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PACS.75.50.Mm — Magnetic liquids
PACS.47.20.Dr - Surface-tension-driven instability
PACS.05.70.Ln - Nonequilibrium thermodynamics, irreversible processes

Abstract. — The linear stability analysis of a layer of a magnetic fluid with a deformable
free surface, which is heated from below and exposed to a uniform, vertically applied magnetic
field is presented. In this configuration the temperature dependence of the surface tension, the
buoyancy and the focusing of the magnetic field due to surface fluctuations act as destabilising
effects. We show that this system has for thin layers a stationary codimension—2-point, which
can be reached for experimentally relevant values of the material parameters. We also analyse
the transition from thin to thicker layers for which there is no codimension-2-point and we show
how the codimension—2—point disappears. Finally we demonstrate that there is no oscillatory
instability in the regions of parameter space considered here.

1. Introduction

A planar horizontal layer of a fluid becomes unstable when heated from below provided a suf-
ficiently high temperature gradient is applied. The first analysis carried out by Rayleigh [1] to
determine the onset of thermal convection considered the buoyancy force as the destabilising
mechanism giving rise to thermal convection. The applied temperature gradient induces an
adverse density gradient, which is caused by thermal expansion in the heat conduction state.
At a certain critical temperature gradient the destabilising forces are strong enough to over-
come the stabilising viscous forces and thermal diffusion, so that small fluctuations grow and
stationary convective motion sets in {Rayleigh-Bénard instability). Buoyancy forces turned
out to be the dominant effect to drive convection for rigid boundaries. The same calculations
carried out for a thin (d = 1 mm) layer with a free surface showed that buoyancy effects are not
sufficient to account for the experimental results of Bénard [2]. Pearson [3] proposed another
effect to drive convection, namely surface tension, which is a monotonically decreasing function
of temperature for most fluids. Fluid particles reaching the surface with higher temperature
because of small fluctuations, induce a gradient in surface temperature and thus an adverse
destabilising gradient in surface tension arises. The applied temperature gradient becomes
critical when it is strong enough to overcome viscous forces and thermal diffusion: stationary
convection sets in ( Bénard—-Marangoni instability). This phenomenon turns out to provide the
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relevant mechanism for the onset of the convective motion observed by Bénard. Pearson also
pointed out, that the influence of buoyancy effects becomes dominant for thicker layers (about
d =~ 1 cm). Nield [4] first considered both effects and described how they interact at the thresh-
old of the instability. The influence of buoyancy effects becomes dominant for thicker lavers
{about d > 5 mm). as already stated by Pearson [3], but not investigated in detail. \While the
early calculations were done for nondeformable surfaces and focusing exclusively on stationary
onset, later these assumptions were dropped (compare, for example, Refs. [5-11]).

While the Rayleigh-Bénard and the Bénard-Marangoni instability discussed up to now arise
in many fluids, we want to focus here on magnetic liquids. suspensions of small magnetic
monodomain particles (diameter d ~ 100 A) in a carrier fluid [12.13]. Due to the large Brownian
motion of the suspended particles these liquids do not have a spontaneous magnetisation. but
show a strong response to small magnetic fields {12.13]. A vertically applied. uniform and
static magnetic field has a destabilising influence on the free surface of a magnetic fluid, since
the boundary conditions for magnetic field and magunetic induction lead to a focusing of the
magnetic field along the wave crests on the surface slightly disturbed by small fluctuations.
Thus a destabilising gradient of the magnetic field in the fluid in the vicinity of the surface
arises. As shown first by Cowley and Rosensweig [14] the surface becomes unstable, when the
influence of the magnetic forces overcomes the stabilising forces associated with gravity and
surface tension (Rosensweig instability). The surface deforms and generates a triangular array
of peaks, standing statically in the fluid. In contrast to the dissipative Bénard-Marangoni
instability discussed above. the Rosensweig instability is static and is the result of a balance
of several contributions to the total energy, namely of the magnetic energy. the energy in the
gravitational field and the surface energy. We note that a similar energy balance and thus the
same type of instability arises. when an electric field is applied perpendicularly to the surface
of a liquid metal (compare Ref. [15] for a comprehensive treatment of this instabilitv). Time-
dependent behavior occurs only during the short transient periods when the external magnetic
field is changed. The main difference between the convective instabilities mentioned above and
the Rosensweig instability is thus, that the former shows stationary flows. while the latter is
static.

This key difference between the two types of instabilities raises the question how the system
behaves, when applying both a temperature gradient and a maguetic field to the free surface of
a magnetic liquid. In the following we address this issue and describe the results of a linearised
stability analysis. The paper is organised as follows: in Section 2 we formulate the problem
and in Sections 3 and 4 we analyse in detail the stationary and the oscillatory instability,
respectively, followed by the conclusion in Section 5.

