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Abstract. The shear flow of a
polymer melt (P

monomers per chain) above a solid surface

on which longer, chemically identical chains have been grafted (N monomers, N > P), shows

that friction at the surface is enhanced and that slippage is much reduced (with respect to the

bare surface behavior), provided that the melt is entangled (P > Ne). One important issue in

this problem is the drag number X of the tethered chains, I-e- the number of melt chains that

they trap. Recently, two different regimes were described [I] for the opposite case
N < P: a

Stokes regime with X
=

N~/~ (total entanglement) and a
Rouse regime with X

=
N/Ne. Here,

the structure of the drag number for N > P is discussed: in this case, it is always linear in N,
but long chains do display

a
coiLstretch transition. The value of the minimum molecular weight

M* for this effect to take place is also discussed; star polymers should display the high molecular

weight behavior even if they are smaller in size: this should allow for
a test of the model.

R4sumd. Le cisaillement d'un polymAre fondu (P monomAres par mo16cule) au~dessus d'une

surface solide greffde de chaines chimiquement identiques et plus longues (N monomAres, N > P),
donne lieu I

une
friction plus dlevde et I

un glissement r6duit par rapport au cas d'une surface

lisse, dAs lors que le fondu est enchevAtr6 (P > Ne). Le nombre X de chaines capt6es, c'est~h-

dire le nombre de mo14cules du fondu enchevAtr6es avec les chaines gre1f6es, est un paramAtre
important de la mod61isation du problAme. Deux diff6rents r6gimes ont 6t6 r6cemment propos6s

Ill pour l'autre
cas N < P: X

=

N~/~ dans le r6gime dit de Stokes (enchev@trement total), et

un
rdgime de Rouse avec X

=
N/Ne. On discute ici de la valeur de X lorsque N > P: X est

alors toujours proportionnel h N, mais une transition d'6tirement est cependant pr6vue pour les

longues chaines. On discute aussi de la valeur du poids mo16culaire critique au~delh duquel cet

elfet intervient; le comportement de polymAres branch6s, en 6toile par exemple, devrait indure

cet elfet mime si leur taille est moindre: ceci pourrait constituer un test du modAle.

1. Introduction

It is known that polymer melts subjected to a shear flow slip on smooth, passive surfaces as

a result of the high viscosity of the polymer melt relative to that of a liquid of monomers [2].
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Slippage gives rise to a finite velocity V at the surface and can be characterized by the ex-

trapolation length b, defined as the distance beyond the wall at which the velocity profile
extrapolates to zero. In highly entangled melts this distance can reach a few microns.

If the solid surface has been roughened slippage is reduced; one very efficient way of doing
this is to attach polymer chains to the surface. Due to entanglements between the grafted
chains and the melt chains, friction is enhanced near the surface and slippage is very much

reduced [3]; the extrapolation length b can become as low as a coil size [4].
For a melt of sufficiently long chains (P > Ne), the classical picture [5, 6] yields, regardless

of the chain length, an average of one entanglement every Neth monomer along any particular
chain (an entanglement being some sort of topological constraint due to the presence of other

chains). Ne is called the entanglement number. It can be estimated through various experi-
mental methods (which lead to values that differ at most by a factor of order 3 or 4) [6]. Each

chain is considered to be confined in a tube due to the constraints exerted by the surrounding

chains. This Edward's tube has a diameter of order Di
=

aNll~, where a is the monomer

size, and D~ is the average spatial distance between two consecutive entanglements along a

particular chain.

In the slippage problem, friction at the surface is believed to arise through the following
mechanism 11, 7]: suppose a mobile chain P moves at velocity V with respect to a grafted

chain N with which it happens to be entangled; then before it has moved an entanglement
distance D*, the P chain has to slide over a fraction of its own tube length Lt

=
(P/Ne)D* in

order to disentangle from the grafted chain [8]. The velocity of the P chain along its tube is thus

K
=

(P/Ne)V. The dissipation due to this enhanced sliding velocity is given by T(
e

P(1(~,
where (i is the coefficient of friction of a monomer in the surrounding liquid. If Iv denotes the

force acting on the grafted chain, due to the sliding motion of one melt chain, then the useful

work dissipated at the interface is Iv V per sliding chain. If we assume that this is a significant
fraction of the total dissipation TS then the force Iv is given by:

fv"P(1(~) V=aqpv, ii)
Ne

~

where qp is the melt viscosity. The grafted chain N thus undergoes a force fv from each melt

chain with which it is entangled.
Different approaches have been suggested to calculate the number X of chains trapped by

one N chain, which is called the drag number. The first models [3, 7,9] suggested that X

was proportional to N~/~. According to the binary entanglement model ill, however, X is

proportional to N for nloderate values of N(N < N)):
we call this the Rouse regime; on the

other hand, X is predicted to be proportional to N~/~ for higher values (N > Nj): this is

the Stokes regime (the
reason for this name is that the friction due to the tethered chain in

this regime, is Fv
"

N~/~ fv
"

Rqpv, where R is the radius of gyration of the chain, and

this shows that the chain behaves like a solid sphere with zero-velocity boundary conditions

in a liquid of viscosity qp). The early models with X c~
N~/~ predict a coil-stretch transition

of the grafted chains; this should lead to a non-monotonous plot of the extrapolation length
b(V) (like that of Fig. 3a). However, recent experiments on such systems [10] allow for a

combined measure of slippage velocity and shear rate land hence of the extrapolation length)

no decrease of b(V) seems to have been observed yet [11]; at present, it seems that only the

results derived from the binary entanglement model (Refs. ii, 4] and the present paper) are

compatible with this feature (see Fig. 3b).
Let us recall briefly the ideas of the binary entanglement model ill

: an entanglement is now

supposed to be some topological constraint on the test chain
~

due to only one given, other chain
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(there is no such crude hypothesis in the classical picture). Let R
=

aN~/~ denote the size of

a chain. If we compare the number n(R~)
=

(aN~/~)3 /Na3
=

Na3
=

N~/~ of chains present
in the vicinity of the test chain and the available number N/N~ of entanglements along it, we

are led to the following conclusion: for X > Nj, the number of available entanglements is the

higher; thus all chains are trapped (X
=

Nl/~) and each is entangled several times with the

test chain (this is the total entanglement, or Stokes regime). If, on the other hand, N < Nj,
then only a fraction of the surrounding chains is trapped IX

=
N/N~, Rouse regime).

