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PACS.47.27Gs Isotropic turbulence; homogeneous turbulence

Abstract. We show that the random character of turbulent flows allows to define a quantity
conserved along the length scales which we call the temperature. The corresponding "canonical"

distribution of velocity differences at a given scale is derived
on very general grounds. It is

compared to the one
derived by Dubrulle [1] and She and Waymire [2] from the hypothesis of

She and L4vAque [3]. Some consequences are drawn and this temperature is shown to be a
rather

easily measurable quantity.

R4sum4. Nous montrons que le caractAre a16atoire des 6coulements turbulents permet de

d4finir une quantit6 conserv6e le long des 6chelles de longueur que nous nommons temp4rature.
La distribution "canonique" correspondante pour les diff6rences de vitesse h une 6chelle donn6e

est tirde d'arguments trAs g6n6raux. Nous la comparons I celle que Dubrulle [1] et She et Waymire

[2] ont tir6e des hypothAses de She et L6vAque [3]. Nous examinons quelques autres cons6quences

et nous montrons que cette temp6rature est une quantitd ais6ment mesurable.

1. introduction

The number of degrees of freedom (NDF) in a turbulent flow is very large. Traditional estimates

[4] even give, for a typical atmospheric flow, a NDF comparable to the Avogadro number. It

is clear that controlling all of them is an impossible and futile program, due to this number

and the sensitivity to initial conditions. Similar situation occurs in thermodynamics. Then

we know that a few number of pertinent quantities exist, the thermodynamical parameters,
allowing a complete description of all the relevant aspects of the system.

Several attempts have been made to transpose the thermodynamic approach to turbulence [5]
but this program, despite some successes, is far to be completed. Recently an experimental
work [6j suggested interesting analogies. The scale at which the turbulent velocity field is

observed would be a thermodynamic variable, its logarithm being the equivalent of a volume.

The variation of quantities with the scale, for a given flow, would be the equivalent of isothermal

variations, indicating a correspondence between the temperature and the Reynolds number.

The goal of this paper is to push this analogy. In particular we shall be able to define the

temperature and to derive the "canonical" distribution for velocity differences at a given scale.

This distribution is shown to be a very simple extension of a recently proposed one [1, 2j, on

(*) associd h l'Universit6 Joseph Fourier
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completely different grounds. Using some experimental hints, we evaluate the temperature
corresponding to usual laboratory flows (Taylor scale based Reynolds number R~ of order

10~). We finally suggest an analogy bet~veen the infinite Reynolds number limit and a zero

temperature critical point.

2. The cascade

For the purpose of the paper being self contained we recall in this paragraph why the velocity
statistics at scale r can be obtained from that at large scale by the repetition of an elementary

process. As proposed by several authors [7-10j, the distribution Pr (iv) of longitudinal velocity
differences fin at the distance r is given by:

Pr (fin)
=

GrL(In o) PL
~~

dln a (1)
£k °

The physical meaning is as follows. If GrL were a Dirac distribution, the distribution Pr

would have the same shape than the distribution at the distance L, within a scaling factor in

the velocity amplitudes. This corresponds to the Kolmogorov 41 picture. Equation II
means

that the true distribution is the superposition of such shapes with different velocity scales:

a = o aL where aL is a characteristic velocity scale at distance L (e.g. aL could be the root

mean square of FL ). Each scaling factor a has a probability GrL (In a). The physical soundness

of such a decomposition has been experimentally demonstrated in reference II Ii.
Now, as remarked in a previous paper [12], the distance L plays no peculiar role and we can

replace it by any scale ri, larger than r:

Pr(6u)
=

Grr~ (In al Pr~
~~

dln al (2)
al al

Using II ):
~

Pr~ (~~) = /Gr~L (In au) FL
~~ )dln ao

al al olao alar

and:

Pr(bu)
=

/
Grr~ (In ai)Gr~L(In ao) FL

~~
dln al dln ao (3)

aide aioo

Comparing with II) we have to identify a and aiao and:

GrL(In o)
=

/
Grr~(In al )Gr~L(In o In al dln al (4)

which means that GrL is the convolution of Grr~ and Gr~L:

GrL
=

Grri 19 GriL

If the transfer process, materialized by the distributions G, is self-similar along the scales, it

is possible to find a series of scales r~

ro=L>ri>.. >rn=r (5)

such that

GrL
"

Grr~_i o o GriL 16)
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with all distributions Gr,r,_~ equal to the same function H. This series allows to define a

function n(r) with n(r~)
=

I, with increments fin
=

n(ri) n(rj) such that:

~~"
~ ~~'~3 "

~~~" j~~

and

G&ni 19 G&n2 " G&ni+&n2 (8)

Equation (8) express the fact that the process G&n is an
infinitely divisible process. Note that

the infinite divisibility recently quoted by She and Waymire [2] concerned the distribution of

In
e where e is an ill-defined quantity: local dissipation or local energy transfer rate depending

on the authors.

The series of scales ri materializes a cascade process. At each step I, I + I, the velocity
scale goes from ai to ai+i = a~ai with the probability H(In ai). Note however that the

discrete character of this cascade is artificial, and the step size can be arbitrarily choosen: no

experimental signature of a particular step size has never been reported.

3. Definition of the Temperature

We shall now derive the shape of GrL on very general grounds, defining the temperature as a

quantity independent of the scale when some statistical equilibrium is reached in the cascade.

As remarked above, GrL In ' gives the probability to "observe" a characteristic velocity
?L

a at scale r, the value aL for the scale L being fixed. As in thermodynamics we shall consider

the logarithm of this probability for dealing with additive quantities. This logarithm, as G,
depends indeed on the scales r and L, on aL and

a. For finite Reynolds number R~ it also

depends on the kinematic viscosity of the fluid. Being an undimensional quantity, the logarithm
of the probability depends only on undimensional combinations of the above listed variables

(Buckingham's theorem [13]). These are three, which can be chosen as:
~, ~, '

,

where q is
q q aL

the Kolmogorov dissipative scale
~

m
R(R

:

n

In GrL lln
'

=
Q ~, ~, ' (9)

L~ Q
n

L~

Note that in the invicid limit (R~
-

cc), Q should only depend on

~
However this limit

r

can be singular: for a general discussion of the second kind self similarity see Barenblatt [14j.
As remarked in Section 2, L should play no peculiar role. We can consider the probability

to observe a characteristic velocity a2 at scale r2> given a value al at scale ri Its logarithm is

lnGr~r~ ln'~ =Q ~~> ~~>
~~ (10)?i~ ~n

n
?i~

Let us now consider two adjacent ranges of scales [ri r'] and IT', r2]> and let us call a' the

characteristic velocity at scale r'. The value of Q ~~
~~>

~~
is dominated by the case

iJ n

1~

where a' makes maximum the following sum:

~li' l'l) ~~ll' I' ill
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which is the logarithm of the integrand in the convolution equation (4). It corresponds to:

~~
j,,, Q

Ii [)
=

~~~

,~j
Q II i> Ii)

-

I
iii~

n ) a'
,1

We introduce the quantity T by analogy .~ith thermodynamics where would be the entropy

and In
'~ the energy. The above reasoning is valid for any adjacent range of scales. Consider~?i

thus three successive ones A
=

[ri> r2]> B
= [r2> r3] and C

=
jr3, r4]. The quantity T, defined

by (11) as the inverse of the derive,tive of Q, is the same for A and B, and for B and C. It

is thus the same for A and C and for any interval of scales, if the considered turbulence is in

statistical equilibrium.
If the two intervals are very different in size, say [L. r + dr] and jr + dr, r], the largest

