turbulence [9]: to be specific, a similar approach has been undertaken in a mixing layer some

years ago [10j, and more recently on local pressure measurements performed between counter-

rotating disks ill]
so far actually, no systematic tracking of structures in the dissipatite range,

has been carried out, from the teiocity signal, in turbulent flows. We tend to believe that

it would be instructive to develop such an approach, more systematically, in other turbulent

systems.
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