If on average X melt chains are entangled with one tethered chain, the friction force acting
onto the latter is given by:

Fv
=

Xfv (2)

With the grafted surface iv tethered chains per unit area),
we have to consider [3] that the

shear stress a is transmitted to the surface both by mere friction of the melt molecules on the

bare solid surface and through the entanglement friction force Fv Per grafted chain:

a =
(i V + ufv (3)

a

(In practice, entanglement effects dominate most of the time and the first term is often negli-
gible).

In the present paper we are concerned with the slippage of a melt of shorter chains IF < N)
and we must first estimate the drag number X for this case (Sect. 2). As in the opposite case

P > N [4], we find a cooperative effect at high grafting densities. All these results coincide

with those of reference [4] for the particular case P
=

N.

In Section 3, we discuss which molecular weight M* should correspond, for a real polymer,
to the crossover between the Rouse and Stokes regimes described above. We also look at a

system that should display the Stokes behavior IX
c~

N~/~) although with smaller objects,
namely grafted star-shaped polymers. This should allow for a test of the binary entanglement
model.

2. Slippage on a Grafted Surface: the P < N Case

As explained in the introduction, the crucial point for the description of slippage is the drag
number X of the tethered chains, I-e- the number of melt molecules that are trapped by each

of the grafted chains. First we compute the drag number of a tethered chain as a function of

its elongation; then we work out therefrom the behavior of a grafted surface.

2.I. DRAG NUMBER OF A TETHERED CHAIN IN A SHORTER MELT. When a chain of

chemical length N is immersed in a melt of shorter, chemically identical chains (P monomers,
P < N), it is known to have still a random-coil, Gaussian configuration as long as the melt

chains are not too short (P <
N~/~ [12]. For still shorter melt chains the N chain becomes a

self-avoiding walk. The radius of gyration of the longer chain is given by:

R
=

aN~/~ (P>N~/~) (4)

R
=

aN~/~P~~/~ (P < N~/~) (5)

Here we investigate these two cases for entangled melts (P > N~). (Non-entangled melts

(P < N~) do not lead to such a concept as the drag number since the friction is then simply
linear in N; this case is studied briefly in Sect. 2.2).

Let us first turn to the Gaussian tethered chain (R
=

aNl/~). An easy way of evaluating
the drag number X is to picture the N chain as a random walk sequence of blobs containing
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Rp

Fig. 1. The chain N, immersed in a
melt of shorter molecules (P < N),

can
be

seen as a
random

walk of blobs containing P monomers. The drag number X of the chain can
be estimated as the sum

of the blob drag numbers: X
=

(N/P)Xp (Eq. (6)).

P monomers (Fig. 1). Melt chains can be trapped by either section of the N chain, I-e- blob

contributions are additive:

X
= )XP> 16)

where Xp is the drag number of one blob of P monomers. The previous results iii yield:

Xp
=

P/N~ (P <
Nj) (7)

Xp
=

P~/~ IF > Nj) (8)

Hence we simply have two regimes, depending on the melt molecular weight:

X
=

N/N~ (P <
Nj (9)

X
=

N/P~/~ (P>Nj) (10)

A tethered chain, swollen by an entangled melt (Ne < P < N~/~), is a self-avoiding walk

of Gaussian blobs containing P~ monomers; blobs here also contribute independently and we

have:
~

~ ~~ ~~~~

Thus equations (9) and (10) hold for all N~ < P < N, whether the tethered chain be Gaussian

or swollen.

At higher slippage velocities, the friction force Fv acting on a tethered chain becomes suf-

ficient for it to elongate. It then can be seen as a sequence of blobs of size D given by the

Pincus law [13]:

~~ ~~~~

The blobs are close packed in the direction of flow; perpendicular to it, the chain is still a

random walk of such blobs (Fig. 2a).
More precise calculations should involve a trumpet-like conformation [14] of the chain: since

friction forces due to melt chains act along the whole length of the chain, the sollicitation is

higher near the attachment point and the chain should be more elongated in this region. In

the present paper we do not go into such detail and we assume that D is constant along the

chain.

As long as each blob is larger than the melt molecules (D > Rp), contributions are additive

and again we get equations (9) and (10).



N°3 TOTAL ENTANGLEMENT THRESHOLD FOR POLYMERS 339
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Fig. 2. Deformed tethered chain. (a) If the blob size D is larger than the melt molecular size

D > Rp) then the blob drag numbers
are

additive. If, on the other hand, D < Rp (b),
one way of

estimating the drag number is to compare the total number N/Ne of available entanglements and the

number n of melt chains present within
a distance of order Rp from the tethered chain (I.e., in the

volume fl
=

LR§ ).

When the tethered chain is even more elongated (D < Rp), the calculation must be altered;
the drag number X can be estimated through the following argument: each blob is a chain

of gD + ID la)~
monomers immersed in a melt of longer molecules (P > gD)I we know [ii

that the blob drag number is XD
"

gD/N~ for gD < Nj and XD
"

g)~ for gD > ATj. If

blob contributions are additive, we get X
=

(N/gD)XD. Thus X
=

N/N~ if gD < N~ and

X
=

N/g )~ if gD > Nj. This is also the result we get if we compare the total number N/N~ of

available entanglements and the number n of melt chains present in the vicinity of the tethered

chain. Indeed n =

Q/Pa~
=

N/g)/~, where Q
=

LR§ is the volume that contains all melt

chains that might possibly be entangled with the tethered chain, I.e. all chains present within

a distance Rp from the tethered chain (the volume Q is depicted in Fig. 2b).

