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Abstract. — The observation of chaos in fluidization have been claimed by some authors. We
analyze the dynamics of a gas-solid fluidized bed and demonstrate that the dynamics is not
chaotic but noisy. The random process is studied by using the Hurst analysis in order to look
for long-term correlations in the signals. The dynamics may then be modelled by a fractal
Brownian motion process.

1. Introduction

Though now widely used in industrial processes, fluidized beds are still somewhat not under-
stood from a fundamental point of view. In particular, fundamental approaches are limited by
the complexity of the equations involved, and statistical approaches, which are very useful in
practical cases, can only give us approximate values. In recent vears, many researchers have
taken an interest in the chaotic behavior of fluidization. The reason for this interest is probably
in part linked to a fundamental property of chaotic systems, 1.e. the main features of the un-
derlying dynamics can be retrieved from a single well-chosen time series. Nevertheless. there is
no general agreement hetween experimenters on the subject: Van Den Bleek and Schouten [1]
claim that a Auidization process can be characterized by a low-dimensional strange attractor,
but Tam and Devine [2] claim exactly the contrary. Such contradictions may be due to the
fact that phenomena grouped under the same vocable “Auidization” can actually take quite
different forms (slugging or bubbling, etc...), and, therefore, the presence or absence of chaos
may sensitively depend on the actual experiments under study.

But, on the other hand, as emphasized by Provenzale et al. [3], it is now recognized by many
experimenters that one method is not sufficient to establish evidence for chaos, and that the
simultaneous use of several methods can be required to avoid incorrect conclusions [4]. For
instance, as far ag the evaluation of correlation dimension is concerned, Rapp et al. [5] showed
that filtered noise can seemingly behave as low-dimensional attractors and the same phenom-
ena have been observed by us with an autoregressive random process. Therefore, invoking
a measured small correlation dimension to conclude about the existence of low-dimensional
chaos may be misleading. With other methods. such as the computations of the Lyapunov
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Fig. 1. Experimental set-up. (1) air supply. (2) sub-micronic filters, (3) rotameter, (4) mercury,

(5) vacuum chamber, (6) dessication, (T) distributor, (&) fluidization, (9) pressure taps.

exponents (or even of the largest Lyapunov exponent), experimental conditions can prevent
the algorithms working, and do not give any interpretable results in many real cases (for which
noise is important). Thus, the correct attitude when dealing with problematic data is to ex-
amine experimental results by several means, using a battery of tests. before establishing a
diagnosis of the chaotic or random nature of the data. Obviously, this heuristic attitude is
very different from that in the case of well-known chaotic data.

Our aim, in this paper, is to determine the nature of signals recorded from a fluidized bed,
and, in particular, to establish whether our data result from a chaotic process or not. We
therefore nse several methods of investigation, and among them. the method of surrogate data.
discussed by Theiler [6] in 1992, This method allows systematic comparisons between noise
and chaos. Using this method as well as other more classical methods, we will conclude that
the data from our fluidized bed arve not the results of a low-dimensional chaotic system.

The paper is organized as follows. In Section 2, the experimental set-up and the basic fea-
tures of measured signals are presented. Section 3 is devoted to the description of noise/chaos
distinetion methods. and to their application to some well-known benchmark examples. Sec-
tion 4 is devoted to the applications of the methods of distinction between noise and chaos
to our particular case. Section 5 describes the Hurst analysis, which is a method of charac-
terization of the long-term behavior of signals, and its application to the experimental data.
Section 6 is a conclusion.

2. Description of the Experiments

2.1. EXPERIMENTAL SET-UP. — The set-up is represented in Figure 1. The fluidized bed is
two-dimensional: its inner dimensions are 300 x 500 x 10 mm?®. The walls are in plexiglas, to
allow visnal observation. The fluidization gas employed is air, filtered and dried beforehand
in a dessication column. The parameter is the flow rate of air divided by the distributor area.
also called superficial velocity. The distributor is a porous medinm made out of bronze, thus
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ensuring a regular distribution of the air flow. The static depth of the particle bed is about
240 mm. The fluidized particles are thin glass balls, their diameter being between 100 and
200 pm. We thus have a deep bed (by opposition to shallow beds), belonging to the group B
of Geldart’s classification.