2. Formulation of the Problem

We consider a flat, horizontally unbounded layer of a viscous magnetic fluid with finite depth
d (medium 2: see Fig. 1 for a sketch of the set-up), which is bounded below (7 = 0) by a
planar, rigid plate of constant temperature and has a deformable free surface described by the
function z = d + {{x,y.t) . The system is heated from below and a uniform magnetic field is
applied vertically to the flat surface. For simplicity we assume the media outside the fluid to
be vacuum. Surface tension o and density p are assumed to depend linearly on temperature
T

o(T) =o(Ir) — (T — Tr) p(T) = p(Tr) — (T — Tr) (1)

where 7 = —(9a(T')/0T)_, represents the rate of change in surface tension due to tem-
perature variations and a = ~(9p(T')/0T)_q, is the coefficient of volume expansion. Both
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medium 1: vacuum ) = o

=y

medium 3: vacuum

Fig. 1. — Sketch of the considered set-up.

coeflicients are taken at the reference temperature 7r. We concentrate on homogeneous mag-
netic fields and on thin layers. In this case (i.e. d x 1 mm} the Marangoni effect provides the
dominant mechanism to drive convection. Then a temperature gradient of about 1 Kmm™!
is sufficient to drive Bénard-Marangoni convection, whereas a temperature gradient of about
10— 100 Kmm ™ is necessary for Rayleigh-Bénard convection. Estimates show that the contri-
bution of the magnetothermal effect to thermoconvection (this mechanism is discussed in detail
in [16,17]; there it is shown that the threshold of magnetothermal convection in homogeneous
fields is o (AT)2 d?) for the considered thicknesses of the fluid layers is much smaller than that
of buoyancy and thus can be neglected.

Furthermore, we assume the magnetic fluid to be electrically insulating, so that the station-
ary magnetic Maxwell equations reduce to Laplace equations for the magnetic potentials ®(?)
(magnetic field: H® = V¢{*); upper indices in round brackets denote the medium which is
considered) for the three different regions. In addition we assume the magnetic fluid to be
homogeneous and isotropic and to react linearly to an applied magnetic field (cf. [12] where
these assumptions are discussed), i.e. M = (1 + ) H®), with the magnetisation in the fluid
M, and its relative permeability u, .

The bulk equations to describe our system are given by (Boussinesq—approximation):

divv =0 (2)

1 go
6tv+(v~V)v=—;VH + vAv + 7(T——TR)ez (3)
&T + v-VI = xAT (4)
A®® = 0 (5)

with the velocity v = (u,v,w), the density of the fluid p and its kinematic viscosity v, the
acceleration due to gravity g, the unit vector in vertical direction e,. the coefficient of thermal
diffusivity x and the expression II = p + ps + pgz, which contains various contributions to the

pressure. The magnetostrictive pressure ps = — g fOHm p(0M/[0p)gy  dH, (H and M denote
the moduli of magnetic field and magnetisation in the fluid) is due to the fact that we consider
magnetic fluids (cf. [12]).

Most of the effects discussed here are induced by the boundaries. First we have to consider
the boundary conditions for the magnetic field H and the magnetic induction B:

nx[H =0 and n-[B]=0, (6)

where the brackets denote the difference of the function inside at both sides of the boundary. We
assume a rigid plate at constant temperature Tg as lower boundary (z = 0). The corresponding
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boundarv conditions read:
v = 0: d.w = 0; T =Tg. (7)

The free surface at = = d + ((r,y,t) is assumed to be stress—free, so that the stress difference
in the media 1 and 2 is balanced by the capillary stress p..

2 . s s . .
The stress tensor Tfj ) of an incompressible and viscous magnetic fluid [12] reads:

H .

: ISJAVAY 1 .

T7(JZ} =" {p + A Ho ( (81' )> dH + SNUHZ}(SU + B‘LHJ + PV(&UJ +8]v,) . (8)
HT =

Assuming vacuum as medinm 1, the equilibrium condition (n, (Tz(_]l) _ ij)) + (pe), = 0)

reduces — taking into account counditions (6) (cf. [12]) — to the following nonlinear form:

n- {(p + Ps + Pm + po)d—pv (Vv + (VV)T)} -pc =0 (9)

with the unit vector normal to the surface:
v (3 B C(I‘yvf))
1+ (V¢)°

n—=

and the following contributions to the total pressure: p, = ug fOHM MdAH | py = Fpell?
and p. = — on{V . -n) —7V,T . where Vy = V —n(n- V) denotes the gradient tangential
to the surface. [ is the unity tensor.

At a deformable free surface the z-component of the velocity is related to the surface deflection
((r.y.t) by the kinematic boundary condition:

ul

mare = O+ VVCL (10)

We assume the heat flux Q@ through the snrface to be proportional to the local temperature
gradient:
QI = —kn-VT (11)

with the coefficient of heat conduction . Following the usual steps of a linear stability analvsis
(see e.g. (18]) and choosing d, d°/v. v?p/d*, (T — Ts)v/x, (T — Ts)v/\, Mo (nagnetisation
of the fluid in the groundstate) and Mod as the units of length, time, pressure. temperature.
heat flux. magnetisation (and magnetic field) and magnetic potential respectively, we obtain
the corresponding linearised. dimensionless perturbatiou equations and boundary conditions.
Here ¢ = (8Q/0T )T:TR represents the rate of change in heat flux due to temperature variations
at a reference temperature, Ty and Tg are the temperatures at the bottom plate and at the
deformable free surface, respectively.

The dimensionless magnetic boundary value problem:

A®Y =0 for the media 1 = 1.2.3 (12)
with: Oy (21 - 01Y) = 0. (ol —a) =0 atz=0 (13)

and
Oy (217 = 81) + 0,y = 0. (21— dP) =0 atz=1, (14)
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decouples from the flow problem and can be solved separately.