As a result, we get the following expressions for the drag number of a deformed chain:

X
=

N/N~ (D>Rp, P<N/) (13)

X
=

N/P~/~ (D > Rp, P > Nj (14)

-K
=

N/N~ (D < Rp, gD <
Nj) (15)

x
"

N/g)~ ID < RF> 9D > lvl) l16)

2.2. GRAFTED SURFACE UNDER FLow. The general features of the situation of the grafted
surface are recalled in the introduction: each melt chain trapped by a grafted molecule exerts

a force fv (Eq. ii )) when it slides to disentangle; this gives rise to a mean force Fv
=

Xiv
(Eq. (2) acting on each grafted chain, where X is the drag number of a tethered chain, which

was calculated in Section 2.1. The force Fv determines the elongation of the grafted chain (I.e.
the diameter D of its blobs) via the Pincus law (Eq. (12)). The drag number X may in turn

depend on D (Eq. (16) ).

Thus, for a given melt velocity V at the surface, it is possible to determine the elongation
of the tethered chains and the force Fv acting upon them, in a self-consistent manner. In the

end the shear stress a can be calculated therefrom (Eq. (3)) and the extrapolation length b

can be immediately deduced from the expression of the shear rate (V/b
=

I
=

a/qp).

2.2.1. Successive Regimes During Elongation. At low velocities, the friction force Fv is

lo~v (fv < T/RN) and the chains remain undeformed (D
=

RN). However, when Fv
reaches T/RN, the chains start to elongate. This corresponds to a threshold velocity Vi given
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by Xaqpvi £ T/RN, I-e-:

vi
"

)) lP<Nl) Ii?)
m~

pi /2
vi

" ~ @ IF >
Nl) l18)

Beyond Vi, the chains elongate smoothly. The blob diameter is given by D
=

RN (Vi IV),
which can be written as:

D
"

j ~/j~ IF < Nl) l19)

pi /2
~m

D
~ j

~~ ~
(P >

Nl) 120)

For melts with a high molecular weight (P > Nj), there is a drastic change when D reaches

the melt radius of gyration Rp: as can be seen from equation (16), the drag number X now

depends on D. More precisely, the force Fv can be written in two ways:

j
e Fv + Xa~pv

=

~~j~~ (21)

This equation shows that D remains undetermined and that the melt velocity is quenched at

V
=

V2, given by D(V2) + Rp, where D is calculated from equation (20); hence:

V2
"

~(
= ~~ Vi (P >

Nj (22)
a QP P

Thus if V is being monitored, the chains will elongate abruptly from D
=

R
p to the other limit

D
=

aN~ (I.e. gD =
aNj), when V goes across the threshold slippage velocity V2. Beyond V2,

the blob diameter D is now smaller than aN~ and equation (15) applies: we recover the same

regime as for the melts of low molecular weight IF < N)); D is now given by equation (19).

When the blob diameter D reaches Edward's tube diameter D~ e
aNll~,

we enter yet
another regime, called the marginal regime [3,4]; this is for high enough velocities:

~ ~i/2
V > V~ e

~~ (23)
a qp N

In this regime the grafted chain is stabilized at a fixed elongation ID
=

D*) over a wide range
of velocities. Indeed, the blob diameter D should be smaller than D~; but melt chains would

then disentangle completely from the tethered chain, and the force Fv acting upon it would

be significantly reduced: the chain would swell again well above D*. The marginal regime
corresponds to a linear increase of the extrapolation length b with the slippage velocity V. The

overall variations of b are summarized in Figure 3.

The plateau values of b are given by:

b
=

bi £
i /~

(P > N >
Nj, V < Vi) (24)

/~j
b

= b2 £ q IN > P > N), V < V2 (25)

b
= bo %

'
(all other plateaux) (26)
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)( ~
b

~~~o
~

~
P or N < N~2 N > P > N~2

~) Vi V* b) Vi V* c) VIV~V*

Fig. 3. The variations of the extrapolation length versw the slippage velocity b(V)
are pictured

for different melt (P) and grafted (N) chain molecular weights, relative to the threshold molecular

weight Nj. Situation (a) (P > N >
Nj)

was described earlier [4]; situations (b) and (c) are studied

in the present paper. The abrupt drops of b should be observable: the ratio of both plateau values is

(N/Nj)"~ for P > N > Nj la) [4] and (PIN) )"~ for N > P > Nj (c).

where u
still denotes the grafting density.

We also expect that at very high slippage velocities:

V > V~~
= ~@> 12~)

the melt should behave like a rubber. This happens when the time taken by melt chains

to slide out of the grafted chains becomes comparable to their reptation time, as explained
elsewhere [4].

Note that the velocity Vi,P above which trapped melt chains deform, given by

fv (vi,p)
+

T/Rp, j28)

is larger than all other threshold velocities except V'* This effect takes place only in the

marginal regime (D
=

D~) and does not change its characteristics, since the force Fv is

quenched at F) e T/D~.
Among these threshold velocities, only V2 (for high molecular weight melts, P > Nj) and

V~* can be obseved by macroscopic measurements, as can be seen from Figure 3. Vi could

be observed only for particular polymer systems (e.g. with chains whose monomers bear

longitudinal dipoles) through techniques that should be able to show orientational order at the

interface. The behavior of swollen, grafted chains (N~ < P < N~/~) is slightly different but no

directly observable quantities are changed (see Appendix A).

2.2.2. Non-Entangled Melt. If the chain is immersed in a non-entangled melt, the force

acting on the chain arises only through the straight~forward monomer-monomer friction:

Fv
"

N(i V rzS Naqi V (29)

For P
=

N~, this expression crosses over to the entangled melt force:

Fv
"

~
an pV

=
N ~~ aqiv (30)

Ne

~

The force thus does not depend on the melt molecular weight for P < N~. if the tethered chain

is swollen, there can be even
fewer entanglements and the force arises only through the Rouse

friction as before. Thus for the entire range P < N~, equation (29) is valid.

2.2.3. Cooperative Effect. At high grafting densities we expect, as for P > N [4], a co-

operative effect to occur: melt chains should entangle with more than one tethered blob or

chain.
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There should therefore be fewer entangled melt chains, and hence higher slippage velocities

should be necessary to reach the same deformations of the grafted chains.

To describe this effect, we consider the surface number density up of melt chains trapped by
the grafted surface. In the low grafting density limit we have:

up =
uX (31)

For higher grafting densities, up reaches a plateau. Indeed, it cannot exceed the number of

melt chains present within a distance RN from the solid surface:

UP < Up
~~~

