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Abstract. The linear stability analysis of
a

layer of
a

magnetic fluid with a deformable

free surface, which is heated from below and exposed to a uniform, vertically applied magnetic
field is presented. In this configuration the temperature dependence of the surface tension, the

buoyancy and the focusing of the magnetic field due to surface fluctuations act as destabilising
effects. We show that this system has for thin layers a stationary codimension-2-point, which

can be reached for experimentally relevant values of the material parameters. We also analyse
the transition from thin to thicker layers for which there is no

codimension-2-point and we show

how the codimension-2-point disappears. Finally we demonstrate that there is
no

oscillatory
instability in the regions of parameter space considered here.

1. Introduction

A planar horizontal layer of a fluid becomes unstable when heated from below provided a suf-

ficiently high temperature gradient is applied. The first analysis carried out by Rayleigh [ii to

determine the onset of thermal convection considered the buoyancy force as the destabilising
mechanism giving rise to thermal convection. The applied temperature gradient induces an

adverse density gradient, which is caused by thermal expansion in the heat conduction state.

At a certain critical temperature gradient the destabilising forces are strong enough to over-

come the stabilising viscous forces and thermal diffusion, so that small fluctuations grow and

stationary convective motion sets in (Rayieigh-BdnaTd instability). Buoyancy forces turned

out to be the dominant effect to drive convection for rigid boundaries. The same calculations

carried out for a thin id m 1 mm layer with a free surface showed that buoyancy effects are not

sufficient to account for the experimental results of B4nard [2]- Pearson [3] proposed another

effect to drive convection, namely surface tension, which is a monotonically decreasing function

of temperature for most fluids. Fluid particles reaching the surface with higher temperature
because of small fluctuations, induce a gradient in surface temperature and thus an adverse

destabilising gradient in surface tension arises. The applied temperature gradient becomes

critical when it is strong enough to overcome viscous forces and thermal diffusion: stationary
convection sets in (BdnaTd-MaTangoni instability). This phenomenon turns out to provide the
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relevant mechanism for the onset of the coni>ecti;e motion obseri>ed by BAnard. Pearson also

pointed out, that the influence of buoyancy effects becomes dominant for thicker layers (about
d m cm). Nield [4] first considered both effects and described hoi; the~~ interact at the thresh-

old of the instability. The influence of buoyancy effects becomP~ dominant for thicker lai.ers

(about d > 5 mm). as already. stated by Pearson [3], but not in~~estigated in detail. iihile thP

early; calculations ii~ere done for nondeformable surfaces and focusing exclusii>ely on stationary

onset, later these assumption> were dropped (compare, for example, Refs. is-I ii ).
While the Raj~leigh-BAnard and the BAnard-llarangoni instability, discussed up to nor; arise

in many fluids, u-e ivant to focus here on magnetic liquids, suspensions of small magnetic
inonodomain particles (diameter d

+~
100 A) in a carrieI. fluid ii?,13]. Due to the large BI.uu.iiian

motion of the suspended particles these liquids do not have a spontaneous magnetisation. but

shou. a strong response to small magnetic fields ii?,13]. A ;erticallj, applied, uniform and

static magnetic field has a destabilising influence on the free surface of a magnetic fluid. since

the boundary conditions for magnetic field and magnetic induction lead to a focusing of the

magnetic field along the u>ai;e crests on the surface slightlj~ disturbed by small fluctuations.

Thus a destabilising gradient of the magnetic field in the fluid in thP I,icinity of the surface

arises. As shot;n first by C'ou4ey and Rosensweig [14j the surface becomes unstable, v-hen the

influence of the magnetic forces overcomes the stabilising forces associated I;ith gra;itv and

surface tension (Rosensweig instability). The surface deforms and generates a triangular array
of peaks, standing statically in the fluid. In contrast to the dissipatii>e B4nard-iiarangoni
instability discussed above. the Rosensii,eig instability is static and is the result of a balance

of se;eral contributions to the total energy, namel» of the magnetic energy, the energy, in the

gravitational field and the surface energy. We note that a similar energ» lJalance and thus the

same type of instability arises. u-hen an electric field is applied perpendicularly to the surface

of a liquid metal (compare Ref. [1.5] for a comprehensive treatment of this in~tabilit;). Time-

dependent behai>for occurs onl» during the short transient periods u,hen the external magnetic
fiPld is changed. The main difference betv>een the con;ectii,e instabilities mentioned above and

the Rosensweig instability is thus, that the former shot;s statioiiar; flou.s. u.hile the latter is

static.

This key difference betiieen the t~vo types of instabilities raises the question hou. the system
behaves, iihen applying both a temperature gradient and a magnetic field to the free surface of

a magnetic liquid. In the following u;e address this issue and describe the results of a linearised

stabilitv analysis. The paper is organised as follou>s: in Section ? u,e formulate the problem
and in Sections 3 and 4 lie analyse in detail the stationary and the oscillatori. instabilit;.

respecti;eli~, follou.ed by the conclusion iii Section 5.

2. Formulation of the Problem

We consider a fl~t, horizontally unbounded layer of a I>iscous magnetic fluid v.ith finite depth
d (medium 2; see Fig. I for a sketch of the set-up), u>hich is bounded beloi; (z

=
0) by a

planar, rigid plate of constant temperature and has a deformable fi.ee surface described by the

function
z =

d + ((x, y, t) The system is heated from beloii and a uniform magnetic field is

applied vertically to the flat surface. For simplicit» u-e assume the media outside the fluid to

be I;acuum. Surface tension
cT and densit» p are assumed to depend linearly on temperatur~

T:

alT)
=

alT«) ilT TR) PIT)
=

PITA) olT T«) Ii)

u-here j = (0cT(T)/0T)~~~~ I.epresents the rate of change in surface tension due tu t~m-

perature variations and o =
(0p(T)/0T)~~~~ is the coefficient of ;olume expansion. Both
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Fig. 1. Sketch of the considered set-up.

