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Abstract. Fan-shaped textures of hexagonal mesophases of lyotropic systems are
often stri-

ated. These striations are
due to a

thermomechanical undulation of the columns. We measure

their wavelength and amplitude in the lyotropic mixture C12E06+water. By comparing these

measurements to the theoretical predictions in the strongly nonlinear regime (our model is a

generalization of the model of Singer (17) to columnar phases),
we

find that the penetration

length I
=

/fi is of the order of 40 1 (where B is the compressibility modulus of the hexag-
onal array and K the curvature modulus of the columns). This value is in qualitative agreement
with that found by using X-rays (11) or the grain~boundary method (10). In addition, we find

that the shear elastic modulus ~1of the hexagonal array is 5 to lo times smaller than B, in

agreement with X-ray experiments (16).

R4sum4, Les textures en
6ventail des phases colonnaires hexagonales des systAmes lyotropes

sont souvent strides. Ces striations sont dues I
une

ondulation d'origine thermom6canique des

colonnes. Nous avons mesur6 leur longueur d'onde et leur amplitude darts le m61ange lyotrope
C12E06 + eau. En comparant ces mesures aux pr6dictions th60riques dans le r6gime forte-

ment non lin6aire (notre modAle est une
g6n6ralisation du modble de Singer (17) aux

phases

colonnaires),
nous avons

trouv6 que la longueur de p6n6tration 1= /@ dtait de l'ordre de

40 I (B est le module de compressibilit6 du r6seau hexagonal et If le module de courbure des

colonnes). Cette valeur est en accord qualitatif
avec

celles trouv6es par rayons X (11) ou par la

m6thode du joint de grain (10). Par ailleurs,
nous avons trouv6 que le module de cisaillement

~1

du r6seau hexagonal est environ 5 1 lo fois plus petit que B, en
accord

avec
les exp6riences de

rayons X (16).
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(**) Permanent address: Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18040 Prague
8, Czech Republic.
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1. Introduction

Fan-shaped textures of hexagonal mesophases of lyotropic systems are often striated. The

hexagonal phase consists of parallel cylinders of surfactant molecules, separated by water, which

form a hexagonal array in a plane perpendicular to their axis. These striations are easily seen

through the microscope between crossed polarizers and form spontaneously when the phase is

cooled down. They occur as a succession of black and white stripes which are perpendicular to

the mean direction of the optical axis parallel to the molecular cylinders. These striations have

been observed by numerous authors in lyotropic systems [1-3] and are due to an undulation

or to a zigzag of the columns. These striations are also visible in columnar mesophases of

discotic liquid crystals. They nucleate by suddenly dilating planar samples perpendicularly
to the columns [4]. The columns then undulate above some critical thickness variation with

a well-defined wavelength. This mechanical instability can be analyzed as in smectics [5] and

results from a competition between the compressional energy of the hexagonal array and the

curvature energy of the columns. From the measurements of the undulation wavelength as a

function of the sample thickness, Gharbia et al. [4] found that the apparent curvature elastic

modulus of the columns Kapp was anomalously large in discotic liquid crystals, I.e., 6 orders of

magnitude larger than in usual liquid crystals like smectics or nematics. They found a similar

value by measuring the threshold of column buckling under compression along the columns [6].
A possible explanation for this unusual behavior was given by Prost [7] by assuming that there

exists a large density of column entranglements. These defects could make the system stiffer

at large scale on condition that they do not move by permeation during the buckling process
(that assumes that the frequency is large enough). These defects could also be responsible for

the solid-like Rayleigh scattering recently observed in discotic mesophases by Gharbia et al. [8].
It could also explain the presence of an apparent shear modulus C44 parallel to the columns

which is two orders of magnitude smaller than the compressibility modulus of the hexagonal

array [9].

In order to complete these results, we recently measured the curvature modulus K of an

isolated column. This measurement was done by estimating the energy of transverse edge
dislocations [10]. This purely static measurement showed that, at small scale (within 1 ~lm), K

has an usual value (of the order of 10~~ dyne as in nematics or smectics), both in thermotropic
and lyotropic systems, in agreement with X-ray measurements ii I].

In this article, we analyze the mechanisms of formation of the striations which form spon-

taneously when a planar sample of a lyotropic hexagonal mesophase is slowly grown from its

isotropic liquid (for the phase diagram, see [12]). These undulations of the columns are due

to thermal effects, I-e- both to a density jump at the phase transition and to a decrease of

the lattice parameter when the temperature decreases [13]. A similar explanation was already
proposed by Petrov and Durand [14] in lyotropic lamellar systems to explain the spontaneous

undulations of the layers when the temperature changes. The main difference with previous
buckling experiments in discotic liquid crystals is that, now, the dilation is two-dimensional,

in the plane perpendicular to the columns. Also, it is imposed very slowly so that the system

remains very close to its mechanical equilibrium at zero-frequency. Our purpose is to show that

the typical wavelength of thermal undulations which are observed in the non linear regime (I.e.
when columns form zigzags, far from the critical threshold) are compatible with our previous

measurements of K in lyotropic systems, without resorting to some abnormal elasticity.