Two specific values of the superficial velocity are important here: the minimum fluidization
velocity (wnr), which corresponds to the state where the drag forces balance the weight of the
particles, and the minimum bubbling velocity (vy,), corresponding to the appearance of the
first bubbles. For the group of beds here considered, v, is nearly equal to vy (% 0.05 m/s),
Le. we cannot in practice distinguish between the incipient fluidization and the subsequent
onset of bubbling instability which appears for an extra very small increase of the control
parameter. This means that one cannot expect to explicitly observe a road towards chaos. On
the coutrary a fully developed chaos (or random process) is reached almost immediately.

After their apparition, bubbles grow by coalescence as they rise, this coalescence process

having been previously extensively investigated [8].
2.2, MEASURED QUANTITIES. In a first step, bubbling being identified as a fundamental
process in the bed, we measured a quantity directly related to this process. Then, we recorded
the appearance and evolution of bubbles at a given point of the bed referenced by its coordinates
(r,z) (Fig. 2). A laser beam source and a photodetector are placed in front of each other.
When bubbles pass in front of the detector, the laser beam attenuation is small, and the
corresponding photodetector signal is high. Otherwise, it is practically equal to zero, leading
to an essentially binary signal, as shown in the figure (after use of a threshold level). From
such a signal, we may determine the transit time t, of bubbles and the delay time ¢, between
bubbles. The whole procedure has been validated by filming the bed, simultaneously recording
the photodetector signal, and comparing the characteristic times tp and ¢., measured from
both the signal and the film. Here it will suffice to say that the analysis of time series built
from successive £,’s or successive £.'s leads to the unambiguous conclusion that the dynamics
is random without any indication of any deterministic components [9].
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fluidized bed signal in the time domain
Fig. 2. Emergence and vanishing time recording of bubbles.

This conclusion should however be softened by considering the following items

1) Measurements based on bubble characterizations are essentially local and, by introducing
some kind of spatial averaging, we may wonder whether a global deterministic component
could not be detected.
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ii) Analyzed time series are discrete and thresholding may have introduced spurious effects
and spoilt some relevant information.

Therefore, it has been decided to measure quantities being both global (i.e. producing some
spatial average) and time continuous, namely pressures. Taps have then been inserted laterally
on each side along the fluidized bed (Fig. 1), so that either the pressure at a given altitude in
the set-up, or the difference of pressure between two given points could be measured. Pressure
measurements are carried out by using a membrane pressure sensor, with a precision of 0.2%
and a time response of 10 ms. Signals are sampled and recorded by using a Sun4 SPARC
workstation. We observed that there was no significant frequency above 50 Hz in the pressure
dynamics. Therefore, as indicated by Shannon’s theorem, sampling frequency should be greater
than or equal to 100 Hz. A sampling rate equal to 200 Hz has then be chosen, producing smooth
curves, without any apparent noise at the visual level.

2.3. EXPERIMENTAL RESULTS. — Fan et al. [10] have experimentally demonstrated that the
pressure fluctuations at a given altitude were due essentially to bubbles crossing at this altitude,
the contribution from distant bubbles being less important than that from neighbouring ones.
We can thus estimate that the recorded signals correspond to global measurements of the
phenomenon, and is representative of the experimental set-up, with a spatial averaging on an
horizontal section.

Typical examples of recordings are shown in Figure 3, for two superficial velocities: the
smallest one is just a little larger than the experimental minimum of fluidization velocity, and
the other corresponds to more than twice that velocity. The only observation possible is the
irregularity of the signal, whatever the superficial velocity. The Fourier transforms of the time
series are broad-band (Fig. 4), and they are typical of fluidization [11-14]. They also present
strong similarities with the spectra obtained for a bubble column [15] (where the particles are
replaced by a liquid medium).

One can define a characteristic frequency by averaging all the frequencies corresponding
to amplitudes greater than 80% of the total integrated amplitude of the spectrum. This
characteristic frequency increases with the gas velocity. This is related to the fact that although
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Fig. 3. - Left-hand differential pressure recordings for two superficial velocities.
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Fig. 4. — Left-hand differential pressure for two superficial velocities: Fourier’s spectra.

bubbles diameters increase with gas velocity, their velocity also increase, eventually leading to
higher frequencies.