coefficients are taken at the reference temperature TR. We concentrate on homogeneous mag-

netic fields and on thin layers. In this case (I,e. d c~ 1 mm) the Maraiigoni effect provides the

dominant mechanism to drive convection. Then a temperature gradient of about 1 Kmm~~

is sufficient to drive BAnard-Marangoni convection, whereas a temperature gradient of about

10 -100 Kmm~~ is necessary for Rayleigh-BAnard convection. Estimates show that the contri-

bution of the magnetothermal effect to thermoconvection (this mechanism is discussed in detail

in [16,17]; there it is shown that the threshold of magnetothermal convection in homogeneous
fields is c~

(AT)~ d~) for the considered thicknesses of the fluid layers is much smaller than that

of buoyancy and thus can be neglected.
Furthermore, we assume the magnetic fluid to be electrically insulating, so that the station-

ary magnetic Maxwell equations reduce to Laplace equations for the magnetic potentials 4l(~)

(magnetic field: H(~)
=

X7#(~); upper indices in round brackets denote the medium which is

considered) for the three different regions. In addition we assume the magnetic fluid to be

homogeneous and isotropic and to react linearly to an applied magnetic field (cf. [12] where

these assumptions are
discussed), I-e- M

=
ii + ~r) H(~l, with the magnetisation in the fluid

M, and its relative permeability ~r

The bulk equations to describe our system are given by (Boussinesq-approximation):

div v =
0 (2)

btv + iv X7) v =
X7fl + uAv +

~° (T TR) e~ (3)
P P

btT + v. VT
=

XAT (4)

A4l(~)
=

0 is)

with the velocity v =
(~1,~,w), the density of the fluid p and its kinematic viscosity u, the

acceleration due to gravity g, the unit vector in vertical direction ez, the coefficient of thermal

diflusivity x and the expression IT
= p + ps + pgz, ~&~hich contains various contributions to the

pressure. The magnetostricti~e press~lre ps = -~o f/~~~ P (bfi~/bp)~
~

dH, (H and M denote

the moduli of magnetic field and magnetisation iii the fluid) is due to'the fact that we consider

magnetic fluids (cf. [12] ).
Most of the effects discussed here are induced by the boundaries. First we have to consider

the boundary conditions for the magnetic field H and the magnetic induction B:

n x [Hi
=

0 and
n [Bj

=
0

,

(6)

where the brackets denote the difference ofthe function inside at both sides of the boundary. We

assume a rigid plate at constant temperature TB as lo~ver boundary (z
=

0). The corresponding
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boundary conditions read:

v =
0; b=w

=
0; T =TB Ii)

The free surface at z =
d + ((z, y, t) is assumed to bo stress-free, so that the stress difference

in the media 1 and 2 is balanced by the capillary stress pc.

The stress tensor T)/~ of an incompressible and viscous magnetic fluid ii?] reads:

T~)~ =

p
+

/~
po

~~(~"~
dH + (poH~ bj + B~Hj + pv (b~v~ + bjr~ (8)

o H T

Assuining vacuum as medium 1, the equilibrium condition (ii~
T~~~ ~~~)

+ (p~j
=

0)
° ~? J

i-educes taking into accoimt conditions (6) (cf. [12]) lo the follo~&.ing nonlinear form:

n. (lP + Ps I Pm + P,,lf-P</ (Vv + (x7v)~)) -p~ =
o 19j

i~ith the unit vector normal to the surface:

~~

Viz ((x.v,t))
fi

~(;)
and the follov.ing contributions to the total pressure: jJm = ~o f~ .11dH

,

p,, =

jpo,llj
and p~ = an

iv n) jX7tT where X7t
#

X7 n in Vi (Ienotes the gradient tangential

to the surface. I is the unity tensor.

At a
deformable free surface the z-component of the ielocitj< is )-elated to the surface deflection

((x, y, t) hi the kinematic bouiidarj< condition:

u>(__~~. =
0t( + v X7(. (10)

it"e assume the heat flux Q through the surface to be ~roportioiial to the local temperature
gradient:

Q IT
= in VT j11

n.ith the coefficient of heat conduction K. Follo~&-ing the usual steps of a linear stability aiialysi,
(sea e-g- [18j) and choosing (f, d~ Iv. v2p/d~, (TB Ts )v/~, q(TB Ts lv/~~ Jlo (magnpti;atio)i
of the fluid iii th~ groundstate) and Jlo(f as the units of length, time, pressure, temperature.
heat flux, inagnotisatiun land magnetic field) and niagnetir potential re~pectively, v-e ohtaiii

th~ corresponding linearisod, dimensionless perturbation equation~ and bouiidarj. conditions.

Here q =
j0Q/0T)~~~~ represents the i-ate of change in heat flux due to temperature variations

at a reference temperature, TB and Ts at-e the temperatures at the bottom plate and at the

deformable free surface, respectively.
The dimensionless iuagiietic boundary value problem:

~4l)~l
=

o for the media
=

1, 2. 3 ii?

n.ith: 0~jy)
4l)~~

4l)~l) =
0z p,4l)~~ l)~~)

=
0 at c =

0 j13)

and

0~j~~
4l(~~

4l)?~) + 0~j ~~(i =
0z 4l)~~ i,.4~)~~)

=
o at z =

i
,

iii
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decouples from the flow problem and can be solved separately.

The perturbative potentials ~)~~ (the subscript ~1' denotes perturbative quantities) and the

surface deflection (i land later on also the velocity ml, Pressure Hi and temperature fli are

analysed in normal modes of the following form:

O(z, y, z, t)
=

b(z)
exp (I(k~z + kyg + cat) + at) + c-c.