~N I Nl/2

~~~ ~~ i j~~~

The crossover between equations (31) and (32) yields the threshold grafting density. For chains

that are not too long (Eq. (13))
or at high velocities (Eq. (15)), the drag number X is equal

to N/N~ and we get:

~~
2 P~/2 ~~~~

On the other hand, for melts of high molecular weight (Eq. (14)),
we get:

(These results can also be obtained from detailed scaling calculations of the probability that

a melt chain P is trapped by some grafted chain, given that it lies within a distance RN from

the solid surface).
These threshold grafting densities u~ and u~2 are smaller than 1/N~/~a~. Hence, the grafted

chains may overlap (u > 1/R() but they are not stretched away from the surface yet [15] the

calculations of the drag number X remain valid.

When up = up
max

(for u > u~ or u~2), the extrapolation length b reaches its lowest value:

the shear stress is given by amax = up iv
"

upmaxaqpv. Hence:

(This value is even lower than the value bruin
=

Rp obtained for N < P [4]).

2.2.4. Grafting Density Equivalent to Bare Solid. In highly entangled melts (P m N~) the

force transmitted through the grafted chains is much higher than the mere friction of the melt

chains on the solid surface and equation (3) can be harmlessly replaced by:

a =
ufv (36)

For shorter melt chains or non-entangled melts, however, the first term of equation (3) may

dominate. The flow is then unaffected by the presence of grafted chains and the surface is

equivalent to a bare solid. We explain this issue in detail below.

For non-entangled melts (P < N~) the shear stress (Eqs. (3) and (29)) can be l~~ritten as:

a =

~~
V

1
+
~) (37)

a Um

iv.here um =
1/R( is the mushroom overlap grafting density. For small grafting densities:

~ ~ ~~~'~ ~~
la2' ~~~~
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the surface consequently behaves like a bare solid.

For higher molecular masses IF > N~) we find:

Vba~e "

)
Vm "

) £
lx

#
N/Ne) 139)

vba~~ =

~ ~j~~~

~

IX
=

N/P~/~,
gD > P > N/ (40)

Thus, if P is well above N~, the grafted chains do affect the flow (except if we manage to

achieve extremely scarce grafting).

3. The Total Entanglement Molecular Weight Threshold

As stated in the introduction, the binary entanglement model leads to two different regimes
for the number X of chains trapped by a given chain Iii. This number is the total number of

chains that have to be removed from the vicinity of the chain under consideration in order to

renew all topological constraints that act upon it.

The number of chains trapped by a short chain should be linear in N:

X
=

~
IN < N)) (41)

Longer chains should trap virtually all chains present in their vicinity:

x
"

N~/~ (N > Nl) (~2)

According to predictions based on this model (for the case P > N [4j and for the opposite

case in the present paper), long chains (N > Nj) should display both regimes, depending

on the slippage velocity, and large variations of some quantities such as the extrapolation
length b consequently might be seen in shear flow slippage experiments such as those already

mentioned [10j. ~Te wish to discuss here whether the threshold N
=

N" e
Nj

can be reached

for real polymers.

3.I. THE THRESHOLD MOLECULAR WEIGHT. Consider a particular flexible polymer of

molecular weight M in the liquid state and let M( be the entanglement mass (the molec-

ular mass above which it displays entanglement effects). The determination of M] can be

achieved by several methods (with some discrepancies) such as viscosity, elastic plateau modu-

lus, steady-state compliance or self-diffusion constant measurements [6,16j. A straight-forward
transcription for the threshold molecular mass M* corresponding to N"

=

Nj would lead to:

i~~/~~l) * i~~li/~~l)~ 1~3)

where m denotes the average molecular weight of a main chain link. This result is indeed what

we find below for an ideally flexible polymer (whose persistence length ip is equal to the average
length lo of a main chain link, or equivalently whose characteristic ratio Con Ii?] is equal to

unity, and whose monomers are roughly spherical). For real polymers, however, a closer look at

this threshold mass is necessary. Calculations, reported below, yield the following expression
for ill*:

ifil*/m)
+

i-~fi/m)~ (mjv~ (/£1~) ~

144)
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where p denotes the melt viscosity. NA is Avogadro's number. The last factor is the square

of the number of monomers present in a volume of dimension /£; this number is unity if

ip e C°~io
=

lo and if each monomer occupies a volume ii.
Some quantities may seem redundant in equation (44). In particular, one might think

that M] could be expressed in terms of m, p, lo and Con e iplio. However this question
alone represents an entire field of research. Semi-empirical laws have been established [18j
but no thorough theory has yet been constructed, although various approaches have been

proposed [19-21j. Here we do not address this question at all. We instead use the values

of these parameters (including M() available in the literature; indeed, they can be measured

independently for a given polymer.
To evaluate the threshold mass M", we can use two approaches iii: either we globally

compare the number of chains present in the vicinity of the test chain and the available number

of entanglements along it, or we look more precisely at inter-chain binary contacts, some of

which constitute entanglements.

3.1.1. First Approach: Global Comparison. The number of entanglements acting on the

test chain is M/M]. Due to the binary entanglement hypothesis, this is also supposed to be

the number of times that a binary contact with some other chain is actually an entanglement.
The radius of gyration of the test chain is given by:

R
= ip

~ ~~~

=
lo ~°'~)

~~~

(45)
Con m m

The number of chains present in the vicinity of the test chain is of order:

If J~I/M] < n(R3),
we expect that about M/M] chains will be entangled with the test chain

each of which having in general only one entanglement with it. If the reverse is true, then almost

all of the n(R~) chains present will be trapped: each will make on average (M/ill])/n(R~)
entanglements with the test chain.