From a time series (z,), we reconstructed a trajectory (X;) using the method of delays, with
a lag time p, in a reconstructed phase space of dimension n. Presented results correspond to
a sampling time of 5 x 1073 s, to be compared with the inverse of the characteristic frequency
which is about 5 s. For the dimension calculations later presented, the sampling time has been
varied, i.e. increased up to 2 x 1072 s without modifying the results. Conversely, a sampling
time of 5 x 1077 s may be too short to analyze forecasting errors (see beginning of Sect. 4).

In a three-dimensional phase space, the reconstructed trajectory (Fig. 5) is nearly two-
dimensional. The two-dimensional character of the object is actually not apparent in the figure,
but becomes evidenced if it is rotated on a screen using a graphical AVS system. We did not
detect any periodic orbits nor other regular structures like recurrences, ie. the trajectory
seems essentially desorganized.

Also, in agreement with the two-dimensional character of the object exhibited in Figure 5,
we evaluated correlation dimensions using the Grassberger-Procaccia algorithm (see [16] and
many references in [17]), which we fonud to be equal to about 2. This fact is however not
sufficient to conclude to the presence of a low-dimensional attractor. In particular, we repro-
duced similar results by using the Grassberger-Procaccia algorithm on a time series generated
by autoregressive noise. Therefore, a stochastic process analyzed by evaluating correlation
dimensions may lead to the spurious identification of deterministic chaos. Such a conclusion
has previously been also pointed out by Rapp et al. [5] by analyzing time series generated by
a filtered noise. Due to such a fact, it is likely that some claims about the presence of chaos in
experimental signals, including fluidization, could be incorrect. In some cases, a most reliable
conclusion must therefore be obtained by using noise/chaos distinction techniques exposed in
the next section.

3. Noise/Chaos Distinction Methods

Two techniques are discussed in this section. The first one, relying on the discussion of fore-
casting errors, has been developed by Farmer and Sidorowich [18] and was used by Sugihara
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Fig. 5. 3D trajectory reconstructed by the delay method, p = 3, v = 0.09 m/s, for a measurement
of absolute pressure at point 2, at the right-hand side of the bed.

and May [19] to analyse biological time series, and also by Wales [20] to extract the largest Lya-
punov exponent from a time series. The second one, the surrogate data method. was exposed
by Theiler et al. [6].

Both methods only require the knowledge of a scalar time series and ave therefore well
adapted to the analysis of experimental signals when only one variable is recorded wversus time.

3.1. FORECASTING ERRORS. Ghiven a time series (2,4 = 1....n), the n; first points of the
series are used to predict ny other points. The prediction principle is as follows.

A trajectory is constructed by the method of delays (parameters n, p). Given a reference
point, X;, we estimate a value Zy4p of the first coordinate ryyp of the point X;ir at time
t + T in which T is the time evolution given as multiples of 6¢. Values of T are small when
compared to characteristic times of the dynamics. This is achieved by selecting the m closest
neighbours Xi.....X,, of X;, and by searching for the linear map L which transforms X, to
Ty, fora=1,..., m. The coefficients of the map are found by linear regression (we used a
singular value decomposition technique [27, pp. 52-63]), and ¢4 is then taken as the image
of X; under L.

The forecasting error E(T') is afterwards given by the square root of the averaged sum of
the ny values of |24 — .,l‘H»[l? divided by the standard deviation o, of the no points x4,
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so that the forecasting error magnitude does not depend on the signal’s scale:

V(< (eer = 147)? >)

1
V< lo=<r>)?> )

E(T) =

where the brackets denotes the average on the ny forecasted points.

The behaviour of the forecasting error gives us an indication on the nature of the time
series studied: a forecasting error which increases exponentially with the forecasting time is a
signature of deterministic chaos, whereas a forecasting error which oscillates around a constant
is almost certainly the indication that the time series is uncorrelated noise.

Though interesting and easy to implement, this method has severe limitations, because
it does not allow any distinction between a stochastic process having strong correlations, also
called colored noise, and deterministic chaos. However, by using a very sophisticated prediction
technique, let us mention that it is possible [21] to discriminate between colored noise (power-
law behaviour), and chaos (exponential behaviour).