,

[15)

where O denotes one of the above quantities, hats denote amplitudes which are independent
of the lateral coordinates z

and y, uJ is the dispersion, a the growth i-ate and c-c- denotes the

complex conjugate. The components of the wave vector are related to the wave number by

k
=

fi~.
ivith this ansatz we obtain for the potential 4l)~~ in the magnetic fluid:

4l)~~ = #l~~ (i e~~ + i~~l (i e~~~ [16)

with

j(2) (~ ~ ~r) ~~

ii + ~r)~ ek ii ~r)~ e-k

j(2) (~ /~r) ~
~

j~~)
ii + ~r)~ ek ii pr)~ e-k

Follo~ving the usual steps (e.g. [18]) using the normal modes (Eq. (15)) and taking into account

equation (16), the remaining problem to determine the onset of instability la
=

0) reads:

o) Bulk equations:

(D~ k~) (D~ k~ iuJ) ii [z)
=

Rk~ ii (z) (18)

(iwP-D~+k~)#i(z)
=

di(z) (19)

fl) Boundary conditions:

z=0:

ii
=

Ddi
=

ii
=

0 (20)

~
i.

tangential stress balance:

(D~ + k~) ii
=

Ji4k~
~#i P~~/1) (21)

normal stress balance:

CR (iuJ D~ + 3k~) Dii + [(B + k~) k~ AfA(k)k~) Ii
=

0 (22)

kinematic boundary condition:

ii
"

iuJ/1 (23)

thermal boundary condition:

(D + C) ii
"

CP~~/1 (24)
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n-here D
=

d/<lc anti i~hert> the folioi~iiig dimeii~ionless iiuiiibers hm.e been iiitro(lucprl:

Rayleigh number lZ
= TtT,,

/T/
=

g~1~Td~ Ii tv). Praudtl number l~
= Tt IT,

=
v/~. C'rispatioii

nuiiiber C
=

Tj~/(TtT,)
=

pv~/(da). Bond number B
= Tj~/Tj =

gp(f~ la. 5Iaranguni
iiuiii-

her.l/f
= TtT,

/j(~
=

j~Td/(pi</), and iiiagnetisatioii number,I'
= 7j~/Tj~

=

poll,Jl~(fla
(u.ith the follov.iiig relaxation tiiiiescales: ~.iscous timescale: T, =

d~/</, thermal tiiiiicak:

Tt =
(f~ /~. buuj<aiicy tiiuescak: T/

=
if (tJ~Tg), surface tension timescale T)

= pd.~ /~J. ~iav-

itatioii tiiiiescale T/ =
rilg, timescale due to the llarangoni-effect T[

=
p(P II- ~T) ail(I

iiiagiietisatioii tiiiiescale j(,
=

pd~/(j(oP,,11~) ). The Biot niiniber C is definprl i the ail-

4itioiial heat flux through the surface duo to temperature fluctuations divided lJy the boat

flux
throijgij

the
surface~jj

h~~basic state: C
=

Q(f/h.. Trip function ilk) is given )iv

'~~~
~[~ ~/j~ ~ ~~

ii

)
)~

3. Stationary Instability

Iii thi~ section u-e analyse iii detail the stationary case 11
=

0j. The wNociated linear I)oiiiid-

arj< value problem giv~n by ~~uatioii~ (18)-(24) is ~olved by a linear coiubinatioii of ioinpl(~x
hyperbolic fiiiictioiis [for details see appendix Al. Implementing the boundar; conrliti~in; u<

obtain a homogeiieou~ lo x 6) set of linear equations, n.hich has a nontrivial solution if ail(I

only if the coeflicioiit deterniiiiant ~<aiiishes. This condition yields the neutral cur~<eq. Iii uur

systeiii th~ applied iiiagnetic field an(I the teniperatur~ gradient are the ti-o paraiiieter; that

i-an be controlled o~ell pxperimeiitally. Since the latt~r appears iii both the llarangoni iiunil)er

l/f and the Rayleigh nuiiibei 7l, it is iiiore corn.enieiit to determine the neutral
curie, for the

magiietisation number,I'(I.) and treat the teiuperatur~ gradient as a parameter. ii'e ol)taiu

(cf. app~iirlix A):

i'ii.j
=

~

jib + i~~)12 + gj~,,~/t. r, c. ijj ii-ii
ilili

o.Ler~ gjR~,l/f, (. C, I-j is gi~ en iii thp appeii(Iix.

3.1. L1'iiTiNLl CisEs

3.1.1. R~_ileigli-BAnard and BAnard-i1Iaraiigoni hi.qtalJilit_i'. As v-e consider iiputr~l olive;

of equation j?<5) pure tliermal instalJilitie~ ~et in, n-hen there are zeroq of the fiinction,i'll.I

(iioto that ,I' cannot become negative I)y construction). To evaluate the neutral cuivp; o-u

hale u~ed to-o niethods. In ~ddition to the iiietho4 outlined ohm<e and rliscii%erl iii (lPtail iii

appeiirlix A v-e h<.e also u~ed that of Yield [4j n-hich is Rho a~plicalJle for R
=

0.

Froiii nut
calculatimis of the neutral ciii;es ,l/f(k) n-e recover as special cases the results vi)-

taiiie4 by Pearson [3j. Kiel<1 [4j, Lebon anti Cloot jig). .Tat;ashiiiia iii and PArez Gaicia aii(I

C'ariieiro [9j for BAnard-5Iaraiigoiii convection.