The threshold molecular mass is given by ilf~ /M( e
n(R3(M")); this condition leads to:

~f~
P ~0

e A co j~~)
~ ~~'~)~~~

1~%ich is equivalent to equation (44).

3.1.2. Second Approach: Binary Contacts. The mean spatial distance between consecutive

entanglements along the test chain is:

R~
=

lo ~~°'~~) (48)
m

'
~~~

Approximately n(R)) other chains pass through this volume, but only one is entangled with

the test chain. Hence the probability that two chains are entangled when they are as close to

one another as R~ is:

~ %lRl) ~~~~
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Any chain passing in the vicinity of the test chain comes about (M/M()~/~ times close to it

(I.e., at a smaller distance than R~). Thus it is entangled about c times with the test chain,

where c is given by:
Jjl/2y~~3/2

C "

(M/Ml)~/~P
"

~ ~ /2
(50)

M(p(NACC~

If c is greater than unity, then virtually all n(R3) chains are entangled ion average)
c times

with the test chain. If c is smaller than unity, each of the n(R3) chains has the probability

c to be entangled with the test chain. The number of trapped chains in this case (c < 1) is

therefore:

~ ~~~~~~ ~l ~~~~

e

Thus, the threshold mass M* is given by c(M*) e 1, and this again yields equation (44).

3.1.3. Numerical Values and Discussion, Values for M* were compiled for various polymers
using equation (44) and are presented in Table I. They were calculated either with M] e M~

given by elastic plateau modulus measurements or with M] e M~, where M~ denotes the critical

mass between linear and entangled viscosity regimes. Another quantity a was introduced, given
by:

a e (vL)~~/~ lip, (52)

where vL is the contour length concentration [18j. As explained below in Section 3.2, a is a

measure of the local, rod-like or random coil-like, aspect of the chains. Quantities in brackets

were not present in the data used and were put in for the computation of M~.

Three remarks must be made.

.
Values of M" calculated from M~ and from M~ sometimes differ by large factors (up to

more than 60). It is not clear which one is the more relevant for our concern.

.
In the binary constraint model recalled above, we consider that one entanglement is

caused by the presence of one other chain. It may appear more realistic to demand that

several chains be present; this would lead to smaller values of M~.

.
Some systems (star polymers) should exhibit strong entanglement (Stokes) regime, al-

though with objects ~.hose sizes correspond to molecular weights lower than M".

The last two points are now discussed.

3.2. MULTIPLE BINARY CONSTRAINT ENTANGLEMENT MODEL. The binary entanglement
model [1j recalled above supposes that entanglements arise only through binary topological

constraints. In other words, situations like that depicted in Figure 4a (chain 2 alone imposes

a topological constraint upon chain 1) are supposed to be much more frequent than that of

Figure 4b (both chains 2 and 3 have to be present for chain 1 to feel a
constraint).

Furthermore, it was assumed in the model that one such constraint could build up an entan-

glement (more precisely, that renewing one given entanglement along a chain required that one

particular other chain be removed). However, we may think that a few such constraints are

necessary to build up an entanglement. Lin [19j suggested that a fixed number of chains (about
18) should be present in a volume R( (given by Eq. (48)) and that this condition defines fi~(;
it appears to be based on the assumption that about four chains must be present to impose

an entanglement on a given chain. Here we propose a detailed, though not thoroughly quan-

titative approach of the required number of binary constraints and we look at the consequent
reduction of the predicted molecular mass threshold M~.
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Table I. Characteristics of some current polymers are shown. Where available, the en-

tanglement mass issued by both elastic modulus (ilf~) and mscosity measurements (M~) were

indicated. The corresponding threshold molecular mass ilf~ is calculated from eq~ation ($7).

m p a

A K

18 1.54 7.0 463 3Soo sore 4.1

19 1.54 7.2 373 737 0.502 230 3.9

Pl~Ac 17 22 1.54 9.4 24500 (1 14) 39000 4 4

IS 1 54 9.0 330 24500 1 14 35000 4 6

19 1 54 9 330 6950 1 14 2800 4.6

HPIP 17 5 22 1 54 6.8 3970 (0.854) 3300 4 5

19 54 6.8 295 1472 0.854 450 4 5

PaMS 59 22 54 10.5 28000 (1 04) 49000 4.8

18 1 54 lo-1 473 40700 1.04 21000 5 0

19 1 54 lo-1 473 10225 1.04 2700 5 0

PS 52 22 1 54 10.0 35000 (1.0) 42000 4 9

18 1 54 10.3 463 35000 0.97 43000 4.8

19 1.54 9.4 400 13500 1.007 5300 5.2

HPBD (o 43) 17 8 19 1.54 6.4 338 1700 0.832 450 4 9

PMMA 50 22 1.54 7.0 31500 (1 14) 17100 6A

18 1 54 8 7 473~ 31000 1.14 32000 5 1

423

19 1 54 8 7 473~ 6176 1 14 1300 s-1

423

PBD (0 431 17.2 19 47 6.1 289 1860 0.9 460 5.2

PBD lo 99) 26.7 19 1 54 7 306 4280 0.883 1200 5 3

PPO (14 5) 22 1.49 5 1 5800 (1 00) 5800 5.3

18 1.49 s-1 298 5800 1 00 5800 5.3

PBD ins) 13 5 22 1.47 s-IS 5900 (0 9) 5800 5A

19 1.47 4.9 298 2347 0 9 780 5.7

PBD (0.05) 14.1 19 1.47 5.1 300 1430 0 596 280 5.6

PP (21) 22 1.54 6.2 6900 3300 5 8

18 1.54 5.8 463 7000 0 75 2800 6.2

PIP (cis) 17 22 1 47 S-o 7650 (0.9) 4400 6 3

18 1 47 5.3 298- 10000 o 90 9000 5.9

243

19 1 47 5.3 298 4054 o 9 1480 5 9

PIB 28 22 1.54 5 0 16000 (0 89) 5600 7 6

18 1.54 6.2 298 15200 0.89 9600 6 1

19 1 54 6.2 298 7056 0.89 2100 6.I

PHMA 85 22 1.54 10.o 91800 (0.95) 60000 6 4

19 54 10.3 373 27090 0 95 5700 6 2

PEG 14.6 22 1.49 4.2 4380 (1 08) 2100 6 2

18 1.49 3.8 298 3600 1 08 1060 6 9

19 1.49 3 8 298 1500 (1.08) (lS4) 6.9

PEBNIA 55 22 9.3 42800 (0.995 11500 6 7

19 1.54 9.1 373 17632 0.995 1300 6.8

POMA 99 22 1.54 lo-o 114000 lo 927) 56000 7 0

19 1.54 lo 373 69691 0 927 21000 7 0

HPBD (0 99) 27.7 lo 1.54 5 5 373 10694 0.819 2900 I-I

PDMS 37 22 1 46 6.0 24420 8400 7.5

18 1 46 5.2 24500 0 97 5500 8 7

lo 1.46 5.2 298 8010 0.97 590 8.7

in polymer solutions and melts, the contour length concentration vL as defined by Graessley
and Edwards [18] is a crucial parameter (vL

=
IOPNA/m in the present notations). (uL)~~/~

is the characteristic length scale of inter-chain distances. Thus, if (uL)~~/~ < lp Ii-e- o < 1),
chains interact locally as rigid rods, whereas if (uL)~~/~ » lp Ii-e- o » 1), they interact as

random coils. Let us first consider the local rigid rod limit (high contour length concentration).
Due to the presence of three other chains, the white chain depicted in Figure 5a has no more

than one translational degree of freedom (reptatioii) and still has (part of) both rotational

degrees of freedom (we forget about the rotation about its own axis). If we put two or three

other chains (Fig. 5b), we can remove all degrees of freedom, but reptation. Thus the presence
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~~ ~
f~ ~~_

a) b)

Fig. 4. The white chain undergoes
a

topological constraint (it cannot move to the right). In

situation (a), chain 2 alone exerts the constraint. In situation (b), both chains 2 and 3 have to

be present: if any one of them slides away, the constraint upon chain 1 is released. The binary
entanglement hypothesis stipulates that situations like (b)

are very rare as
compared to (a).

~

a)

~
b)

Fig. 5. The white rod still has part of two rotational degrees of freedom if three other rods (a)
are

present (we ignore rotation about its own axis). If two more rods are properly arranged (b), it now

only can be translated along its own axis. This leads to the value zrod @ 5 (Eq. (53)).

of z~od other chains can give rise to one entanglement, with:

z~od SQS
5 (53)

At lower contour length concentrations, chains interact as Gaussian random coils. Let z~oij

be the number of constraints required to produce one entanglement (I.e., the number that

corresponds to z~od, but in the Gaussian case). The question of whether z~oii is smaller or

greater than z~od is not clear. On the one hand, Gaussian chains are rougher than rigid rods

and each chain may exert constraints on the test chain in several directions at a time; z~~ij may

thus be smaller than z~od. On the other hand, the conformation of Gaussian chains cannot be

considered as frozen except on very short time scales; thus more chains may have to be present,
and this would make z~oij larger. z~oij might be tractable by numerical means. Anyhow. it

would probably lie between 0.sz~od and 2z~od.
Now if we turn back to the mass threshold problem, M/M( entanglements now correspond

to zM/M] chains present and trapped by the test chain, where
z is the relevant factor (z

= z~od

or z~oij). Retracing back the calculations presented above, we have to replace equation (44)
with:

~~~ ~

~j (~i/~)~
~

fil~ (/£) ) ~

(~~)

The value of z~, according to the above considerations, should lie between 5 and possibly 100.

The numerical values of ill* calculated above then should be divided by this factor. The mass

threshold might then be within much easier reach.

3.3. SURFACE GRAFTED wiTH STAR-SHAPED POLYMERS. As described above, the mass

threshold between linear entanglement (Rouse regime, Eq. (41)) and total trapping (Stokes



348 JOURNAL DE PHYSIQUE II N°3

3
_----------~

~~jj~~ ~~q
j~

,a) b) C)

Fig. 6. Grafted star-shaped polymers immersed in
a

melt of linear molecules should lead to lower

mass thresholds (for total entanglement) than for linear grafted chains. Star molecules could be

attached either by their centers (a)
or

by their arm-ends (b). Deformed stars occupy a
volume Q e

LR(
(c).

regime, Eq. (42))
can be understood as the molecular mass for which the number of chains

present with in the radius of gyration of the test chain is of the same order as the a~~ailable

number of entanglements along it.

in order to increase the number of entanglement points without significantly changing the size

of the molecule, a simple idea is to use star-shaped molecules. One may think of at least two

ways of grafting such star molecules (q linear arms, N monomers each): we may attach the

branching point to the solid surface (Fig. 6a) or we may use one arm to fix the star to the

surface (Fig. 6b). The second situation might be easier to achieve in practice with a reasonable

distribution of q; for small q, however, it should display a number of intermediate regimes, due

to the elongation of the grafted arm. For the sake of simplicity, we here look at the easier

situation: all q arms are supposed to be attached to the same point on the solid surface (Fig.
6a).

The radius of gyration R of a star molecule has different expressions for various arm lengths

AT, melt molecular weights P and arm numbers q [23]

R
=

aN~/~q~/~ (q > N~/~, q~P~ > N~) (55)

R
=

aN~/~ (q < N~/~, Nq~ < P~) (56)

R
=

aN~/~q~/~P~~/~ (q~P~ < N~, Nq~ > P~ (57)

The drag number X of a star at rest (I.e., at small melt velocities, when the force acting on

the star does not elongate it)
can be estimated by scaling arguments similar to those described

in Section 2.1. For melts of high molecular weight (Rp > R, where Rp
=

aP~/~ denotes the

radius of gyration of the melt molecules), we find:

X
=

min
~ 1

~~)~
,

~~
(Rp > R) (58)

a R Ne

where R is given by equation (56) or (57). or melts of lower molecular weight, (Rp < R) we

get:

x
-

ruin
ii

Ii ~li~ f> it
(RF < R) (59)

Of course, dense stars (Eq. (55)) have a drag number that is essentially zero, since melt chains

do not penetrate the star and cannot entangle with it.