The plan of the article is as follows. First, we present experimental measurements. Second,

we show how to calculate the wavelength, first in the linear regime (threshold) and then in the

nonlinear regime when zigzags form. Finally, we discuss our results.
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2. Experimental

The system chosen is the binary mixture C12E06+water at the azeotropic concentration (49.6%
by weight of polyoxyethylene glycol) II 2,13]. Samples are prepared between two glass plates and

are filled by capillarity in a moist atmosphere. They are sealed with an epoxy glue (Epotecny
Luxtrak LCR 0208). Their thicknesses range between 40 and 180 ~lm. Below 40 pm, the

samples are very long to fill by capillarity (10 mn or
more) and their water concentration

can change. On the other hand, they are very difficult to orient when they are thicker than

200 ~lm. The samples are slowly grown in directional solidification [15] from their isotropic
micellar phase. The maximum usable pulling velocity is close to 5 ~lm/s at the azeotropic

point. Above this velocity, nucleation occurs in front of the interface and samples disorient.

Below this velocity, it is possible to obtain large planar monodomains with all the columns

oriented in a single direction (within 1°) parallel to the glass plates. The surface area of the

monodomains can be as large as I cm~. Nevertheless we performed most of our measurements

on smaller monodomains (of
a few mm~ usually). We also checked that our results were

independent of the size of the domain chosen. In practice, the monodomains are always striated

independently of the column orientation with respect to the growth front. The striations occur

immediately behind the front and their wavelength does not depend on growth velocity and on

their orientation with respect to the front. Consequently, they are not due to some interfacial

instability. Their optical contrast between crossed polarizers increases when the temperature
decreases, so we did our observations a few degrees below the transition temperature. In these

conditions, striations are similar, but much more contrasted (Fig. I). In Figure 2, we plotted
the optical contrast of the striations between crossed polarizers as a function of angle p between

the polarizer and the average direction of the columns (perpendicular to the striations) for a

sample of thickness d
=

150 ~lm. The optical contrast of the stripes between crossed polarizers
is defined to be:

c ~Zag ~Zlg j~)
~

iZag ~ iZig

This quantity was measured in monochromatic light at 1
=

542 nm with a Leitz microscope
equipped with a computer-assisted imaging system composed of a S.I.T. Hamamatsu Video-

camera and a Quadra-700 Apple Macintosh computer. Measurements were done after removing
the condensor of the microscope in order to obtain parallel rays. Figure I shows that the con-

trast changes sign when p changes sign while Figure 2 shows that the contrast passes through

a maximum for an angle pmax of a few degrees. That means that the columns undulate in a

plane parallel to the glass plates. In appendix I, we have calculated Cl as a function of the

maximum tilt angle 9 of the columns with respect to their average direction. This calculation

gives for small angles p and 9:

~~ bp~~c92 ~~~

where the coefficients a, b and c depend on the way the columns rotate within the sample. We

shall see in Section 4 that the columns remain parallel to the glass plates and form a zigzag.
The angle 9(x) that they make with their average direction can be taken in the form:

flsj~ ~T~

#(5~)= fl

~~~~ ~~°~<d)
d~<5~<d

i
X

9 sin (I (1
5~

2

j)

X
d)j d (1- ~) ~

(3)

2
°~<d
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Fig. I. Striations observed in crossed polarizers illumination for different values of the angle q7
between the polarizer and the mean direction of the molecular columns: a) at q7 =

0, the stripes
are

almost invisible and their contrast vanishes; b) at q7 =
5°, their contrast is maximum c) at q7 =

-5°,
their contrast is still maximum but is inverted in comparison with the previous case.

In this expression, X is a dimensionless constant ranging between 0 and I and d is the sample
thickness. Coefficients a, b and c can be analytically calculated in the two limiting cases x =

0

and x =
I. This calculation gives (see appendix A):

a=2, b=c=I for x=0 (4a)

and

a =
7rA4lsin(A4l)[7r~-(A4l)~]

~~~ ~~~~~~~ "~~
~

~°~ ~ ~~~~

~
~2j~~)2~~~2j/~~)

2
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Fig. 2. Optical contrast CL of the striations at 1
=

542 nm as a
function of angle q?. The solid line

is the best fit to theoretical law (2) (equivalent to Eq. (A.11) of Appendix A). It yields 6 CS 4°.