The perturbative potentials <I>Y) (the subscript ‘1’ denotes perturbative quantities) and the
surface deflection (; (and later on also the velocity w1, pressure II; and temperature ) are
analysed in normal modes of the following form:

O(z,y, 2,t) = O(2) exp {i(kpx + kyy +wt) +at} + cc., (15)

where O denotes one of the above quantities, hats denote amplitudes which are independent
of the lateral coordinates x and y. w is the dispersion, a the growth rate and c.c. denotes the
complex conjugate. The components of the wave vector are related to the wave number by

k= ,/k%+ k2. With this ansatz we obtain for the potential 3{” in the magnetic fluid:
r Yy 1

o) = @ e 4 G e (16)
with
e Arume
(14 pe) ek — (1~ py)"e*
¢ = - A= p)e? (17)

(1+ U'r)2 et —(1- /—lr)z e~k

Following the usual steps (e.g. [18]) using the normal modes (Eq. (15)) and taking into account
equation (16), the remaining problem to determine the onset of instability (a = 0) reads:

«) Bulk equations:
(D = k%) (D? — K* —iw) un(z) = Rk?i(2) (18)
(iwP ~ D2+ k%) 6i(z) = ii(z) (19)

) Boundary conditions:

z2=0:
'lZ)l = D'lf]l = 61 =0 (20)
z=1:
tangential stress balance:
(D2 + ) by = — M (6, = P714)) (21)
normal stress balance:
CP (iw — D? + 3k%) Dy + [(B+ K2 k? — NA(RK®] G = © (22)

kinematic boundary condition:
lf)l = iw(l (23)

thermal boundary condition:

(D+L)b, = LP7'G (24)
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where D = d/dz and where the following dimensionless numbers have been introduced:
Rayleigh number R = r,7 /72 = gaATd3/(\v). Prandtl number P = 7 /7, = v/y. Crispation
number € = 72/(nn) = pv\/(do). Bond number B = 77/72 = gpd®/o. Marangoni num-
ber M = 1,7 /1%, = 7 ATd/(p\r). and magnetisation number \" = 72/72 = uou, M?d/o
(with the following relaxation timescales: viscous timescale: 7, = d?/v. thermal timescale:
1o = d*/\. buoyancy timescale: ¢ = d/(aATg). surface tension timescale 72 = pd®/o. grav-
itation timescale 77 = d/g. timescale due to the Marangoni-effect 73, = pd®/(~ AT) and
magnetisation timescale 72, = pd?/{jop, M/?) ). The Biot number £ is defined as the ad-
ditional heat flux through the surface due to temperature fluctuations divided by the lLeat
flux through the surface in the basic state: £ = q¢d/s. The function A(k) is given bv
\(k) = (L +m) +e7* (1 — ) '

(L4 m) ~eM1-p)’

3. Stationary Instability

In this section we analyse in detail the stationary case (w = 0). The associated linear hound-
ary value problem given by equations (18)—(24) is solved by a linear combination of complex
hyperbolic functions (for details see appendix A). Implementing the boundary conditions we
obtain a homogeneous (6 x 6) set of linear equations. which has a nontrivial solution if and
only if the coefficient determinant vanishes. This condition yields the neutral curves. In our
system the applied mnagnetic field and the temperature gradient are the two parameters that
can be controlled well experimentally. Since the latter appears in both the Marangoni number
U and the Rayleigh number R, it is more convenient to determine the neutral curves for the
magnetisation number A'(k) and treat the temperature gradient as a parameter. We obtain
{cf. appendix A):
1

(k) = TR [(B+ k)R + g(R.M.C.LK)] (25)

where ¢(R,.M,C. L, k) is given in the appendix.

3.1. LinutiNeg CASES

3.1.1. Rayleigh-Bénard and Bénard -Marangoni Instability. — As we consider neutral curves
of equation (25) pure thermal instabilities set in. when there are zeros of the function A'(k)
(note that .\" cannot becomne negative by construction). To evaluate the neutral cuives we
have used two methods. In addition to the method outlined ahove and discussed in detail in
appendix A we have also used that of Nield [4] which is also applicable for R = 0.

From our calculations of the neutral cuives M (k) we recover as special cases the results ob-
tained by Pearson [3]. Nield [4]. Lebon and Cloot [19]. Takashima [7] and Pérez Gaicia and
Carneiro [9] for Bénard-Aarangoni convection.

3.1.2. Rosensweig Instability for Layers of Finite Thickuess. — The other special case contained
in equation (25) are isothermnal conditions (7 = 0) giving rise to the Rosensweig instabilitv
The linear boundary valne problem for this case reduces to:

(D? = &) (D = k* — )iy (2) = 0. (26)
lZ'l = DIZ'l =0 at ;=10 (27)

CP (1 — D? + 3k%) Dy + (B + #2) k2,

!
-~
-

—
>~
e
w
A
—

|

<

(D? + kg =0 iy =l at =1 (28)
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The solution of (26) can be written in the following form:

Wy = Ay sinh(\;z) + Az sinh(Ae 2) + By cosh(A; 2) + By cosh(Ag 2) . (29)
with A=k =k +w
and A1 = —I(ng Ag = I&’lBg (1 + — )
. sinh(~A1)  As tanh(=A1) — Ay coth(=Ay)
h
where Ky cosh(<0a) A tanh( i) — M tanh(=Xg) U T 2R 21»2
Ao tanh(—A1) — Az coth{—As)
— tanh(=42) Az tanh(—X;) — A1 tanh(—2)
. sinh(—Az) w cosh(—Az)
= —=K; - - 1+ — — . 30
Ha Smh(—hy) 1 T ooth(=A) ( * 2k2) Sih(=) (30)
This yields the following dispersion relation:
P [2 <K1 VI T iw - ng) k2 - iszk] - % (B+ k2 — NA(R)K) = 0. (31)