3.1.2. Rosensn-eig Instability for Laj.er~ of'Finito Tliickne~s. The other special cow <.uiitaineil

iii equation (?-ii are isothermal conditions iii
"

0) giving rise to the Roseii;u.eig in,tat)ilit;

The linear boundary ,-able probleni for this case rodiic~s to:

(D? i~j (D~ i~ <u) ii>i ICI
"

o 12Gj

fi>i #
Dii,1

"
0 at z =

0 iii

CT Ill D~ + 31.~) Dii>i + 16 + k~) 1.~/i I'.I[I.)I.~/i
#

0

[D~ +1.~ )ii,1 #
0 (I>i =

i~J/i at z =
(281
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The solution of (26) can be written in the following form:

ii
=

Ai sinh(~i z) + A2 sinh(~2 z) + Bi cosh(~i z) + 82 cosh(~2 z) (29)

with ~i
=

k ~2
=

fi

and A~-1<282 A2=1<iB2
Bi--li+tlB2

~~
))l~)-~~~~~

~°~~~ ~~~ l~~
~2~

~
~i~l~)-~~~'

~~~~

This yields the following dispersion relation:

CR (2 ~Ki
fi K2k) k~ iI(2wkj (B + k~ fifA(k)k)

=
0 (31)

For an infinite thickness of the layer this reads:

~
~

~2
~

~
C~k3 ~

~ ~~
l ~m

~
~~~~

which is discussed in [20].
In the limiting case w =

0 v~e obtain the condition for marginal stability:

B + k~ fifA(k)k
=

0 (33)

n~hich can also be easily derived numeric£ly from equation [25) (g vanishes rapidly for small

Rayleigh numbers 7Z and Marangoni numbers Jl/f).
For the case of an inviscid fluid the dispersion i-elation reduces to:

w'~pcoth(k'd)
=

pgk' + ak'~ pop,il£/A(k'd)k'~ (34)

Iii equation (34) ~&~e
returned to quantities with dimensions (the corresponding wavenumbers

ind dispersions are marked with a prime; in the function A(k) the dimensionless k's have to be

replaced by I"d), since the viscous timescale is no longer the appropriate one. For an infinite

thickness d
- c~c of the layer, relation (34) reduces to that of Rosens~veig (cf. [12] ). In Figure 2

the dispersion relations for a layer of the magnetic fluid EMG 901 (cf. Tab. I, where all the

relevant physical data of ENIG 901 are listed [21j) with the thickness d
= mni are plotted.

Figure 3 sho~&> the critical dispersion relations for different thicknesses of the fluid layer. These

figures recover those of Rosens~&~eig [12j or N4ron de Surgy, Chabrerie, Denoux and Wesfreid

[15], where the influence of thickness and viscosity on the electric equivalent of the Rosens~&~eig
instability- in liquid metals is discussed in detail. The curves for the different thicknesses in

Figure 3 all sho~v a similar behm~iour and all have a region of anomalous dispersion. There is

only one qualitative difference between the curves for finite and for infinite thicknesses (which
is represented here by d

=
500 mm): the slope at 1"'

-
0. iifhile the slope is zero for finite

thickness, it is nonzero for the infinite case. This thickness effect has been observed recently
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Fig. 2 Dispersion relatioits for ~.ariou~ magn~tic fields [in,iscid ~~w; d =lmm).
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Fig. 3. Critical dispersion relations for ;ari~us tliicknesse~ of th~ layer rl (in;is~id ~a~ej

in [22j. n-here an experiment to measure the dispersion relation of iiiagnetic fluids is (lescribed.

The authors of reference [2?j chose
a

V-shaped cylindrical channel n.ith d
=

6 mm. Intprestiiigly
they o-ore able to shon~ the anomalous behaviour of the di~persion i-elation slightly belon. the

onset of instability.
As it is discussed iii detail in ii?) the onset of the Roseiiso.eig instabilitj~ is characteiised iJy
~J'~

=
0 an(I d~J'~/dl.~

=
0. v.hich sho~vs that the principle of the exchange of stability strictly

holds for the in;iscid case. It can be seen in Figure 3 and also from the plot~ iii jib) that

the critical n.avemimber of the Roseiisowig instability de~e1i4~ only< sliglith. on the tliicl;nes;
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Table1. Physical data of the magnetic fl~id EMG g01. All parameters except are taken

from reference f21j. is the specific heat from EMG g05 f16j which has the same carrier liq~lid

as EMG 901. The temperat~lre of meas~lrement is gi~en when known.

density p 1.53 x
10~ ~~

kinematic viscosity v
(at 300 K) 6.5 x

10~~
s

thermal conductivity
t~

1.85 x
io~~ ~~j,

m ~

specific heat c~ 47 ~
io3 J

K

thermal difiusivity x 8,2 x
io-8

s

coefficient of volume expansion o 6 x
10~~ Il~~

magnetic permeability ~r 2.3

Surface tension a
29.5 x

10~~ Nm~~

rate change of ~

surface tension with temperature ~t =

~° ~ ~ ~~ ~

m K
0T

capillary wavenumber kca~ :=

~~ 0.713 mm~~

a

Rayleigh number R 11,0 mm~~K~~ d~ AT

Marangoni number Ji4 85.8 mm~~K~~ d AT

Prandtl number P 79.3

Blot llUillber C 0.0003 mm~~ d

magnetisation number fit 9.8 x
10~~

~
d fi~~

mm A

Crispation number 2 74 x
lo-s

~~
~-i

Bond number B 0.508 mm~~ d~

of the layer, Figure 4 shows the critical wavenumber scaled by the capillary wavenumber

kcap .=
~~, which is obtained for d

- c~c, as a function of the layer thickness for the magnetic
/~

fluid E~fG 901. We can see that there is only a slight correction to the capillary wavenumber

in the vicinity of d
=

0.5 mm. The maximum deviation is about 12 %. The critical induction

field is nearly constant for large layer thickness and grows monotonically for snialler thicknesses
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i o

.05

o~~ i o~

d [mm]

Fig. 4. Dimensiousless criti~al ,,.a;enumber 1.~ II-rap a~ a
fiinctioii of the thickness of the (al

er
d.

0.0080
--~-

o.oo75

o.oo70

io° io~ i

d [mm]

Fig. I ~iitical magnetic induction
as a

function of the thickn-~ of th~ la;er d.