where A4l
=

~~~~~
is the phase shift between the ordinary and the extraordinary rays, An

I
the birefringence (of the order of1.5 x 10~~, see appendix B) and I the light wavelength. The

contrast is maximum and equal to I for

p = pmax =
9 when x #

0 (5a)

~ ~~'~~
7r2 ~~$4l)2 ~°~ ~~~ ~~~~ ~ ~~~~

Coeflicients a, b and c as well as pmax can be calculated analytically for intermediate values

of x (appendix A). In Section 4, we shall show that x is of the order of 0.I or smaller in our

experiments. In this case, numerics show that the optical contrast of the striations is given
within an excellent approximation by formula (2) with a =

2 and b
= c =

I ix
=

0). That

means that the contrast of the striations is maximum when p = pmax =
9, which gives a direct

measurement of angle 9. For example, the best fit of experimental data of Figure 2 to equation
(2) for X "

0 gives 9 m 4°. This is the typical tilt angle of the columns in a zig or in a zag
with respect to their average direction, in the pictures chosen for measuring the wavelength.

Finally, we measured wavelength A of the zigzag in samples of different thicknesses. In

Figure 3a we show the histogram of the wavelengths measured in a 100 ~lm thick sample while

in Figure 3b we plot the average wavelength as a function of the thickness. In this figure, the

size of the error bar is equal to the width of the Gaussian distribution that fits at best the

histogram of the wavelengths. Finally, the solid line in Figure 3b is the best fit to theoretical

law (33) which will be established in Section 5 (A proportional to Vi).

3. Elastic Energy and Linear Stability Analysis

Let u and ~ be the column displacements along ~ and y-axes (Fig. 4). The ~-axis is perpen-

dicular to the glass plates and the z-axis is parallel to the columns. The elastic energy density
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Fig. 3. a) Histogram of the wavelengths measured in
a

150-~lm-thick sample. b) Wavelength A

of the striations as a
function of thickness d. The solid line is the best fit to equation (33) with

I/fi =186 I.

can be written in the form [5]

In
xpression, Bi epresents

the compressibility odulus of the
hexagonal

array and
Bi

2
=

4 B
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x=d
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x=0

Average direction ~
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y

Fig. 4. Definitions of displacements
u

and
v.

The striations are parallel to y-axis.

U~j are given by [5]:

~~~
~ ~ ~

~
~ ~

~~~~

~~~
~ ~~ ~

~

~~~~
~~~~

I 0u 0~ 0u d~ au d~ au d~
~~~

2 by
~

d~ 2 da d~
~

by by
~

dz dz
~~~~

In order to find the threshold of undulation of the columns, we use the same procedure as

in reference [5]. Let ~f be the two-dimensional dilation of the hexagonal array. This dilation

results from the density jump at the transition and from the decrease of the lattice parameter
when the temperature decreases [13]. Since the sample thickness is maintained constant by two

spacers, these two effects produce a net dilation of the hexagonal array. This dilation can relax,
either by climb of transverse edge dislocation, or by forming column undulations in order to

locally decrease the column spacing. In lyotropic systems, the plastic relaxation is ineffective,
certainly because permeation is very difficult. By contrast, undulations or zigzags form very

easily. To calculate the critical dilation ~fc above which they occur, we must specify boundary
conditions on the limiting surfaces. In the following, we shall assume that the columns do not

undulate when they touch the glass plates. Assuming further that they strongly anchor on

glass, we obtain

u=~f~ and ~=~fy at ~=0 and ~=d (8)

where d is the sample thickness.
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In a linear analysis, the displacement field can be taken in the form (harmonic approxima-
tion):

u = ~f~ + X (z) sin(qx~) (9a)

~ =
~fy+Y(z)sin(q~~) (9b)

where q~ =
in order to satisfy boundary conditions (8). A straightforward calculation of the

~

average energy defined to be < pf >d "

/
pfd~, gives:

o

~ ~~ ~~~ ~~~ ~~'~~ ~ ~~
~~~~~

~

~~~~~
~'~~~ ~~

~~~~
~

~~~~

+qllX~ + ~tli A)Y~l
)

Y~
()) ~

Ii 2A)
()) ~

(lo)

A
~ jdX) jdY)

3A
~ ~ ~

3
4 4

3
jdX)~ jdYj~

~

~4~~~~
dz dz

~
4

~~~ ~ ~16~~~ ~16
dz

~
z

where 1
=

~
is the penetration length. To find the limit of absolute instability, we set:

B

X(z)
= uo sin(qzz) and Y(z)

= ~o sin(qzz) ill)

where A
=

27r/qz is the undulation wavelength, and we calculate the minimal value of
~f

for

~vhich the coefficients of the quadratic terms in ~1( and ~( in free energy (10) vanish. These

two terms read:

i~ql + ql 2~tli A)ql
=

0 (in ~ll) [12a)

l~q) + qj[2~f(1- A) + Ail ~f)~] 2~f(1 A)q)
=

0 (in ~() (12b)

The first equation gives the threshold of undulation in the vertical ix, z) plane:

Auc=2fi and ~/uc=

~~~
(13a)

while the second gives the threshold of undulation in the horizontal (y, z) plane:

Avc
=

~@ and
~Tuc = 1~~~~4 i13b)

Because A < I, then ~f~c < ~fuc and A~~ > Au~. It means that undulations first appear in the

horizontal plane with a slightly larger wavelength than in the vertical plane. In the following

we set ~f~~ = ~f~ and A~~
=

A~.