For an infinite thickness of the layer this reads:

iw 1 N iw
1 S 2_ N )2 w 2
(+2L2) T <B+k 1+u,> 1+ (32)

which is discussed in [20].
In the limiting case w = 0 we obtain the condition for marginal stability:

B+E ~NAKK=0. (33)

which can also be easily derived numerically from equation (25) (g vanishes rapidly for small
Rayleigh numbers R and Marangoni numbers M).
For the case of an inviscid fluid the dispersion relation reduces to:

w?pcoth(k'd) = pgk' + ok — pop, MEA(K'd)k"® (34)

In equation (34) we returned to quantities with dimensions (the corresponding wavenumbers
and dispersions are marked with a prime; in the function A(%) the dimensionless k’s have to be
replaced by k’d), since the viscous timescale is no longer the appropriate one. For an infinite
thickness d — oo of the layer, relation (34) reduces to that of Rosensweig (cf. [12]). In Figure 2
the dispersion relations for a layer of the magnetic fluid EMG 901 (cf. Tab. 1. where all the
relevant physical data of EMG 901 are listed [21]) with the thickness d = 1 mm are plotted.
Figure 3 shows the critical dispersion relations for different thicknesses of the fluid layer. These
figures recover those of Rosensweig [12] or Néron de Surgy, Chabrerie. Denoux and Wesfreid
[15], where the influence of thickness and viscosity on the electric equivalent of the Rosensweig
instability in liquid metals is discussed in detail. The curves for the different thicknesses in
Figure 3 all show a similar behaviour and all have a region of anomalous dispersion. There is
only one qualitative difference between the curves for finite and for infinite thicknesses (which
is represented here by d = 500 mm): the slope at ¥’ — 0. While the slope is zero for finite
thickness, it is nonzero for the infinite case. This thickness effect has been observed recently
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/
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8 800.0
400.0
0.0
K [mm™]
Fig. 2 — Dispersion relations for various magnetic fields (inviscid case; d = 1 mm).
2000.0 l w — T .
1600.0 T
__ 1200.0 J»
(\llﬂ
2 8000
400.0
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0.0 0.2 0.4 0.6 0.8 1.0
K {mm™]
Fig. 3. — Critical dispersion 1elations for various thicknesses of the layer d (inviscid case)

in {22]. where an experiment to measure the dispersion relation of magnetic fluids is described.
The authors of reference [22] chose a V-shaped cylindrical channel with d = 6 mm. Interestingly
they were able to show the anomalous behaviour of the dispersion relation slightly below the
onset of instability.

As it is discussed in detail in [12] the onset of the Rosensweig instability is characterised by
W% =0 and dw'?/dk’ = 0. which shows that the principle of the exchange of stability strictly
holds for the inviscid case. It can be seen in Figure 3 and also from the plots in [15] that
the critical wavenumber of the Rosensweig instability depends only slightly on the thickness
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Table I. — Physical dota of the magnetic fluid EMG 901. All parameters except ™ are taken
from reference [21]. = is the specific heat from EMG 905 {16] which has the same carrier liguid
as EMG 901. The temperature of measurement is given when known.

kg
. 3
density p 1.53 x 10 —
2
kinematic viscosity v (at 300 K) 6.5 x 1075 -
W
thermal conductivity < 1.85 x 107* -
m-K
J
ific h - 1.47 x 10° ——
specific heat ¢, X e K
-
thermal diffusivity x 8.2x 1078 -
coefficient of volume expansion o 6x107*K™!
magnetic permeability u, 2.3
surface tension o 29.5 x 1073 Nm ™!
negative rate of change of N
. . o 7x 1075 ——
surface tension with temperature v = W m-K
: . . [PY 0.713mm™!
capillary wavenumber Keap 1= 4/ = -(lomm
o
Rayleigh number R 11.0mm3K™! - B AT
Marangoni number M 85.8mm K™ -dAT
Prandtl number P 79.3
Biot number £ 0.0003mm™* - d
2
magnetisation number A 98x%x 1078 ——— . d M?
mm - A2
Crispation number C 2.74 %10 mm -d7!
Bond number B 0.508 mm ™2 - 42

of the layer. Figure 4 shows the critical wavenumber scaled by the capillary wavenumber

Pg

kcap .= 4/ =, which is obtained for d — oo, as a function of the layer thickness for the magnetic
o

fluid EMG 901. We can see that there is only a slight correction to the capillary wavenumber

in the vicinity of d = 0.5 mm. The maximum deviation is about 12 %. The critical induction
field is nearly constant for large layer thickness and grows monotonically for smaller thicknesses
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1.10 ¢ 1
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1.00 = A ! ’
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Fig. 1. — Dimensionsless critical wavenumber kc/kcap as a function of the thickness of the laver d.
0.0080 ey : : ———
0.0075 | 4
E
m(}
0.0070 + 1
]
0.0085 - o~ — -
107 10° 100 10 10" 10°
d {mm]
Fig. 5 — Critical magnetic induction as a function of the thickness of the laver d.

{cf. Fig. 5). This increase reflects the fact, that "there is not enough space for the magnetic field
gradient to develop completely and so the applied field has to be increased to reach the onset of
the instability. But we would like to stress that this region of thin layers (< 100 pm) is not easy
to reach experimentally, because eventually surface roughness of the bottom plate becomes
important. To sum up. the Rosensweig instability can be considered to he a characteristic
instability shown by magnetic fluids.