3.2. THE METHOD OF SURROGATE DATA. — In this method, the studied time series is
compared with NV surrogate time gseries, which are stochastic time series constructed to possess
some basic features (to be defined) shared with the original one. The principle of the test is
that if the studied series and the surrogate ones compare favorably in a sense to be defined
later, then it is reasonable to affirm that the studied time series is random. It can then be
viewed as a realization of the same random process that had generated the surrogate data.
Therefore, if we compute a number representative of each time series (the original and each
surrogate ones), the mumber computed from the original time series must be a realization of
the random process generating the numbers computed from the surrogate series.

In practice, the number computed for each time series is called the discriminating statistic
of the test. It is noted Qp for the original time series, while Q)37 will denote the average of
the N numbers calculated from the N surrogate ones, with oy the standard deviation. The
difference between the studied time series and the surrogate ones is then quantified by a critical
ratio, which is given by:

Qp — Q]
TH

RC =

A very large critical ratio expresses a wide difference between the discriminating statistics
of the original time series, and those of the surrogate ones, i.e. a poor comparison between
them. In this case. when @ is the forecasting error, we reject the hypothesis that the data are
stochastic, and decide that they are chaotic. On the contrary, for small values of the critical
ratio, the null hypothesis denoted Hy has to be accepted, i.e. the original data are stochastic.
From the statistical test theory, the threshold value of the critical ratio is taken equal to 2.
The null hypothesis is then accepted for critical ratios smaller than 2 and otherwise rejected.
With the chosen threshold value, the probability of being wrong, i.e. rejecting Hy (data are
rejected chaotic) whereas Hy is true (data are actually chaotic), is equal to 5%.

The first step of the method is then to construct N random data sets which closely mimic the
tested set. There we used a method suggested by Theiler et al. [22], taking for the surrogate
data time series having the same Fourier spectrum than the original set, with phases shuffled in
the Fourier transform. The resemblance is ensured by the fact that the original and surrogate
time series possess the same Fourier spectrum, and thus the same autocorrelation function,
but the randomization of the phases of the Fourier transform implies the stochasticity of the
surrogate data. We fixed the number of surrogate data sets at A = 40, ensuring a good enough
statistical precision.
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The discriminating statistic of the test might be any number representative of the time
series. Nevertheless, the use of numbers representing a signature of the non-linearity of the
data is obviously highly recommended. Our choice has been the forecasting error which has
the advantage of giving a noise/choas distinction test by itself (previous subsection) and which
is furthermore not computer time-consuming. Other choice could have been a correlation
dimension or a Lyapunov exponent but the significance of these quantities for the surrogate
random signals would be doubtful.

Examples of results are now given for some benchmark numerically generated time series
i) from Lorentz and Rossler chaotic attractors for the deterministic chaotic case, and ii) from
autoregressive processes for the random case. In Figure 6 devoted to the Lorentz system, the
forecasting error increases far more slowly for the tested series than for the surrogate series,
and consequently the critical ratio is high, equal to or greater than 15, much larger than the
threshold value of 2. Therefore, the null hypothesis Hy is rejected and the processed data are
chaotic, as expected.

Conversely, Figure 7 displays the case of a 5-degree autoregressive noise. Then the forecasting
errors are close for both the original and the surrogate data. The critical ratio is smaller or
not significantly bigger than 2, and we may conclude that the original series is generated by a
random process.

3.3. INFLUENCE OF PARAMETERS. —— The number of surrogate sets M has been fixed equal
to 40. This choice is a compromise between statistical accuracy requirement and CPU time-
consumption requirements. Nevertheless, since we usge the forecasting error method to compute
the discriminating statistic, the influence of its parameters has to be investigated. We found
that when n; and n, were sufficiently large to ensure statistical precision, a change in the ny
value has little influence on the result. But ny must be large enough to be representative of the
attractor, and its value thus depends on the sampling rate. For very regular structures, a small
number of psendo-periods is sufficient to ensure realistic precision. We increased the number
of points when working on experimental attractors, because of the increasing complexity of the
latter.