[cf. Fig. 5). This increase i-effects the fact, that 'there is not em)ugh space for the niagiietir fipl(I

gradient to ilevelop compl~tely and so the applied field has to be incr~aserl to reach the onset of

the instability. But o-e n-oiild like to stress that this region of thin lay<ens IS 100 p ml i~ not ea;y

to i-each experimeiitallj., because eventually surface roughness of the bottom Plate becomes

iiiiportaiit. To ~iim up, the Roseiiso.eig instalJility can b(~ considered to he a charactpristir

instability< shoi~-ii by magnetic fluids.

Figures 4 and 5 also apply to the viscous case, since the condition for instability. (33) i~ still

the sortie a~ that for im.iscid fluids. This indicates that the velocity has to ;anish identirallj< at

the thresholrl. ii'e denioii~trate this bj< calculating th~ eigeiifunctioiis for the statioiiarv case.
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To achieve this we have to iuodify solution (29) in the following Way:

ii
#

Ci siiih (kz) + C2 cosh (kz) + C3z sinh [kz) + C4z cosh (kz)
,

(35)

~vhere the coefficients C~ can be determined by the boundary conditions (27) and (28). We

obtain C~ e 0, ~N.hicli sho~&~s (taking into account the continuity equation) that the Itosensweig
instability sets in with vanishing velocity and stresses the reversibility of the interacting mech-

anisms.

3.2. RESULTS FOR THE GENERAL CASE. To be definite and since u~e are interested in

effects, that are accessible experimentally, we present our analysis foi" the physical data of the

magnetic fluid EMG 901 which is commercially available (cf. Tab. I, where the physical data

and the corresponding dimensionless parameters of EMG 901 are listed). The exact value for

the Biot number is hard to determine and differs for each experimental set-up. Nevertheless

a lower bound for the Biot number C can be estiiuated roughly by means of the Stefan-
Boltzmann law when considering a massless, inert gas ~&~ith a temperature of 300 K in contact

with a fluid surface at a temperature of 299 K. As a result we find the value C
=

0.0003 mm
~~ d

(cf. [23j). In [9j it is mentioned, that for experimentally relevant conditions (where convection

and thermal diffusion are the dominant mechanisms to transport energy) average Biot numbers

are C < 0.1

First we restrict our analysis on the regime dominated by the lfarangoni-effect and fix the

layer thickness to d
= mm. By solving fit(k)

=
0 we determine the critical values for the

thermoconvective instability to be Ji4c(ABM) =
78.486, which corresponds to R

=
10.062 and

k~~RBM) "
1.992 (for comparison, the critical parameters for 7Z

=
0 are: Jl/f~(BM) =

79.591

and k~(BM) =
1.992 and for Jl/f

=
0: R~(RB) #

669.04 and k~~RB) =
2.086), where the index 'c'

denotes critical values, ~RBM' stands for Bdnard-Marangoni instability, ~&~here the Rayleigh-
BAnard effect is also considered. The latter is excluded when the parameters are marked with

'BM'. Later on parameters, that correspond to the pure Rosens~veig instability will carry the

index ~Ro'.

In Figure 6 the neutral curves
fit(k)

are plotted for different values of Jl4. The wavenumber is

scaled with the critical ~&~avenumber k~~RBA~j for the onset of the thermal instability.
For Ji4 < 0.95JI4~~RBM) the curve shows only the Rosensweig instability (fif~~Ra) =

4.984 and

k~jRo) =
0.779) and no influence of heating can be noticed. when increasing Jl/f approxiiuately

to 0.97Jl4~~RBMj one starts to notice a dip in the curve at a wave number, which belongs to

that of thermal convection and ~&~hich becomes deeper rapidly by increasing Jl4.

At a value of Jl4
=

Jl4cD2
=

0.9994Jl4c(ABM) the systeui reaches a stationary codimeusion-2-

point (CD2) with the critical parameters: Jl/fcD2
#

78.438, kcD~~RBA~j =
1.989, fifcD2

#
4.961

and kcD2(Roj
#

0.779. The inset in Figure 6, ~&~here the Rosensweig minimum is plotted with

very high resolution (because of the high resolution only the four curves close to the CD2 are

plotted), illustrates that for 0 < Jl/f < Ji4cD2 heating is suitable to decrease the threshold

maguetisation of the Itosens~&~eig instability slightly. In that case both destabilising mecha-

nisms interfere and thus the Itosensweig mode is no longer purely static but now becomes

dynamic. For 0.9994Ji4c(ABM) < Jl/f < Ji4~~RBA~j it is possible to reach the threshold of the

lfarangoni instability by means of applying a magnetic field. These possibilities to reduce the

threshold values of the instabilities reflect the weak coupling between these both destabilising
effects. In Figures 7 and 8 the corrections of the temperature- and velocity-field at the CD?

ai"e plotted for the different wavenumbers kcD2(Ro) and kcD2(ABM) (colder regions are sho~&;n in

a darker greyscale). The motion at the surface is as it is expected from the lfarangoni-effect
fi.om warmer to colder regions. At the CD2 convection rolls are found for both wavenumbers,
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Fig. I. Corrections of the temp~ratuie field (darker giej ~cale~ denote colder region~) and ~uire-

sponding ;elocity field at the I'D? lb
=

kc.D~~Roi).

even though there is no motion at the onset of the pure Rosens~&>eig instability, v.hicli stresses

iii an easily visible way. the influence of thermoconvection on the Rosensweig instability< at the

linear stage through a modification of the coi'respouding eigenvector. In Figures 9 and 10 the

corresponding corrections of the magnetic fields are plotted. These figures shov. the destabil-

ising focusing of the inagnetic field toy.ards the ~&<m.e crests inducerl bj< surface deflections.

il"hen increasing,l/f further, one reaches a regime, where the system becomes uiistal)k against
thermal con;ection. ~&.hen an additional iiiagnetic field is applied but one has tn mention,

that this regime is quite small. At ~l/f =,l/f~jRBM) the applied temperature gradient is large
enough to dri;e thermal convection ~&~ithout an external field.