Figures 4 and 5 also apply to the viscous case, since the condition for iustability (33) is still
the same as that for inviscid fluids. This indicates that the velocity has to vanish identically at
the threshold. We demonstrate this by calculating the eigenfunctions for the stationarv case.
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To achieve this we have to modify solution (29) in the following way:
w; = Cysinh(kz) + Cs cosh (kz) + Cszsinh (k2) + Cyz cosh (kz) , (35)

where the coefficients C, can be determined by the boundary conditions (27) and (28). We
obtain C, = 0, which shows (taking into account the continuity equation) that the Rosensweig
instability sets in with vanishing velocity and stresses the reversibility of the interacting mech-
anisms.

3.2. RESULTS FOR THE GENERAL CASE. — To be definite and since we are interested in
effects, that are accessible experimentally, we present our analysis for the physical data of the
magnetic fluid EMG 901 which is commercially available (¢f. Tab. I, where the physical data
and the corresponding dimensionless parameters of EMG 901 are listed). The exact value for
the Biot number is hard to determine and differs for each experimental set-up. Nevertheless
a lower bound for the Biot number £ can be estimated roughly by means of the Stefan-
Boltzmann law when considering a massless, inert gas with a temperature of 300 K in contact
with a fluid surface at a temperature of 299 K. As a result we find the value £ = 0.0003mm~! 4
(cf. [23]). In [9] it is mentioned, that for experimentally relevant conditions (where convection
and thermal diffusion are the dominant mechanisms to transport energy) average Biot numbers
are £ < 0.1.

First we restrict our analysis on the regime dominated by the Marangoni—effect and fix the
layer thickness to d = 1 mm. By solving AN(k) = 0 we determine the critical values for the
thermoconvective instability to be Mcgpm) = 78.486, which corresponds to R = 10.062 and
kerpmy = 1.992 (for comparison, the critical parameters for R = 0 are: M gmy = 79.591
and kegy) = 1.992 and for M = 0: Rerp) = 669.04 and A rp) = 2.086), where the index ‘¢’
denotes critical values, ‘RBM’ stands for Bénard—Marangoni instability, where the Rayleigh—
Bénard effect is also considered. The latter is excluded when the parameters are marked with
‘BM’. Later on parameters, that correspond to the pure Rosensweig instability will carry the
index ‘Ro’.

In Figure 6 the neutral curves A'(k) are plotted for different values of M. The wavenumber is
scaled with the critical wavenumber k. rpm) for the onset of the thermal instability.

For M < 0.95M_(rpm) the curve shows only the Rosensweig instability (N yro) = 4.984 and
ke(Rroy = 0.779) and no influence of heating can be noticed. When increasing M approximately
to 0.97 M (rBMm) one starts to notice a dip in the curve at a wave number, which belongs to
that of thermal convection and which becomes deeper rapidly by increasing M.

At a value of M = Mcpy = 0.9994 M gpm) the system reaches a stationary codimension-2-
point (CD2) with the critical parameters: Mcps = 78.438, kcparam) = 1.989. Nepe = 4.961
and kcpa(roy = 0.779. The inset in Figure 6, where the Rosensweig minimum is plotted with
very high resolution (because of the high resolution only the four curves close to the CD2 are
plotted), illustrates that for 0 < M < Mcp2 heating is suitable to decrease the threshold
magnetisation of the Rosenswelg instability slightly. In that case both destabilising mecha-
nisms interfere and thus the Rosensweig mode is no longer purely static but now becomes
dynamic. For 0.9994M rpMm) < M < Mrpwm) it is possible to reach the threshold of the
Marangoni instability by means of applying a magnetic field. These possibilities to reduce the
threshold values of the instabilities reflect the weak coupling between these both destabilising
effects. In Figures 7 and 8 the corrections of the temperature- and velocity—field at the CD2
are plotted for the different wavenumbers kcpa(ro) and kepareum) (colder regions are shown in
a darker greyscale). The motion at the surface is — as it is expected from the Marangoni—effect
— from warmer to colder regions. At the CD2 convection rolls are found for both wavenumbers,
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Fig. 6. — Neutral curves .\'(k) for various Marangont numbers M (Mrpyy; = 78.438).
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even though there is no motion at the onset of the pure Rosensweig instability, which stresses
in an easily visible way the influence of thermoconvection ou the Rosensweig instability at the
linear stage through a modification of the corresponding eigenvector. In Figures 9 and 10 the
corresponding corrections of the magnetic fields are plotted. These figures show the destabil-
ising focusing of the magnetic field towards the wave crests induced by surface deflections.
When increasing .M further. one reaches a regime. where the system becomes unstable against
thermal convection, when an additional magnetic field is applied - but one has to mentiou,
that this regime is quite small. At M = M ggy) the applied temperature gradient is large
enough to drive thermal convection without an external field.
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Fig. 9. — Corrections of the magnetic field at the CD2 (k = kgpa(ro))-