The regimes for the drag number are summarized in Figure 7. The particular case q =

again yields the previous results (see Sect. 2.1 and the opposite case [4] P > N). For melt
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q q q

pin ~~/~~
W~LLEN

Pin 1
~~

~~
pin

~~

AU~SIAN ~~~~
21

~~~ ~e~~ 22 ~~
~~

a) P P2 N b) N~ PN~2 P2 N c) N~2P P2 N

Fig. 7. Star-shaped polymer with q arms of N
monomers

each, immersed in a melt with molecular

weight P, are globally dense (region 1), Gaussian (2)
or

swollen (3). But they always have a dense

core, and swollen stars with q < P"~ also have an intermediate, Gaussian layer [23]. The expressions
for the drag number of

a star are the following: X Gt 0 (region 1), X Gt qN/Ne (21, 32b), X Gt N~/~

(22), X Gt N~/~ /P (23), X Gt N~/~q~/~P~~/~ (31), X Gt qN/P~/~ (24, 32c).

molecular weights lower than the total entanglement threshold (P < Nj), stars can trap all

chains present, provided they have a sufficient number of arms (regions 22, 23 and 31). The

behavior of a surface grafted with stars in these regimes should be similar to that of a surface

grafted with long, linear molecules in a melt of high molecular weight (P, N > Nj). This is

calculated in Appendix B for stars with a moderate number of arms (regions 22 and 23).

These regimes do not require that the melt molecules or the star arms be longer than the

threshold molecular weight. For instance, if P
=

N and N~/P~/~ < q <
Nll~, then b changes

by a factor qN~/~/N~ when V rzS Vi, and this factor can be as high as 10 if N is about 100

times above the entanglement number N~: this feature of b(V) should be observable.

4. Conclusion

The study of the shear flow of a polymer melt on a solid surface grafted with polymer molecules

that are shorter [4] or longer than the melt chains (in the present paper), led to a new point of

view about the drag number X, which is the number of melt chains entangled with a tethered

chain iii: this number should have a different dependence on molecular weight, according to

whether the chains used are longer or shorter than some threshold molecular weight M*.

The existence of this threshold and of both regimes is still a hypothesis. In the present paper

we tried to evaluate precisely the value of the threshold molecular weight as a function of the

known parameters of the polymer under consideration; of course, the model suffers from an

undetermined global numerical coefficient, due to the scaling approach used and to the various

reasons discussed in Sections 3.1.3 and 3.2. However, the numerical factors should be roughly
the same for all (linear) polymers, so that if the threshold does have some reality the relative

ratios of the numerical values given in Table I should remain true.

We also indicated a system involving grafted star-shaped polymers, which should enable us

to lower the molecular weight threshold by a known factor; this would allow for a test of this

model, since the predicted behaviors below and above the threshold are qualitatively different.
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Appendix A

Swollen, Grafted Chains

A long, tethered chain (N > -5Tj) can be swollen by an entangled melt (N~ < P < N~/~). it

is then, in fact, Gaussian at small length scales (g~/~ < P). it has thus the structure of a

self-avoiding walk of Gaussian blobs of P~
monomers.

We verify:
~~~

R
= (a lP~) ~~) ~~)

=

aN~/~P~~/~ lA.i)

The first factor is the size of a Gaussian blob of P~
monomers and N/P~ is the number of such

blobs.

The drag number X of a swollen grafted chain can still be expressed by equations (9), 10),
(13) and (14). Indeed, their Gaussian sub-blobs of P~

monomers are larger than Rp. However,
since their radius of gyration at rest is enhanced (Eq. (5)), the velocity at which they start to

elongate is reduced and equations (17) and (18) are now replaced by:

~m j~~ pi IS
~

a2qp (8/5 ~~ ~ ~~ ~~'~~

~n p7/io
~i

" m N8/5
IF > Nl) lA.3)

At slippage velocities higher than Vi, the chains elongate according to D
=

R(Vi IV), where

R is given by equation (5). When they are further elongated, the diameter D of their blobs

reaches the size a(P~)~/~ of the Gaussian sub-blobs.

This happens for V
=

VI, with:

~
£l~P

j~~i (P

<

VI =
T 1 (A,4)

Above VI, the grafted chains are fully Gaussian, elongated chains: the swelling effect has been

overcome by the stretching. At still higher slippage velocities, we reach the sudden stretching
transition at l§ for melts of high molecular weight (P > Nj), and the marginal regime appears

above V'.

The threshold velocities l§ and VI do not lead to any macroscopically observable changes like

V2 and V", as explained in the main text.

Appendix B

Grafted Stars Under Flow

Grafted linear molecules lead to strong variations of b(V), provided that they and the melt

chains are
long enough (P,N > Nj). But the threshold molecular weight Nj might be too

high for an easy check of this effect (see discussion in Sects. 3.1 and 3.2). On the other hand,
the grafting of star molecules allows to avoid using so long molecules. Indeed, the threshold

molecular weight can be substantially lowered for well chosen values of the parameters, as was

indicated in Section 3.3.
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We here outline the calculations that lead to these results: we first indicate how to estimate

the drag number of a deformed star; we then give the main features of the resulting flow

characteristics.