N°3 COMPETITION OF INSTABILITIES IN MAGNETIC FLUIDS 431

1.oo
'

,

t

z 0.50 , + t

, t ~'

e . e

o.oo

0.00 0.25 0.50 0.75 1.00

X/lCD2(RBM)

Fig. 8. Corrections of the temperature field (darker grey scales denote colder regions) and corre-

sponding velocity field at the CD2 (k
=

kcDijRBMi).

0.00

Fig. 9. Corrections of the magnetic field at the CD2 (k
=

kcD2jRo)).

To guarantee the existence of the CD2 for experimentally accessible conditions, we hm>e to

consider the influence of the Biot number £, which is hard to evaluate. In Figure 11 neutral

curves
for the experimentally potentially interesting region 0.0003 < C < 1.0 are plotted. There

is only a quantitative change of the critical parameters observed, but the CD2 still exists.

Since the wavelength of the Rosensweig peaks is determined predominantly by the properties

of the magnetic fluid, whereas the wavelength of the convection rolls is essentially controlled

by the thickness of the fluid layer, it is possible to move the latter by variations of d. In

Figure 12 the neutral curves at the CD2 (when possible) are plotted for different values of

d (£
=

0.0003 mm~~ d). For d < 3 mm the ratio between the kcD2jRo) and kcD2(RBM)

can be varied over a large range of values. At d G- 4 mm the convection dip is inverted and

gives rise to a local maximum as can be seen in Figure 12d. The question how the BAnard-

Marangoni instability for thick layers id / 4 mm arises as a limiting case is discussed in detail
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Fig. 10. Corrections of the magnetic field at the CD2 (k
=

kcD2jRBM) ).
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Fig. 11. Neutral curves
fit(k) at the CD2 for increasing Biot numbers £: jai £

=
0.0003, fi4

=

78.438 and R
=

10.056; (hi £
=

0.01, fi4
=

78.804 and R
=

10.103; (c) £
=

0.1, fi4
=

82.169 and

R
=

10.534 (d) £
=

1.0, fi4 =114.100 and R
=

14.627.

in appendix B. In this appendix we also show the process of inversion. The inversion of the dip
is not observed for 7Z e 0. In this limiting case the location of the two minima can be varied

over a large range. So the contributions of the Rayleigh-Bdnard instability decide M~hether the

system reaches a CD2 or not. Consequently this inversion of the peak is also observed, when

increasing the Biot numbers to £ > 50 (which can probably not be reached in an experiment)
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Fig. 12. Neutral curves
Af[k) for increasing thickness of the layer d: la) d

=
1mm, fi4

=
78.486 and

R
=

10.062j 16) d
=

2 mm, fi4
=

75.353 and R
=

38.643; (c) d
=

3 mm, J4
=

70.596 and lZ
=

81.457;
(d) d

=
4 mm, fi4

=
64.800 and lZ =132.923.

without change of d. As it is shown for example in [4] the critical Marangoni number increases

by many orders of magnitude, when increasing the Biot number from the insulating (£
=

0)
to the conducting case (£

- c~c), whereas the critical Rayleigh number does not even double.

Thus in the limit of high Biot numbers the contribution of buoyancy to thermal convection at

the onset of instability is the dominant effect even for thin layers. So
~&~e can conclude, that the

CD2 can only exist, when the influence of buoyancy is sufficiently siuall (e,g. small thickness

or small Biot number).

4. Oscillatory Instability

Those effects discussed above, are only experimentally accessible, if there is no oscillatory in-

stability which sets in at a lower threshold. To investigate this question, we solve the linearised

equations (18) and (19) for w # 0 along with the corresponding boundary conditions (20)-(24).
Following the usual procedure ~ve obtain the neutral curve (cf. appendix C):

fit(k, ml
=

[(B + k~) k~ + hw(R, Ji4, C, £, P, k, w))
,

(36)
A(k)k~

or, when resolved for the Marangoni number:

Jl/f(k, uJ) =

-$
hJw(R,fit, C, £, P, k, uJ) (37)
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Fig. 13. Neutral curves
J~(k) for the oscillatory instability for different magnetisation numbers fit

id
=

1mm, fifcD2
"

4.961 and lZ
=

10.056).

~&~hich are in general complex functions (the functions hw and h
Jw are defined in the appendix

C). Since the magnetisation number fit (or the Marangoni number Ji4 respectively) is a mea-

surable quantity, it has to be real. Thus a combination of the parameters k and uJ has to be

deteriuined, so that the imaginary part of JV(k,uJ) (Jl/f(k, uJ)) vanishes. For further details cf.

appendix C.

While calculating the neutral curve Ji4 (k, Lv) we have recovered the results of Takashima [8j for

all the Prandtl numbers relevant for magnetic liquids.
We have investigated the intervals 10~~° < k < 100 and 10~~ < uJ < 30 in parameter space for

d
=

1 mm. In accordance with the experimental observations, we did not find an oscillatory
branch for the pure Rosens~&~eig instability.

In Figure 13 the neutral curves
Ji4(k,w) for different values of fit

are plotted. For increasing
magnetisation numbers the threshold of an oscillatory instability also increases. Even without

magnetic field ~ve find a critical Marangoni number of Jl/f
=

-3.43 x
10~

,

which corresponds

to cooling the layer from below with a temperature gradient of -4 x
10~ Kmm~~, ~&.hich is

unreachable in an experiment.
Finally we return to the influence of the Biot number. Again we calculate the neutral curves

~M(k,w) for C
=

0.0003, C
=

0.01, £
=

0.1 and C
=

1.0 for d
= mm. In this range

an increasing Biot number does not change the neutral curves qualitatively, but it has even

a stabilising influence on the onset of the oscillatory instability (the corresponding critical

Marangoni numbers for the parameters of the stationary CD? are: Jl4c~£=o.ooo3 #
-4.60 x 10~,

,Mc(£=o_oi) #
-4.63 x 10~, Jl4c~£=o1)

#
-4.97 x

10~ and Jl4c~£=1o)
#

-1.96 x 10~).
To sum up, we can state that under experimentally relevant conditions there is no oscillatory
instability, which would set in with a lo~ver threshold and would thus destroy the existence of

the stationary CD2 point discussed above.