In the system chosen (C12E06+water), I m
101 [10,11] 0.025 < A < 0.075 [16]. By taking

A m 0.05, we calculate i~ m
10~~ and A~ m 2 pm for d

=
75 pm. This very small value of

the critical dilation explains why undulations spontaneously form in the samples when they

are cooled down. Indeed, we know that the dilation coefficient of the hexagonal phase is of

the order of a few 10~~ K~~ [13], so that we expect that the thermal dilation of the hexagonal

array is of the order of10~~ in our experiment. Thus, our measurements are always done very
far from the threshold of instability so that using formula (13a) is questionnable.
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4. Non Linear Regime: from Undulation to Zigzag

As long as ~f < 'fu~, one can assume that the columns only undulate in the horizontal plane.
We shall see in Section 5 that this assumption remains reasonable even when

~f > ~fu~. Conse-

quently, we shall take the displacement in the following form:

i1 = ~fo~
j14a)

~ =
~fy+iljo~)Yjz) j14b)

In the harmonic approximation il(~)
=

sin(q~~) and Y(z)
=

~osin(qzz). With this choice,

we see that il is a dimensionless function of order unity, whereas Y(z) has the dimension of a

length (amplitude of the modulation). Let us emphasize that equation (14b) explicitly assumes

that the columns keep a similar shape in the thickness of the sample.
The local density of free energy reads:

~j~ =
4(1- A)~f~ + 7il§Y~ 2(1 A)~fil~Y( + il~Y( + l~il~Y(~ (is)

where 7
=

2(1- A)~f + Ail ~f)~ m A when ~f < I and ", x" denotes the first derivative with

respect to ~, etc. In this expression, terms like il$Y~ and il~il§Y~Y( have been neglected,

an approximation which can be fully justified a
poiteriori. The riinimiiation of f with respect

to Y and il gives the two following differential equations:

21~il~(zzzz + 4~f(1 A)il~(zz + 27il(~Y il~((( ),z
=

0 (16a)

27Y~il
~

+ [4~f(1 A)Y( 21~((~] il Y(il~
=

0 (16b)

In order to find an approximate solution to equations (16a,b)
we use a mathematical method

developped by Singer in smectics ii?]. The procedure is as follows (see appendix C for detailed

calculations): for a given value of A, we search for the solution Y(z) of equation (16a) in

the midplane ~ =
d/2 in which il,x

=
0 and we keep this form in the whole domain. Then,

we determine il(~) by integrating equation (16b) in which we replace Y(z) and its deriva-

tives by their mean values over the wavelength. Finally, we calculate the mean elastic energy

< E > =
< pf >d>A and we minimize it with respect to the wavelength A.

In general, this problem must be solved numerically. Functions Y(z), il(~) are plotted in

Figure 5 far from the threshold of instability. While Y(z) and il(~) vary like a sinus for ~f/~f~
close to I, they respectively approach a triangle and a trapezium when ~f/~f~~ is large. In this

limit, the columns form a zigzag of constant amplitude in the thickness of the sample, except
in two twist boundary layers close to the glass plates, in which the amplitude of the undulation

vanishes. In the following we call x their relative thickness with respect to the half sample
thickness:

~

~)~~
~~~~~

and 9 the maximal tilt angle of the columns with respect to the z-axis in the middle of the

sample:

9
"

())
"

4~ld/2)Yz(A/4) (17b)

max

The evolution of this two quantities is shown in Figure 6 as a function of ~f. We also plotted
A and the maximum curvature ~t

of the columns:

~t =

(~)
=

il(d/2)(zz(0) (18)
~

max
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Fig. 5. The two functions a) Y(z) and b) lY(x) give respectively the shape of the columns and

the amplitude of their deformation in the sample thickness (see appendix C for the notations and the

detailed calculations).

This figure clearly shows that these quantities quickly reach their asymptotic behaviors when

~i increases. These behaviors can be found analytically (appendix C) and read:

A
=

fiA~
m 1.05A~ (19)

ir

9
=

2fifim2@ (20)

~

/~/
~~~~

~ =

'~~~~ ~~
(22)

These formula are important for many reasons. First, equation (20) gives a direct estimation

of dilation ~i as long as 9 is known, independently of the thickness and of the other physical

constants. For instance, ~i m 1.2 x
10~~ for the value of 9 found experimentally (9