one can act as a "thermostat" for the other. Namely In
'~

can change in large proportions
ar+dr

without really changing ln'~~~~
aL

Then Q ~ ~ ~~, ~, '~
can be approximated by its linear part and

iJ "I

r+dr~

Gr r+dr(x)
« exp

~ (12)
T

wherex=In '~

ar+dr
Two important remarks must be made at this stage. We ha~~e first to normalize this proba-

hility. This asks for a maximum value of x
if T is positive, or a miniirum value if T < 0. Let

us con~entrate on T > 0, the transposition to T < 0 being easy, and call xo this maximum

value of In
'~

The normalized version of the above probability distribution is
ar+dr

F(x)
= exp

~~ ~°~ ix < xo)
T T j13)

=0 (x>xo)

The second remark is that, when dr goes to zero, the probability for ar+dr = or goes to I.

Thus:

~~ ~+~~~~~
i a) ~~~~~ ~ ~ ~~~~~

=
Hj~)

where a goes to zero when dr goes to zero and is proportionai to it for sufficiently small dr [15].
Using for Gr

r+dr
the notation H; we want to recall, as in Section 2, that we can divide the

whoie interval IL, r] into n intervals such that:

GrL
=

H°~ (14)

Going to the Fourier transforn~s, equation (14) gives:

nrL
#

it~
=

~~ ~~
ii + a

t)" Gt expjnajt I)j jls)
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Clearly a and n depend on the choice of dr, but na should not. We shall use the notation:

na = s (16)

s is an intrinsic measure of the depth of the cascade. We can expand (15):

~l
~ -s

pi
~~~ ~

~
il

which allows to Fourier transform back:

GrL
=

e~~ ~j ~ F@~ (17)
~

(such
a distribution corresponds to a compound Poisson process [16]).

Now the possibilities are twofold. Either [xo( is much larger than T. Then Fix)
can be

approximated by a Dirac distribution centred on xo, as its width, of order T, can be neglected.
Equation (17) corresponds then to a pure Poisson process (the distribution of a is log Poisson).
The situation is that proposed by She and LevAque [3j, and the coefficient fl they introduce,
whose logarithm is the quantum in In e, is simply exp 3xo. This is what we could call the

extreme quantum case [2]: xo is the quantum in In a.

The opposite situation is that of interest for us. This is when [xo( < T. Then we can take

xo =
0, and call this case the "thermodynamic" case.

We shall see later that T should go to zero when the Reynolds number goes to infinity.
If xo> which should be determined by the most singular events, is different from zero and

not "temperature" dependent we could observe a cross over from the thermodynamic to the

quantum case, when raising the Reynolds number. We consider the intermediate case in the

Appendix. Here we focus on the thermodynamic case where:

1 ~«/T
~ ~ ~

Fj~)
=

T

0 x > 0

F@"(x)
=

/ /
d"xi 6

~ ~j
~~

jj
F(x~)

1 i=i

~n-1
~~~

=

in I)I T"
~ ~ ~ ~

0 x > 0

the b~distribution ensuring that the sum of x~ is x. Thus:

~n~n-I

G~ ~j~j
=

~ ~
~

n!(n I)! T"
~~~~

~ ~ ~
j18)

0

~

X > 0

4. Some Consequences

Two types of measurements give an insight in the distributions GrL. A series of studies have

looked at the variance of In
a

which measure the depth of the cascade and its evolution with

r. An other type of studies have been initiated by Ruiz Chavarria et al. in order to check

the predictions of She and LAvAque and aim to determine the shape of the distribution GrL.
In this paragraph we calculate the quantities allowing a comparison with these experimental
results.
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4.I, THE DEPTH oF THE CASCADE, The variance of In '
is calculated in the Appendix.

aL
In the thermodynamic case (Eq. (18)) it gives:

2

< 6 In
'

> =

2sT~ (19)
aL

The dependence with the scale
r is entirely contained in s. The consequence of the varia~

tional approach for this quantity is discussed in references [5,9j and the experimental tests are

examined in references [6,9,17j.
Let us make here a remark. Following the same process than for Q (the logarithm of

probability) we can infer that the difference s(ri s(r2) depends on the three non dimensional

parameters: ~~, ~~ and the Reynolds number (or T). But, as remarked after equation (9), in
iJ iJ

the infinite Reynolds number limit, this difference only depends on the ratio
~~ s(ri -s(r2

=

r2

is
~~

From the definition of is we have the obvious property:
r2

bsl~~ +6s ~~
=6s ~~

~2 T3 T3

which implies that s depends linearly on In r. This gives the Kolmogorov Obukhov law for

< (bln a) >:

< (bln a)~ >
= p In

~
(20)

r

and this is also true within all the multifractal models which explicitly refer to this infinite

Reynolds limit [10j.

4.2. THE STRUCTURE FUNCTIONS. Here we must make the comment that what follows is

only an approximation of a more complex situation. The non zero skewness of the distributions

Pr of iv introduces a shift for the component PL
~~ ~~ of the decomposition, equation (1).

a

The consequences are discussed in [9] and the shift is experimentally observed in [11]. However

these consequences concern mainly the odd part of the distribution which allows to neglect
them for the symmetric structure function:

Sp(r)
=

< lbUl~ >

already considered by Benzi and coworkers [18]. Neglecting this shift and using equation (I)

we have:

< [bu[~ > =
GrL In ' ' dln

a

~~'~
PL

~~~~ d~~'~L~ ~j~~
?

~

~ ?

'~ ~~ ~~~ ~
l pT ~~~~

(see appendix)

where Bp
=

[x[~ FL lx) d~ is a non dimensional number independent of T and r.
a~

/
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The consequence, which can be extended to the quantum case, is that vai"ious structure

functions behave as power laws of each other. For instance:

iv ~ iv ~ ~

< >c~ < >

~~

OL OL

with

~~ ~~ ~~~~

This is the extended self similarity recently proposed [18] which is thus equivalent to the

infinite divisibility of the In
a

distribution (not the In e
one). We find here that the exponents (j

are T dependent while they are generally considered as universal. However, a recent compilation

[19] shows that a large range of T is compatible with the experimentally observed exponents
centered around T

=
0.05.

Another consequence of equation (21) is the linear dependence of < (bln a)~ > with the

logarithm of the structure functions:

~ ~~~~ '~~ ~ ~~~~ ~~~ / ~~~
~ ~~

~ )~3 ~

=
-~t' In

~ ~~~~ ~ (23)
a~B3

At large scale < bu~ > « r. If we assume the same scaling for < bu~ > and < (bu[~ >

(again
an approximation)

we have p'
ci ~t (Eq. (20)). Note that ~' is linear in T for small

T, which is coherent with the thermodynamical interpretation of a recent experiment [6]. The

experimentally observed ~t' seem to be slightly Reynolds dependent, with an average value

again in agreement with T ci 0.05 [20, 21].

4.3. THE SHAPE OF GrL In order to check the She and L4vAque conjectures, Ruiz Chavar-

ria et al. [22] proposed to look at the quantity:

In the frame of the She and LAvAque theory, the graph of yp + I versus yp is a straight line

with a slope smaller than [22]. Using equation (21) gives for the thermodynamic case:

~~ (l ~~i~(1/~~~ ~)T) ~~~~

Developing in powers of T, we have:

~~~~ ~~
=

1 3T + 3(p + 1)T~ (26)
YP YP-1

Obviously, the graph of yp+i versus up is not here a straight line which would correspond
to a pure Poisson process. But the variation of the slope only appears on the second order

term in T. Comparing (26) with the value proposed by She and LAvAque ((2/3)~/~ = 0.88),
we again obtain T ct 0.05 as an order of magnitude.
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4.4. THE REYNOLDS NUMBER DEPENDENCE OF T. All the above considered quantities are

generally assumed universal, while we find a T dependence which implies a Reynolds number

dependence. This raises the problem of the Reynolds number dependence of T. For instance,
the compilation above mentioned [19j shows that for 100 $ R~ $ 3000, the error bar on (6 is

less than 5% ~vithout apparent trend with R~:

1.67 $ (6 $ 1.83

However T is proportional to the correction to the Kolmogorov 41 theory,

0.3322-(620.17

almost a factor 2 of possible variations. From the observation that the shape of the velocity
gradient distribution seems independent of R~ (a point which is always under consideration,

see [17,23]) we infer that sT~ for the dissipative scale is Reynolds independent and, following
(23), that ~t' and T are inversely proportional to In R~:

« ln
~~

(27)

If R~ is of order I, the corresponding variation of T and of 2 (~ is within the error bar.

This simply shows that the (p are not the good quantity to measure for evaluating T. The

previously mentioned ones are much better.

Let us
finish by an amazing remark. The infinite Reynolds number situation has often been

compared to the critical point [24] of a second order phase transition. In statistical physics
there are several examples of zero temperature critical points (for instance the one-dimensional

Ising model). The important thermodynamic quantities (susceptibility,...) then behave as

exp
~

where 6 is some characteristic temperature. This is exactly the behaviour which is
T

assumed by (27) for R~.

5. Conclusion

The main point of this paper is the following
: in a developed turbulent flow, the random

character of the (energy) cascade process results in the conservation of a quantity along the

scales. This quantity is Reynolds dependent and we call it a temperature by analogy with

thermodynamics.

We have shown how this temperature determines the distribution of turbulent intensities

at each scale. This canonical distribution (again so named by reference to thermodynamics)
does not involve the quantization emphasized in a recent work [2]. We claim however that

it is coherent with all available experimental data. As for the exponent (p often invoked to

characterize developed turbulence, we predict that they are Reynolds dependent, but in a very
weak way, which makes them a very poor characterization. Indeed, the best characterization

comes from the depth of the cascade, defined as the width of the canonical distribution, and the

curvature of the (p, which may be directly evaluated. Both measurements allow an estimation

of the temperature. Finally, let us note that the present theory gives results which differ in

many ways from generally accepted ideas. These points can be experimentally checked and

will provide us new insight in the statistical properties of developed turbulence.



N°1 THE TEMPERATURE OF TURBULENT FLOWS 113

Appendix

When ~o # 0, F(~) is given by (13) and

(~-n~o)"~~
~-n~

F@"(x)
=

T"(n 1)!
~ ~ ~ ~ ~~°

0 x > nxo

Let us note < >n the average with the distribution F~~ We have:

<x>n= <x-nxo>n+nxo=n(xo+T)

< x~ >n =
< (z nxo)~ >n +2nxo < x nxo >n +J1~x(

=
n(n + I )T~ + 2n~xoT + n~x(

Thus:

, ~n
< In- >

=
e~~ ~j

j n(xo + T)
=

s(xo + T)
aL n.

< ~In')
~

> =
e~~ ~j ~

(n(n I) (T + xo )~ + n (2T~ + 2xoT + x()j
L J1.

=
s~(xo + T)~ + s ((xo + T)~ + T~j

and:

< (61n a)~ >
=

<
ln

'
~

> < ln
' >~=

s ((xo + T)~ + T~j (28)
aL aL

,
P

The moment < [6u[~ > are proportional to < >
= < eP~ >. ive have:

?L

<eP~ >» =
<

eP(~~"") >n eP"~°

eP"zo
~

- in i~. ~n»
fix nxo)»i e<P+T> <~»~°> dx

eP~° "

l + PT

and:

~

~L ~

~ ~ ~
~ ~l~~T~

~

~~~ ~

~
1~~T~ ~~~~

The consequence is that the various moments < [6u[~ > behave as power laws of each other.

This is the extended self similarity [18j which is here derived from first principles, within the
warning quoted at the beginning of Section 4.2.
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