5. Conclusions

We have systematically studied the linear stability properties of a magnetic fluid ~&~ith de-

formable free surface heated from below and exposed to a vertical magnetic field. For thin

layers (Marangoni-dominated regime)
~ve have found a stationary codimension-2-point ~&~ith

quite different critical wavenumbers. We have calculated the eigenfunctions at the CD2 and

found convection rolls at both wavenumbers, whereas the pure Rosensweig instability sets in
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with vanishing velocity. Using the physical data of a magnetic fluid, that is commercially
available, we have shown that the critical parameters of the CD2 can be reached in an ex-

periment (for
a layer which has a thickness of1 mm, the necessary temperature gradient is

about Kmm~~ and the critical magnetic induction about 10~~ T). We have discussed the

influence of the thermal boundary conditions, ~&~hich can have a drastic influence on the relative

contributions of the driving mechanisms for theriual convection. From a stability analysis for

the oscillatory case, we have sho~vn that there is no oscillatory instability, that ~&<uld set in at

a lower threshold and would thus make the CD2 unreachable.

While the Rosensweig instability is an intrinsic instability of the fluid, whose critical wavelength
is nearly independent of layer thickness, the critical ~&~avelength of the thermal instabilities is

strongly dependent on the thickness of the fluid layer. Taking this fact into account, ~&~e
have

proposed a variation of the ratio of the two critical ~&~mTenumbers by varying the thickness of

the layer, which can induce a significant change in the patterns the system generates. ivhile

doing this one has to keep in mind that when buoyancy effects become dominant, I-e- when d

is bigger than about 3 4 mm, the CD2 does not exist anyiuore.

Since we have focused in this manuscript on a linear theory,
~&~e cannot evaluate the amplitude of

the eigenfunctions or make predictions about the pattern, that ~&~ill actually be observed in the

vicinity of the CD2 abmTe onset. The systeiu could choose bet~&~een any spatial superposition
of the t~vo linearly unstable modes with quite different ~vavelengths. One possibility is, that

the system forms more complex patterns with two length scales, like e-g- rectangles. Another

possibility would be a mixed state as it has been considered for convective onset in viscoelastic

liquids by Brand and Zielinska [24]. Since the ratio of the critical waveiiumbers is in general
not an integer number, the resulting structure could then become rather coiuplex giving rise

to incommensurate patterns. Since, as has been discussed above, the ratio between the two

critical ~vavenumbers can be varied in a certain range by changing the layer thickness d one can

achieve, that the ~vavenumber ratio becomes an integer number thus opening the possibility to

study spatial resonance and lock-in phenomena near the onset of an instability.
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Appendix A

Stationary Instability

The bulk equations (18) and (19) for stationary instability (uJ =
0) 1-educe to the following

linear differential equation of sixth order (well kno~vn from Rayleigh-BAnard instability [18j):

(D~ k~)~ ii
#

-Rk~#i IA-1)

The solution for 7Z # 0 of equation IA. ii
can be o~ritten in the following form:

3

ii
#

~ A~ sinh ii z) + B~ cosh ([ z) IA. 2)

1=1
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with the roots of the characteristic polynomial of equation (A.1):

Ii
#

-fi
+ k~ 12,3

" ~1+1V5) fi
+ k~ (A.3)

All but one of the coefficients A~ and B~ can determined by the boundary conditions (20) and

(24). The solvability condition of the resulting set of homogeneous linear equations reads:

1 1 1 0 0 0

Ei E2 E3 0 0 0

~4
5 6

~ ~~'~~

Eio Eii E12 E13 E14 E15
F4 F5 F6 F7 Fs Fg

with the following abbreviations
11 =

1, 2, 3):

E~
=

k~ I) E~+3
#

E~ cosh ii E~+6
#

E~ sinh ii)

E~+g
=

[ sinh (l~) )~ l)E~ cosh ii E~+12
#

[ cosh (l~) )~ l) E~ sinh ii

l~
=

[E~ F~+3
"

[
C

(3k~ 1)) E~ +
~

lsinh ii + r cosh ii
C

F~+6
#

[
C

(3k~ 1)) E~ +
j

cosh ii) + r sinh ii)

r
=

(B + k2) k2 MAjk)k3

Expanding the determinant in equation (A.4) yields the neutral curve for marginal stability:

4

C ~j G~D~

~~~~ i~)k3
~~ ~ ~~~ ~~ ~

~ ~~'~~

~j H~D~

~

=
gin, Ji4, C, C, k)

with:

Gi
#

Ii (3k~ ~)) El sinh(li 12 (3k~ 1() E2 sinh(12)

G2
#

13 (3k~ 1() E3 sinh(13) Ii (3k~ 1() El sinh(li

G3
#

~13
(3k~ 1() E3 cosh(13) 11 (3k~ 1() El cosh(li)

F3

G4
#

12 (3k~ 1() E2 cosh(12) (13 (3k~ 1() E3 cosh(13)
~

Hi
#

j
sinh(li)

j
sinh(12) + cosh(li) cosh(12)
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H2
#

j
sinh(13)

j
sinh(li) + cosh(13) cosh(li)

H3
#

~ ~~
cosh(13) +

inh(13)j ~~ cosh(li) sinh(li)
F3 C £

and the minors:

Di
-

iE3 El llE7 ~il~ llEi4 ll~
[Es ~il~

E13 ~l~~
II

D3
=

lE~ Ei
(E6

E4)
E14 ~~~~~ E8 ~°~~

lEi~
io)j

~3 ~3

~~~~
~~~~~~ ~~~~~~

'~~~~
~~

~~~~~~~ ~~~~

D4
-

iE2 El lE6 E4)
E13 ~l~~ E7

~il~ iE12
io)1

~~~ ~~
~~~

~~
~~~

~~~~
~~ ~~

~~~~
~~~~ ~~ ~~

Appendix B

Transition from 'Thin' to 'Thick' Layers

Here we argue how the Bdnard-Marangoni instability emerges as a limiting case in the regime
of thick layers id / 4 mm). ~Ve also discuss the conversion process of the Marangoni minimum

in the neutral curve
fit(k) into a maximum.