=
4°,

see Sect. 1). This result shows that ~i » ~ic experimentally so that previous formulas are
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=

~~~

as a function of dilation ~ calculated with d
=

100 ~m, ~
=

10 I and A
=

0.05.

usable. Note that equation (20) can be found again very easily by writing that the density of

energy (6) is minimal when U~~ + U~~ = 2~i ~9~
=

0 (on condition that the shear energy
2

and the curvature energy are negligible, I-e- A
=

K
=

0). The same argument was used by
Singer [17] and Somette [18] to calculate the angle of the zigzag in smectics: in this case, the

result IS
=

fi) is different because the dilation is uniaxial. Finally, let us emphasize that

the wavelength does not depend on ~i and remains equal to A~ within 5$lo.

In the following section, we show that these results can be found again from a simplified
model. We only assume that the columns form a zigzag in the sample thickness,

a result

obtained from the Singer model presented in this section. On the other hand, we shall no

longer assume that the columns remain in the horizontal plane.

5. Zigzag Regime:
a

Simplified Model

In the preceding section, we assumed that u =
0 to simplify. We found that the in-plane

undulation rapidly tends to a zigzag above the critical threshold.

In this section, we assume that ~il~i~ is large and we no longer assume that u =
0. In this

case, previous calculations become cumbersome and a simplified model is preferable.
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We first assume that columns form a simple zigzag as shown in the preceding section. In

this limit, columns are rectilinear in a zig and in a zag with a wall of curvature in between. If

the misfit angle of the columns between a zig and a zag is large enough (a few degrees), the

width of the wall (of the order of I over the misfit angle) is much smaller than the wavelength
of the zigzag. In this case, the free energy per unit surface area contains two terms, the wall

energy and the energy of compression and shear of the hexagonal array in a zig or in a zag.
Between two walls of curvature the displacement field can be written in the form:

u =
~ix+@(z)oz (23a)

~ " 'f§ + ~Y(X)9z (23b)

where @(x) is a function which must vanish at z =
0 and x =

d. According to previous
calculations, we shall take:

sin(ij)
0<z<d)

X

@(x)
=

1 d) < x < d (1
)) (24)

sin(I(1-j)j d(1- ~) <z<d
X 2

with 0 < x < 1. The two angles o and 9 are found by minimizing free energy (6) to which the

wall energy is added. With our definition of angles o and 9, the misfit angle between columns

is equal to 2fifi@(x),
so that the energy of a wall per unit length along g equals [19]

We can now calculate from equations (6, 24, 25) the average energy per unit surface area of

the sample:

)
< E > =

Cst 2~i(2 x)(1 A)(o~ + 9~) + (o~ + A9~)
~~~

l

~

+j 1 (x (o~ + 9~)~ +
)

x + (1 x) (o~ + 9~)~/~ (26)
ir

where L is the length of a zag (A
=

2L) and q~ = 7r
Id. Minimization with respect to L gives:

L
=

S~~1~~~
x~/~

l
x Ii Ill ~~~

il~illllll~ (27)

and

£
< E > =

Cst 2~i(2 x) ii A)(a~ + S~) +
1 ~ j

(a~ + 9~)~

~

8

~

+(2x)~/~
~~~ () ~~

(1- X

1 ))j ~~

(o~ + A9~)~~~ (a~ + 9~)
X X

(28)
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Minimization of this function with respect to x, 9 and o can be done numerically using
Mathematica. This calculation shows that a =

0 at the minimum which means that the

columns remain parallel to the glass plates.
In order to compare this model with the previous one, we calculated 9, x and A as a function

of ~i for d
=

100 ~m by taking 1= 10 Ii and A
=

0.05. We found that for ~i > 10~~,

A m (1.020 + 0.007)A~ (29)

9 m (1.92 + o.01)@ (30)

x m (1.071 + 0.006) '~~ (31)
'f

~ =
(1.84 + 0.021'~ (32)

These results are in good agreement with the previous model within 5%. Similar computations
have been done for other values of the thickness and confirm that the wavelength A is given
within a very good approximation (5%) by its expression at the threshold, namely

Am
~@ (33)

in agreement with equation (19).

6. Discussion

We can now estimate the ratio I/fi from the best fit of experimental data of Figure 3b to

equation (33). We obtain: ~
~~~~ ~ ~~~ ~

By taking the extreme values of A given by X-ray experiments of Clerc [16] (o. 025 < A < 0.075)

we get
1

=
(40 + 20) I

This value is of the same order of magnitude as that given by X-ray diffraction (I
m 20 I) [16].

On the other hand, it is larger than the value (I
m 6 I) which we found previously from the

measurements of the energy of the dislocations. Several factors could explain this discrepancy:
first, wavelength measurements have been done a few degrees below the transition tempera-

ture whereas previous experiment was performed at the transition temperature. Second, the

previous estimation was obtained via a dislocation l~iodel which we know to be imperfect, in-

sofar as there is no precise calculation of the core size and of the corresponding core energy.
Finally, we are not completely sure that the columns do not glide on the glass plates or that no

screw dislocation nucleates: such phenomena would increase the wavelength so that I should

be smaller than the value given in this article.

Consequently, the single, but important conclusion, that can be stressed from all these

measurements is that I is comparable to the columns spacing. We also emphasize that the

present measurement is nonlocal, in contrast to previous ones (dislocations and X-rays) that

were performed at a submicrometric scale, That means that columns are not correlated at large
distance in the static limit.

One could ask whether the same conclusions can be drawn in thermotropic columnar meso-

phases. So far,
no definite answer can be given because thermal striations do not appear so
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Fig. 7. a) Disposition of the polarizer and of the analyzer with respect to the columns and to the

coordinate axes; b) Definition of the two angles fl and §5 characterizing
an

elliptically polarized planar

wave.

easily in thermotropic systems as in lyotropics. In fact, we did not observe striations in planar
domains grown in directional solidification. A possible explanation would be that stresses

generated by a very slow dilation of the hexagonal array relax in thermotropic liquid crystals
by permeation or climb of transverse edge dislocations. Consequently, thermal striations are

more difficult to produce in these systems than in lyotropic liquid crystals in which plastic

stress relaxation is very slow (several months are necessary for the striations to disappear:
this is perhaps due, in part, to the fact that the samples dry a little in the same time). A

possible experiment in discotic liquid crystals would be to dilate planar samples at different

velocities, in order to test the role of frequency and of plastic processes in the determination

of the elastic constants. By contrast, similar experiments are likely to be very difficult to do in

lyotropic systems because of the difficulty to prepare planar monodomains ~vithout pre-existent
undulations.
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Appendix A