B-I- DRAG NUMBER OF A STAR. A deformed star in the Gaussian regime (region 2 of

Fig. 7a) remains within the volume Q e
LR( depicted in Figure 6c. The undeformed part of

the star (near the attachment point) has a drag number that is much smaller than the drag
number of the rest of the star, as soon as the star is really deformed (D < RN ). We here

concentrate on the blobs that are away from the grafting point.
If P < N, we can proceed as in Section 2.1. If D > Rp, we have:

X < min
i~,

~)P~/~ (B.1)
e

If, on the other hand, D > Rp, we have:

~qN
qN 1/2 (B.2)~ ~ ~~~ N~ ' gD

~~

But if there are many arms, then another limitation will be important: all chains trapped have

to be within the volume Q. Thus, we also have:

X < ~~ (B.3)

in the case of interest (P, N < Nj),
we have the simpler expression:

X
=

min ij~~,
£

(P < N) (B.4)
e

~

If P > N, P chains that cross the volume Q use up about N monomers in this region;
condition (B.3) thus has to be replaced by X < Q/Na~. We get the following drag number:

X
=

min lj~~,
~

(P > N) (B.5)
e

a

B.2. FLow CHARACTERISTICS. The behavior of a surface grafted with stars can be calcu-

lated from the expression of the drag number, using equations (1), (2) and (3) as before. Only
the Pincus law (Eq. (12)) has to be altered, since the global force Fv acts simultanously on

all arms:

Fv
"

§
(B.6)

Again the extrapolation length b is deduced from the expression of the shear rate (V/b
=

I
=

a/qp). It turns out that regions 22 and 23 of Figure 7b are to be divided into two parts: for

stars with a moderate number of arms, b(V) behaves like the curve of Figure 3a (and the value

of V~ is unchanged and is given by equation (23)), whereas for larger q, the stars enter directly
the marginal regime after elongating abruptly at V rzS Vi In other words, V*

=
Vi for these

regimes, and b immediately starts to increase after it has reached its minimum value b( just
beyond l§

We here give the flow characteristics.



352 JOURNAL DE PHYSIQLTE II N°3

Region 22 (P > N):

Vi(q)
"

))
(B.7)

b
=

bi
"

~~

(i
/~

IV < Vi (B.8)

bo(q)
=

~( (Vi < V < V*, q < Nj/~) (B.9)
~~

~i/2
bmm

= bo "

fi V rzS V"
=

Vi (q > Nj/~) (B.10)

Region 23 (P < N):

Vi(q)
=

)$
(B.ii)

b
=

bi
"

~j~~~
/~

(V < Vi (B.12)

bo(q)
"

'~
(Vi < V < V~, q < ~~~~ (B.13)

Vaq

p ~i/2 ~i/2 ~
bruin

=
b(

=
(~ V m V~

=
h (q > ~

~
(B.14)

The values given for region 22 are only approximate in the vicinity of region 1 (X
=

0): more

precise expressions should be used for the drag number (like Eqs. (58) and (59)).

References

iii Ajdari A., Brochard-Wyart F., Gay C., de Gennes P.-G. and Vioi~y J.-L., J. Phys. II

France 5 (1995) 491-495.

[2] de Gennes P.-G., C. R. Acad. So. 2288 (1979) 219.

[3] Brochard-Wyart F. and de Gennes P.-G., Langmuir 8 (1992) 3033-3037.

[4j Brochard-Wyart F., Gay C. and de Gennes P.-G., Macromolecules 29 (1996) 377-382.

[5j de Gennes P.-G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca,
NY, 4ed., 1985) pp. 219-241.

[6j Graessley W-W-, Adu. Polym. Sci.16 (1974).

[7j Brochard-~vyart F., de Gennes P.-G. and Pincus P., C. R. Acad. Sci. 314 II (1992)
873-878.

[8j Assumption was made that only chain P could slide in order to disentangle from grafted
chain N. In principle, any of the two chains could slide out, but due to grafting, this simple

movement is forbidden to chain N. The free end of chain N is a rapidly-relaxing part of

the chain, and entanglements in this region could dissolve due to grafted chain retraction

more rapidly than through the sliding of melt chain P over its whole length. However, this

process should dominate only in a small part of the grafted chain near its free end, since

the relaxation time is believed to increase exponentially with distance to the free end

(see Rubinstein l/I., Ajdari A., Leibler L., Brochard-Wyart F., de Gennes P.-G., C. R.

Acad. Sci. 316 II (1993) 317-320). Hence, the major part of entanglements should be



N°3 TOTAL ENTANGLEMENT THRESHOLD FOR POLYMERS 353

renewed through the sliding of the melt chains, as described in the main text, and this

free-end effect should not affect the results.

[9j Ajdari A., Brochard-Wyart F., de Gennes P.-G., Leibler L., Viovy J.-L. and Rubinstein

M., Physica A 204 (1994) 17-39.

[10j Migler K-B-, Hervet H. and LAger L., Phys. Rev. Lett. 70 (1993) 287-290; Migler K-B-,
Massey G., Hervet H. and L4ger L., J. Phys. Corders. Matter 6 (1994) A301-A304; L4ger
L., Hervet H. and Massey G., ACS Symposium "Interfaces and Surfaces in the Rheology of

Polymers" (Anaheim, California, April1994); L4ger L., Hervet H., Marciano Y., Deruelle

M. and Massey G., Israel J. Chem. 35 (1995) 65-74.

[iii Massey G., LAger L. and Hervet H., private communication.

[12j Schaefer D-W-, Joanny J.-F. and Pincus P., Macromolecules 13 (1980) 1280-1289.

[13] Pincus P., Macromolecules 9 (1976) 386-388.

[14] Marciano Y. and Brochard-Wyart F., Macromolecules 28 (1995) 985-990.

[15] Aubouy M., Fredrickson G-H-, Pincus P. and RaphaAl E., Macromolecules 28 (1995) 2979-

2981.

[16] L4ger L. and Viovy J.-L., Contemp. Phys. 29 (1988) 579-595.

[17j Flory P., Statistics of Chain Molecules (Interscience Publishers, New York, 1969).
[18j Graessley W-W- and Edwards S-F-, Polymer 22 (1981) 1329-1334.

[19] Lin Y.-H., Macromolecules 20 (1987) 3080-3083.

[20] Kavassalis T-A- and Noolandi J., Macromolecules 22 (1989) 2709-2720.

[21j For a summary of [19] and [20] in view of [18], see Colby R-H-, Rubinstein M. and Viovy
J.-L., Macromolecules 25 (1992) 996-998.

[22] Aharony S-M-, Macromolecules 16 (1983) 1722-1728.

[23] Rapha41E., Pincus P. and Fredrickson G-H-, Macromolecules 26 (1993) 1996-2006; Gay
C. and RaphaAl E., submitted to J. Phys. II France (Short Commun.).