As can be seen from Figure 12d at d m 4 mm the Marangoni minimum is inverted towards

a sharp maximum. This peak reacts very sensitively on an increase of Ji4 and then it diverges
(Af(I"

= k~R~ijj)) - c~c). As a consequence a maximum appears from ~h'= -c~c, which touches

the k-axis at a certain value of Ji4 (cf. Fig. 14). Since negative values of fit cannot be reached

in a physical system by construction of fit, the first physically accessible value for fit has to be

zero. This zero of Ail)) determines the threshold for thermoconvection. For d
=

4 mm all of

that happens in a small interval between Ji4
=

64.800 and Ji4
=

64.809.

At the thickness of d
=

3.628 mm the dip changes its direction. The system achieves this,

by creating a local minimum and in the close neighborhood a local maximum, which at first

sight seems to be a singularity, as can be seen in Figure 15. Since both the minimum and the

maximum react very sensitively on an increase of Jl/f, this is a o~ay for the system to change
from a regime of thicknesses that allow a CD2 to exist, towards one for which there is no

CD2, without reaching a point, where no thermal convection sets in. The latter needs to be

accessible to guarantee, that the system shows thermoconvection for each layer thickness, ~&~hen

no magnetic field but a
sufficiently high temperature gradient is applied.
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and lZ
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113.135).
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Appendix C

Oscillatory Instability

In the case of
uJ

# 0 equations (18) and (19) can be combined to the equation:

(D~ k~) (D~ k~ iu~) (iu~P D~ + k~) ii (z)
=

Rk~#i(z)
,

(C.1)

which we solve for lZ # 0 and P # 1 with the ansatz:

3ii(z)
=

~j[A~cosh(l~z) + B~sinh(l~z)j (C.2)

1=1

Since the roots l~ of the characteristic polynomial of equation (C.1) for R # 0 cannot be

calculated analytically, we determine them by means of the fortran routine LAGLIER from

N~lmericai Recipes [25j. With the boundary conditions (20)-(24),
~&~e get a set of linear equa-

tions. The solvability condition yields again a determinant of the structure of equation (AA)
with the modified abbreviations:

E~
=

i~op-ij+k2

E~+3
=

[ sinl~ ii +
j Ii) k~) cosl~ ii

i~o

Ei+~
= >~ cash 1>~) +

j
(>] k2 sinh i~~

Ei+g
=

iuJP
(>I + k~l +

(($ i) k~
lj Ill k~) cos'i1>~)

Ei+~~
=

icaP
(>] + k2) +

(j )
k2

ij iii k2) sinh1>~)

l~
=

[E~

F~+3
#

E~ C (i 1) + 3k~) & sinh ii) +
~

cosh ii
i~ap

F~+6
#

E~ (iuJ 1) + 3k~) [ cosl~ ii +
$

sinl~ ii
,

(C.3)
i~ap

where r is defined as in appendix A.

The neutral curve reads:

j
~ ~

~~~'~~ (~)k3 (~ + k~) k~ + j~J CR ~j~

~ ~

~

~j H~D~

~~

~

=
hwlR, fi4, c, £, v, k, ~v)

with: Gi
#

Ii (iuJ + 3k~ -1() El sinh(li l~ (iuJ + 3k~ 1() E2 sinh(~2

G2
"

~3 (iuJ + 3k~ ~() E3 sinh(~3 ~i (iuJ + 3k~ ~)) El sinh(~i
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G3
=

)13 (iuJ + 3k~ 1() E3 cash(13) ii (iuJ + 3k~ 1)) Ei cash(li)
3

G4
=

12 (iuJ + 3k~ 1() E2 cash(12)
'13

(iuJ + 3k~ -1() E3 cash(13)
F3

Hi
=

Ei cash(li) E2 cash(12) H2
=

E3 cash(13) Ei cash(li)

H3
=

~/~ sinh(13) Ei sinh(li) H4
=

E2 siiih(12) ~j~~ sinh(13)
3 3

The minors are defined in the same way as in equation (A.6), but incorporating the redefined

E~'s and F~'s.
For the oscillatory instability it is also suitable to calculate the neutral curve fi4(k,~o):

3~j E~K~ (I) + k~)

fi4(k,~o)
=

-~
~") (C.5)

~ ~ I[ (I) k~)

,

i=i
,

=
h~~w(R, fi~C, £, P, k; uJ)

1~>ith: Iii
#

cash (li hi cash (li 1~2 Sinh (li 1~3 (C.6)

K2
"

sinh (12 )1~4 cash (12) hi (C.7)

K3
=

cash (13 fi~ + sinh (13 ~(~ sinh (13
~~

(C.8)
3 3

and the minors:

hi
=

(E3 Ei
(E7 ~°~ FS '~ E8 ~~') F7 ~')j

F3 F3 F3 F3

fi2
=

(E~ Ei) ((E7
~/) F8 ~f~ E8 ~)) F7 ~/~ )j

3 3 3 3

fi3
=

(E2 Ei
(E6

E4)
F8 ~@

E8 ~@ (F6
4)j

3 3

(E3 Ei
(E5

E4)
F8 ~~ E8 ~~~

(F5
4)j

F3 F3

fi4
#

(E2 Ei
(E6

E4)
F7 ~/ E7 ~~~

(F6
4)j

3
F3

(E~ Ei)
(E5

E4)
F7 ~~ ET ~~~

(F5
4)j

(C.9)
F3 F3
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