Optical Contrast of the Stripes Between Crossed Polarizers

In order to calculate the optical contrast of the stripes between crossed polarizers, we assume

that the columns are parallel to the glass plates and form a zigzag. Let #(z) be the tilt angle
of the columns with respect to the z-aiis and

q~
the angle between the polarizer and the z-axis

(Fig. 7a). For simplicity, we assume that

9sin(ij) o<x<d)
#(z)

=
9

~

d) < z < d (1- (A.1)

9sin(f(1-()j d(1- () <x<d
X
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In this expression, X is a dimensionless factor ranging between o and 1 and d is the sample
thickness. At x =

o, the light is linearly polarized. On the other hand, it becomes elliptically
polarized in the sample because the optical axis rotates along the x-axis. In this case, the end

of the electric field E traces out an elliptical path in time which can be described by two angles
and fl (Fig. 7b) such as

Ez(x)
=

cos(fl) cos(fl) cos(wt) sin(fl) sin(p) sin(wt) (A.2a)

E~(x)
=

cos(fl) sin(@) cos(wt) sin(fl) cos(fl) sin(wt) (A.2b)

It can be shown [20] that o and fl are solutions of the two following differential equations:

~()~
=

tan(2fl) cos(2fl 2#) (A.3a)

~(~~ =
sin(2fl 2#) (A.3b)

with boundary conditions

fl
=

o and
= q~ at x =

o (AA)

Close to the onset of instability, X "
and angle 9 is very small. In this limit, the equations

(A.3a,b)
can be solved analytically by assuming that p is small. We find:

fl + fl
=

A cos(
~~

+ lh) + B cos(q~x) + C sin(q~x) (A.5a)
d

fl fl
=

A sin( + 4l) + D cos(q~x) + E sin(q~x) (A.5b)

and

~
"

~
" ~2~~(j(~2' ~

"
~~

" ~/~))(~2 (~'~~)

A cos lh
= q~ + D, A sin lh

= q~ D (A.6b)

with q~ =
x/d and A4l

=
2xdAn Ii. From these formulas, we calculate:

fl~~t
=

fl(x
=

d)
=

Dsin(A4l) + q~cos(A4l) (A.7a)

fl~~t
=

fl(x
=

d)
=

D [cos(A4l) + ii
q~

sin(A4l) (A.7b)

which allows us to find E~~t from equations (A.2a,b). With the electric field projection onto

the analyzer being given by:

E$~
=

El~~ sin(v7) E]~~ cos(v7), (A.8)

we thus obtain the light intensity passing through the crossed polarizers:

ILt
-

< Etut >~
=

Io v~ Sin ll~) ~i~ll~l~~ CDS
ll~ II

~

(A.9)

and the zigzag contrast between crossed polarizers:

~~ ~~ ~~

i))~~
+

i))~~~

~ ~

~~~

A4~)~i~i()) ~

+

~ll~~l°S~
ll~l ~~

~~~°~
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Fig. 8. Optical contrast Cl
as a

function of angle §J between the polarizer and the average direction

of the columns for different values of parameter x (d
=

150 ~m and 0
=

5°).

The optical contrast can also be exactly calculated when x =
o. It reads:

ci (x
=

i)
=

nil [iii iii
~ till Ill i

ill "

~~19~
~~~ ~~

By contrast, numerics are necessary for solving equation (A.3a~b) for intermediate values

of x and large values of angle q~. For example, we give in Figure 8 different curves Cl (x, v7)
obtained by taking 9

=
5° and d

=
150 ~m. We see that Cl (x)

" Cl (x
"

o) as long as X < o.2.

Appendix B

Birefringence Measurement

To determine the birefringence of the hexagonal mesophase, we used a planar sample of thick-

ness d
=

150 ~m. We did our measurements in regions of the sample where the amplitude of

the striations was very small (typically S < 1°). As striations tend to very slowly disappear,
the samples are stored, undisturbed during one month.

To determine the phase shift A4l, we measured the transmitted intensity between crossed

polarizers Ii as a function of angle
q~

between the polarizer and the optical axis. If the

distortions are negligible (9 m
0),

we have simply:

Ii
-

Ioisiu(2v~)i~
Sin l~)~ (B.i)

In this expression Io can be determined by measuring the transmitted intensity Ijj between

parallel polarizers at q~ =
0:

Io =1 (v7 =
0) (B.2)
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U)~ = ~i~ + (@~(( ~i@~Y) (C.3b)

U~U~~
= ~i~ + I@~~Y~ '~@~Y( 1@~~@~Y~Y) (C.3c)

Uj~
=

~~ '~~~
@(Y~ (C.4)

The substitution in equation (4) gives the local density of free energy (Eq. (13))

f
=

~~~
=

4(1 A)~i~ + 7@~~Y~ 2(1 A)~i@~Y) + @~Y( + l~@~Y)~ (C.5)

where 7
=

2(1 A)~i + A(I ~i)~.
The minimization of the free energy with respect to Y(z) and @(~) leads to relations (14a)

and (b):

21~@~(zz=z + 4~i(1>- A)@~(~z + 27@(~Y @~(((),z
=

o (C.6a)

27Y~@
~~

+ [4~i(1 A)Y) 21~Y)~] Y(@~
=

o (C.6b)

The problem is no~&~ to find approximate solutions Y(z) and @(x) to this set of differential

equations. The following calculations constitute a generalization of the model of Singer [17] to

columnar mesophases.