To guarantee the existence of the CD2 for experimentally accessible conditions, we have to
consider the influence of the Biot number £, which is hard to evaluate. In Figure 11 neutral
curves for the experimentally potentially interesting region 0.0003 < £ < 1.0 are plotted. There
is only a quantitative change of the critical parameters observed, but the CD?2 still exists.
Since the wavelength of the Rosensweig peaks is determined predominantly by the properties
of the magnetic fluid, whereas the wavelength of the convection rolls is essentially controlled
by the thickness of the fluid layer, it is possible to move the latter by variations of d. In
Figure 12 the neutral curves at the CD2 (when possible) are plotted for different values of
d (£ = 0.0003 mm~! d). For d < 3 mm the ratio between the kcpo(ro) and kcpe(rMm)
can be varied over a large range of values. At d =~ 4 mm the convection dip is inverted and
gives rise to a local maximum as can be seen in Figure 12d. The question how the Bénard-
Marangoni instability for thick layers (d > 4 mm) arises as a limiting case is discussed in detail
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Fig. 11. — Neutral carves A(k) at the CD2 for increasing Biot numbers £: (a) £ = 0.0003, M =
78.438 and R = 10.056: (b) £ = 0.01, M = 78.804 and R = 10.103; (c) £ = 0.1, M = 82.169 and
R =10.534 (d) £ = 1.0, M = 114.100 and R = 14.627.

in appendix B. In this appendix we also show the process of inversion. The inversion of the dip
is not observed for I = 0. In this limiting case the location of the two minima can be varied
over a large range. So the contributions of the Rayleigh-Bénard instability decide whether the
system reaches a CD2 or not. Consequently this inversion of the peak is also observed, when
increasing the Biot numbers to £ > 50 (which can probably not be reached in an experiment)
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Fig. 12. — Neutral curves N (k) for increasing thickness of the layer d: (a) d = 1 mm, M = 78.486 and
R =10.062; (b) d = 2mm, M = 75.353 and R = 38.643; (c) d = 3mm, M = 70.596 and R = 81.457;
(d) d = 4mm, M = 64.800 and R = 132.923.

without change of d. As it is shown for example in [4] the critical Marangoni number increases
by many orders of magnitude, when increasing the Biot number from the insulating (£ = 0)
to the conducting case (£ — o), whereas the critical Rayleigh number does not even double.
Thus in the limit of high Biot numbers the contribution of buoyancy to thermal convection at
the onset of instability is the dominant effect even for thin layers. So we can conclude, that the
CD2 can only exist, when the influence of buoyancy is sufficiently small (e.g. small thickness
or small Biot number).

4. Oscillatory Instability

Those effects discussed above, are only experimentally accessible, if there is no oscillatory in-
stability which sets in at a lower threshold. To investigate this question, we solve the linearised
equations (18) and (19) for w # 0 along with the corresponding boundary conditions (20)—(24).
Following the usual procedure we obtain the neutral curve (cf. appendix C):

1
NS

N(k,w) = ((B+E*)k® + Ay (R, M, C,L, P kw)] (36)

or, when resolved for the Marangoni number:

M(k,w) = —’—‘]‘:777— b (RN, C L, P K, w) (37)
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Fig. 13. — Neutral curves M (k) for the oscillatory instability for different magnetisation numbers A
(d = 1mm, Ncgp2 = 4.961 and R = 10.056).

which are in general complex functions (the functions hy and k¢ are defined in the appendix
C). Since the magnetisation number A" (or the Marangoni number M respectively) is a mea-
surable quantity, it has to be real. Thus a combination of the parameters £ and w has to be
determined, so that the imaginary part of A'(k,w) (M(k,w)) vanishes. For further details f.
appendix C.

While calculating the neutral curve M(k,w) we have recovered the results of Takashima [8] for
all the Prandtl numbers relevant for magnetic liguids.

We have investigated the intervals 1071% < & < 100 and 10™° < w < 30 in parameter space for
d = 1 mm. In accordance with the experimental observations, we did not find an oscillatory
branch for the pure Rosensweig instability.

In Figure 13 the neutral curves M(k,w) for different values of A" are plotted. For increasing
magnetisation numbers the threshold of an oscillatory instability also increases. Even without
magnetic field we find a critical Marangoni number of M = —3.43 x 10° , which corresponds
to cooling the layer from below with a temperature gradient of —4 x 10® Kmm™!, which is
unreachable in an experiment.

Finally we return to the influence of the Biot number. Again we calculate the neutral curves
M(k,w) for £L = 0.0003, £ = 0.01, £ = 0.1 and £ = 1.0 for d = 1 mm. In this range
an increasing Biot number does not change the neutral curves qualitatively. but it has even
a stabilising influence on the onset of the oscillatory instability (the corresponding critical
Marangoni numbers for the parameters of the stationary CD2 are: Mc(r=¢.0003) = —4.60 x 105,
Me(=0.01) = —4.63 x 10°, Mc(r=g 1) = —4.97 x 10° and Mc(=1 9) = —~1.96 x 10°).

To sum up. we can state that under experimentally relevant conditions there is no oscillatory
instability, which would set in with a lower threshold and would thus destroy the existence of
the stationary CD2 point discussed above.

5. Conclusions

We have systematically studied the linear stability properties of a magnetic fluid with de-
formable free surface heated from below and exposed to a vertical magnetic field. For thin
layers (Marangoni-dominated regime) we have found a stationary codimension-2-point with
quite different critical wavenumbers. We have calculated the eigenfunctions at the CD2 and
found convection rolls at both wavenumbers, whereas the pure Rosensweig instability sets in
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with vanishing velocity. Using the physical data of a magnetic fluid, that is commercially
available, we have shown that the critical parameters of the CD2 can be reached in an ex-
periment (for a layer which has a thickness of 1 mm, the necessary temperature gradient is
about 1 Kmm™" and the critical magnetic induction about 10~2 T). We have discussed the
influence of the thermal boundary conditions, which can have a drastic influence on the relative
contributions of the driving mechanisms for thermal convection. From a stability analysis for
the oscillatory case, we have shown that there is no oscillatory instability, that would set in at
a lower threshold and would thus make the CD2 unreachable.