Shape of the Undulation Y(z) in the Plane of the Glass Plates

We have already assumed that Y depends only on z, so that we can, without other assumption,
solve equation (C.6a) in the midplane x =

d/2 where @,~ =
0. To take into account the fact

that @ does not remain constant in the whole sample thickness, we give to @ the value @~

different from its value iii the midplane. This constant value @~ of @ remains to be determined

in the following. Y(z) is then solution of:

21~@)Yzzzz + 4~i(1 A)@)Yzz @)(((),z
=

0 (C.7)

By integration, equation (C.7) leads to:

21~@)Yz=z + 4~i(1 A)@)Yz @)Y)
=

fl (C.8)

in which Y(z) is a A-periodic function. Thus, the mean values over A of Yzzz, (z and Y(~
equal zero and fl

=
0. Equation (C.8)

can be integrated again:

l~@)Y)~ + 2~i(1 A)@)Y) ~~Y(
=

Ez (C.9)

in which Ez is a constant. Setting

@c(z
"

&ip(S) (C.10)

with s = zqz /2, equation (C.9) becomes

p2(
" Ez 2p~ + p~ (c.ll)
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with

qz =

~
(C.12)

a
=

2fifi (C.13)

and ez =
Ez /~i~(1 A)~. For convenience, we rewrite equation (C. ii) in the form:

%ez
2p2 + p4

~~ ~~ ~~~

where we have chosen p =
0 for

s =
0 (I.e. z =

0). One can see that 0 < p(s) < /fl where

(-
=

1- /fi (C.15)

is the smallest root of the equation ez 2p2 + p~
=

0 with 0 < ez < 1. Denote that, for

p =

f,
s takes the maximal value

1
1 dp I

W dp
~~~~ /

ez 2p2 + p4 / ~/((+ P~ ((- P~)

=

~~~ ~~
=

K
~~

(C 16)/$
o

~ /$ (+
(1 " sin t)

(+

where K is the complete elliptic integral of the first kind and (+
=

+ @/. Finally, the

shape of the undulation is determined by integrating p(s):

jz ~j zoz/2
@~Y(z)

=
@~(z(z )dz C

=
p(s)ds C

o qz o

/j P(zoz/2)) ~ ~~

q~ ~ ~~ ~p2 + p4
~

i"Ln Ii
~~j c (c.17)

where C is a constant. Equations (C.15) and (C.17) give a parametric representation of the

shape of the columns for 0 < z < A/4 (Fig. 5a). indeed, for s =
0 we have p(0)

=
0 and

p'(o)
=

/T. At this point,
~~

=
o and the curvature ~ is maximal and given by

/Jz

32~
q j

~ = j =
@(zz

=

alp,s
=

2@~i(1 A)fi (C.18)

For s = smax we have p(smax)
=

/fl and p'(smax)
=

o. Thus, the curvature of the columns

equals zero and the inclination 9 of the columns is maximal and given by

tan(9)
=

)
=

@Yz
=

2@ A)(- (C.19)



300 JOURNAL DE PHYSIQUE II N°2

The mean value of Y(z) over the wavelength A being equal to zero, C equals the amplitude
of @~Y:

~ ~~~ ~ fi~
~~ ~~~

The wavelength A can be rewritten in the form

A
=

~~~~~
=

~
r(ez) (C.21a)

qz qz

with

T(Ez)
-

iK Ill
(C.21b)

Thus, ez controls the shape of the columns since the maximal curvature and the maximal tilt

angle 9 of the columns increase with ez. When ez -
1, the columns form a zigzag in the

midplane. By contrast, when ez -
0, they undulate following a sinusoidal law. Indeed, for

small ez

s =

~ ~~~~ dP 1 j4P(S) dj 1 ~

/
° ~z 2P~ + P4

~ 2
o

ww " 5~~~~ (/§(S)) (C.22)

and

~
~~~~ "

i ~~~~~~~ ~~~ ~ ~~ ~~'~~~

In conclusion, we have determined the solution Y(z) to the differential equation (C.6a) in

which we have neglected the term 2A@~~Y. Nevertheless, it is possible to take approximately
into account this previously neglected tirm by correcting the undulation wavelength. Indeed~

assuming @Y is a periodic function of wavelength ~~, @Y
= w (i~~~), we obtain after

qz 2

substitution in equation (C.6a):

(21~ d~) ()
)~ 4~i(1 A) (~ )~ + ~~~

=
0 (C.24)

where d is a length related to the shape and to the amplitude of w. The last term in equation
(C.24) was previously neglected. To calculate §, we neglect this term in equation (C.24) and

we take for qz its value given by equation (C.12). It yields

qz =

~
=

4fi(C.25)
2

This relation gives the unknown quantity 21~ d~. Then, we replace 21~ d~ by its value in

equation (C.24) and we solve it in qz. It gives:

qz =

@~ 1
+

fi~
(C.26)

'f

~ ~

We will use this expression of qz in the following computations. This correction to qz allows

us to find again the threshold of instability and to describe approximately the solution in the

weakly nonlinear regime.
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Amplitude Modulation @(x) in the Thickness

An approximate solution flf(x) can be found by solving equation (C.6b) in which Y(z) and its

derivatives are replaced by their mean values over the wavelength:

27 < Y~ >A flf
~

+ [4~i(1- A) < (( >A -21~
<

((~ >Aj @- < (( >A flf~
=

0 (C.27)

Its integration gives

[27 < flf)Y~ >Aj (('~ + [4~i(1- A) < flf)Y( >A -21~ < flf)Y(~ >Aj
())

c

~

c

~

(( < flf)Y(
Aj ())~

=
E~ (C.28)

c

where E~ is a constant. In the following, we set

~/~
= u

f(t) with t
=

~ (C.29)
c

2

Equation (C.28) then rewrites in the form

f2
H

= e~ 2 f~ + f~ (C.30)
2

with

fill < p2 >A -j~ < p~~ >A

u =
(C.31)

W < fl >A

and

~(~ ~ji ~) < p2 >A ~~ < p~~ >A

q =

(
= qz

fi
~

~

' (C.32)

<
/

pds) >A

with
i~ =

l~q]/2~i(1- A) and e~ a constant. Indeed, in the midplane, @,~ =
0 so that

q =
r(e~) Id. The mean values are defined as follows:

< lJ~ >A =

2
< iflfcYz)~ >A

=

~ ~~~p2dz

o

~~z) ~~~~~ ~~~~
r(ejj

~~
~'

~'~'~~ (C.33a)

~ ~~ ~~ ~ ~~~~~~~ ~~
4r(~j~ ~' ~~'~'~')~ (C.33b)

~ ~~ ~~
~~

~ ~~~~~~~~ ~~
~~T~ ~~ 2~'~'~'j~~ ~~'~~~)
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< pds >A "

~~
< (@~Y)~ >A (C.33d)~~

~ ~

(+ (- sin~[9] fcos[9] ~

/ ~/2

~~
(-

~(~z)( ~ ~~ ~~ ~~~~

+

where 2Fi is the hypergeometric function. The last mean value (Eq. (C.33d)) must be cal-

culated numerically. Equation (C.28) expresses the coupling between the undulation and the

finite-thickness effects: for a given value of ez (I.e. for a given value of the wavelength A

(Eq. (3.21))), one can determine e~ ii-e- the shape of the amplitude @(x) within the sample
thickness). For small e~, @ ix) varies like a sinus whereas it resembles a trapezoid as e~ is close

to 1 (Fig. 5). The amplitude of the undulation vanishes close to the limiting glass plates over

a characteristic length Td/2 where T is given by:

where([ =1- Wt.

Density of Free Energy, Minimization and Asymptotic Behaviors

For known functions Y(z) and @(x), the mean density of free energy over the wavelength and

the thickness reads:

(< p~ >A ~~ < p)~
A) ~

< f >A>d= 4~i~(1- A) + 4~i~(1- A)~ (< f( >d -e~) (C.35)
< P >A '

where the definition of < f( >d is similar to the definition of < p§ >A. For a given value of

A, equation (C.21) gives ez( which allows us to calculate the mean'values
over the wavelength

of Y and of its derivatives using equations (C.33a-33d). The next step consists of determining

e~ from equation (C.32) and the mean density of free energy from equation (C.35).
At last, we must minimize < / >A>d with respect to A. This has been done numerically

(see Figs. 5 and 6 in Sect. 4). Nevertheless, asymptotic behaviors for ~i m ~i~
and ~i » ~i~ can

be found analytically:
If ~i m

~i~,
then e~ and ez vanish. In this limit, < p~ >A m

ez/4, < p(~ >A m ez,

< pds >A m ez /16, r(e~
m x

/2 and r(ez
m x

/2. Substitution in equations (C.21) and~~
(C.32) gives again the threshold of instability ~i~ and the corresponding critical wavelength A~.

If ~i » ~ic, then ex and ez tend to 1. In this limit, < p~ >A " 1-
~~,

< p~ >A *r(ez) '~

~~

,

< p~ >Am

~~
and < f( >A m

~~
As the columns form a zigzag,

3r(ez) 3r(ez)
>

3r(e~)

we find geometrically that <
fpds)~ >A "

~~~~~
Then, introducing these expressions in

48
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equation (C.35), it is easy to show that the wavelength is given by:

A
=

~~ ~~~

A~. (C.36)
~

The maximal curvature ~
and the maximal tilt angle 9 of the columns are given by equation

(C.18) and (C.19) with ex =
1 and ez =

I. The relative thickness of the twist boundary layer

x =

~T
over which the amplitude of the undulation vanishes is then given by:

2

~
i/2

~~
~ ~2/~ /

~~~~~
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