While the Rosensweig instability is an intrinsic instability of the fluid, whose critical wavelength
is nearly independent of layer thickness, the critical wavelength of the thermal instabilities is
strongly dependent on the thickness of the fluid layer. Taking this fact into account, we have
proposed a variation of the ratio of the two critical wavenumbers by varying the thickness of
the layer, which can induce a significant change in the patterns the system generates. While
doing this one has to keep in mind that when buoyancy effects become dominant, i.e. when d
is bigger than about 3 — 4 mm, the CD2 does not exist anymore.

Since we have focused in this manuscript on a linear theory, we cannot evaluate the amplitude of
the eigenfunctions or make predictions about the pattern, that will actually be observed in the
vicinity of the CD2 above onset. The system could choose between any spatial superposition
of the two linearly unstable modes with quite different wavelengths. One possibility is. that
the system forms more complex patterns with two length scales, like e.g. rectangles. Another
possibility would be a mixed state as it has been considered for convective onset in viscoelastic
liquids by Brand and Zielinska {24]. Since the ratio of the critical wavenumbers is in general
not an integer number, the resulting structure could then become rather complex giving rise
to incommensurate patterns. Since, as has been discussed above, the ratio between the two
critical wavenumbers can be varied in a certain range by changing the layer thickness d one can
achieve, that the wavenumber ratio becomes an integer number thus opening the possibility to
study spatial resonance and lock-in phenomena near the onset of an instability.
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Appendix A
Stationary Instability

The bulk equations (18) and (19) for stationary instability (w = 0) reduce to the following
linear differential equation of sixth order (well known from Rayleigh-Bénard instability [18]):

(D* - ¥)% 6, = —RK?4; . (A1)

The solution for R # 0 of equation (A.1) can be written in the following form:

3
6, = Z A, sinh (A,2) + B, cosh (A, 2 (A.2)
=1
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with the roots of the characteristic polynomial of equation (A.1):
1
M= VR 4K dog= s (146v3) YRR + 2 (A.3)
All but one of the coefficients A, and B, can determined by the boundary conditions (20) and
(24). The solvability condition of the resulting set of homogeneous linear equations reads:

1 1 1 0 0 0
Ey Ey Ej 0 0 0
0 0 0 F1 F2 FS

Es Es By B B B |~ ° (a4)
Eio Eun Ei2 Bz B Eis
Fy, F Ik F F R
with the following abbreviations (2 = 1,2, 3):
E, = K-\ E,y3 = E,cosh(}),) E,i¢ = E,sinh (A,)
. L L .
EH_Q = )\2 sinh (/\1,) — .7\/[_16—2 A?E—L cosh ()\z) E7,+12 = )\1 cosh (/\z) — Mk2 )\3 E,, sinh ()\1)
r
F, = ME, Fy3=) {C (3k* = A2 E, + Z} sinh (A,) + T'cosh (X,)
2 2 r .
Fis = X {C (3k — )\2) E, + Z} cosh (A,) + I'sinh (},)
T = (B+k)E — NAKK

Expanding the determinant in equation (A.4) yields the neutral curve for marginal stability:

r 7

4
C> G.D,
=1

4
> H,D,
=1

| ——
= g(R7M?C7 'C7 k)_[

NE) = ———= [(B+F) K>+

A(E)R? (A.5)

with:

Gi = M (3K% — A}) Eysinh(A1) — Az (3k% — A2) By sinh(Xs)

G2 = A3 (3K% ~ A3) Bgsinh(As) — A1 (3k% — A}) Ey sinh())
Gy = %,\3 (3K2 — A2) E; cosh(Xg) — A1 (3%2 — A2) By cosh(Ar)
. F,
Gs = X (3%% — A2) By cosh(X) — -};3/\3 (3k% = A2) E3 cosh()s)
3

A
H = % sinh(A;) — Zz sinh(Xz) + cosh(A1) — cosh(Az)
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Hy, = % sinh(Az) — % sinh(A1) + cosh(As) — cosh(A1)
FTA . A :

H; = f’;— [23— cosh(A3) + smh()\z)} - fl cosh(A1) — sinh(A1)

H, = A2 cosh(Ag) + sinh(Az) — Bl cosh(Az) + sinh(As3)
L F | L

and the minors:

[ Ey FyFy EyFs FlEs
D, = - _ Epq— ~ (B - Eys —
' (B = 5 -<E7 F3 ) ( H Els) < °F ) ( YR ”
I EqFy FyFy Ey Iy FiEqs
— (B - — By — — (B - Bg — 218
Dy (Ey — Ev) <E 2 ) ( 14 E15> ( 8 7 ) ( 13 7 )]

D3y = (E;—Ey) -(Es — Ey) (E14 -

— (B3 — Ev) [(Es — E4) (EM - %) - (Es - E;fz (Bn1 - Ew)}

Dy = (Ex—En) [(Es — Eq) <E13 - Fﬁls) - <E7 - E;,fl (Br2 — Em)]
— (B3 — Ey) [(E5 - Ey) (Elg ~ Fi“) ~ <E7 - E;fl) (Eyi — Em)] (A.6)

Appendix B
Transition from ‘Thin’ to ‘Thick’ Layers

Here we argue how the Bénard-Marangoni instability emerges as a limiting case in the regime
of thick layers (d > 4 mm). We also discuss the conversion process of the Marangoni minimum
in the neutral curve A (k) into a maximum.

As can be seen from Figure 12d at d =~ 4 mm the Marangoni minimum is inverted towards
a sharp maximum. This peak reacts very sensitively on an increase of M and then it diverges
(N(k = k®pm)) — 00). As a consequence a maximum appears from A/ = —co, which touches
the k-axis at a certain value of M (cf. Fig. 14). Since negative values of A cannot be reached
in a physical system by construction of A, the first physically accessible value for A" has to be
zero. This zero of A'(k) determines the threshold for thermoconvection. For d = 4 mm all of
that happens in a small interval between M = 64.800 and M = 64.809.

At the thickness of d = 3.628 mm the dip changes its direction. The system achieves this,
by creating a local minimum and in the close neighborhood a local maximum, which at first
sight seems to be a singularity, as can be seen in Figure 15. Since both the minimum and the
maximum react very sengitively on an increase of M, this is a way for the system to change
from a regime of thicknesses that allow a CD2 to exist, towards one for which there is no
CD2, without reaching a point, where no thermal convection sets in. The latter needs to be
accessible to guarantee, that the system shows thermoconvection for each layer thickness, when
no magnetic field but a sufficiently high temperature gradient is applied.
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Appendix C
Oscillatory Instability
In the case of w # 0 equations (18) and (19) can be combined to the equation:
(D — k%) (D? = K —iw) (iwP — D* + k?) 61(2) = RE*6i(2), (C.1)

which we solve for R # 0 and P # 1 with the ansatz:

01(z) = 3 [A.cosh(A,2) + B,sinh(Az)] . (C.2)

M

=1

Since the roots A, of the characteristic polynomial of equation (C.1) for R # 0 cannot be
calculated analytically, we determine them by means of the fortran routine LAGUER from
Numerical Recipes [25]. With the boundary conditions (20)-(24), we get a set of linear equa-
tions. The solvability condition yields again a determinant of the structure of equation (A.4)
with the modified abbreviations:

E, = iwP - X +i?
: L 5
3 = 2 1 = - h .
B3 Ausinh (A) + —— (A2 — k%) cosh (\,)
L :
Eive = Acosh(M) + —5 A2 — k?) sinh (A,)

(
Fuo = {in(,\erk?) +[
|

M 2 2| (y2 _ 12
(in 1>k )\1] (A2 = &%) % cosh ()
By = {W (24 82) + (g‘% _ 1) B - /\3] (2 - zﬂ)}smh ()
FE = XAE,
F.s = E, {C (ww — AZ + 3%%) A sinh (X,) + ;}% cosh(AJ}
F¢ = E, {C (fw — A2 + 3k?) A, cosh (\,) + Z,—u%;sinh()\l)} , (C.3)

where I is defined as in appendix A.
The neutral curve reads:

F -
4
> G.D,
1 _
k. — 2 2 . =1 i
N(k.w) O (B+ k) &* + iwCP (C.4)
> H.D,
=1
i = hy (R, M,C, L, P, k,w)]
with: Gl = /\1 (i'(d + 3]\"2 - /\%) E1 Sillh(/\l) - /\2 (zw + 3k'2 - )\3) E2 Sinh(/\z)

Gz = X3 (iw+3k% —A}) Essinh(Ag) — Ay (iw + 3k% — A}) E; sinh();)
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(w + 3k* — A3) B3 cosh(A3) — A; (iw + 3k% — A2) Ey cosh(Ar)

A2 (1w + 3k% — A3) Ea cosh(Ay) — %)\3 (w + 3k% — A}) E3 cosh(X3)
3

E; cosh(A\) — E2 cosh(As)
FiEs sinh(\g) — Eq sinh();)

H4 = Eg Sillh()\z)

Ik

Vi

H; = Ezcosh(A3) — By cosh(A;)

2 sinh()3) .

The minors are defined in the same way as in equation (A.6), but incorporating the redefined

E,’s and F,’s.

For the oscillatory instability it is also suitable to calculate the neutral curve M(k,w):

3
S EK, (A2 +k?)
=1

3
YK, (M- k%)
=1

= hJM(R7N>C’£> P$k1w)

with: K7 = cosh{\) Dy — cosh (A1) Dy — sinh (A1) Ds
I\’g = sinh (/\2) f)4 — cosh (/\2) Dl
R D >
K3 = cosh(Az) Dy +sinh (A3) BDs _ sinh (A3) oD
3 3
and the minors:
L I EyF, FyFy EyFy
D, = (Es—-E) _(E7— 7 > (Fs- 7 - | Bg— T Fy —
~ . r EgFl FQFQ EQFQ
Dy = (Ey—-Ey) -(EI R ) (Fs 2 ) (Es T ) (F7
. [ FE EyF.
Dy = (By—E) ((Be~Ey) (Fo— 22 - (Es— =222 (Fs — Fu)
L g 'y 1
[ Fy F EyF: ]
— (B3 - Ey) |(Es — Ey) (Fg - ; 9) - (Eg - ;, 2) (F5 — Fy)
L 3 3 J
, [ F F EyF;
Dy = (By—E) |(Be—Ea) (Fr— 2 — (B — =2 ) (B — Fu)
L F3 F3 J
i FlF By F; 1
— (Bs—-E)|(Bs-E)|[F -2 - (B -1 (- F)
| F3 F3 J

(C.5)

(C.6)
(C.7)

(C.8)

(C.9)
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