We will not extensively discuss the role of the parameters n and p: it is essentially the
same as for the correlation dimension computation, and is thus discussed by several authors
[23-26]. As a brief summary. let us recall that the embedding dimension must be large enough
to unfold the attractor in the embedding space (Takens criterion). However, the precision of
the computation is affected when the embedding dimension is too large, i.e. we have to search
for an optimal n. Also, the lag time p must be chosen large enough to avoid the trajectory
collapsing on the diagonal, but not too large, otherwise decorrelation of the trajectory vector
components will occur. The optimal parameters were found through & trial and error process.

Furthermore, there must be enough neighbours m to warrant the accuracy of the com-
putation of the forecasting error. Because of the regression techunique used (singular value
decomposition), m must be greater than the embedding dimension n. On the other hand. we
do not possess any theory allowing us to determine an optimal value for m. It can just be
said that the greater the number of neighbours, the greater the accuracy of forecasting, but
that taking too many neighbours will lead us to consider as neighbours points of the trajectory
which are in reality quite far from the reference point and will spoil the computation of the
forecasting exrror, i.e here again we have to search for an optimal value. This effect can be seen
in Figure 8 where we have indicated the forecasting error, for the Lorentz system, for different
ralues of m, the other parameters being kept constant. An optimum (i.e. a minimum) of the
forecasting exror is obtained for m = 50. Nevertheless, though the value of m influences the
forecasting error, the repercussion of this influence on the result of the test is negligible. In
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Fig. 6. -~ Forecasting error, and critical ratio, for the Lorentz process, errors bars are represented by

the symbol (). T is the time evolution given as multiples of 6t.

fact, the effects are quite similar on the forecasting errors of both the studied signal and of
the surrogate data, so that the comparison is not significantly modified by the parameter m.
For instance, we have tested several values of m for the Lorentz process. Whatever m, the
null hypothesis Hy is rejected, i.e. the Lorentz process was found to be chaotic. Conversely,
the same test applied to an autoregressive noise always led us to the acceptance of the null
hypothesis Hy, regardless of the value of m, i.e. the process was found to be random.

We also investigated the effect of noise in the case of the Lorentz system, by modifving
time series with additive noises of various amplitudes (2, 5, and 50% of the amplitude of the
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Fig. 7. Forecasting error, and critical ratio, for a 5-degree antoregressive noise.

process). We found that the surrogate data method did not work in the third case, but was
still valid for the first two cases, which correspond to many experimental situations. Thus, the
method of surrogate data can be considered as reliable and robust with respect to noise and
changes in the parameters values.

4. Application to the Experimental Series

A typical example of the results is displayed in Figure 9. The difference of forecasting errvor
between experimental and surrogate data is small, leading us to the conclusion that the data is
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tap number two, with a superficial velocity « = 0.12 m/s.

Forecasting error, and critical ratio, for a recording of absolute

pressure, on the left, at the
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Fig. 10. — Forecasting error, and critical ratio, for the same recording, sampled at every second point.

not produced by a low-dimensional chaotic system. But, on the other hand, the critical ratio
corresponding to this case is large, due to a very small dispersion around the average for the
surrogate data error (denominator in relation (2)). Strictly speaking, we ought to reject the
null hypothesis and claim for chaos, but the conflict between both conclusions must lead us to
refine our analysis.

Let us remove every second point from the initial time serieg. In this way, the sampling rate
is now divided by two. We apply the method of surrogate data on this new time series, without
modifying any parameter. Then, the whole procedure is repeated, so, at the next step, the
time series is numerically sampled at a rate which is four times smaller than the initial one.

The results we obtained for the time series sampled at every second point show a forecasting
error for the experimental data which is larger (or let us say very similar to) than for the
surrogate data (Fig. 10), indicating stochasticity. This conclusion is still conflicting with the
conclusion we would draw from the critical ratio.

However, for the time series sampled at every fourth point, Figure 11 shows that the fore-
casting error for the experimental and the surrogate data are similar and that the critical ratio
is about two or smaller than two at small forecasting times. This last result, taken together
with the preceding results, clearly indicates the stochasticity of the data.

Note that our procedure of removing points in the time series is equivalent to a decrease
of the acquisition frequency and somehow in the same spirit than the Theiler procedure [22]
of removing neighbours in space which are also neighbours in time. Also, the influence of the
sampling time here may be understood as follows: the size of the experimental files is fixed,
being limited by the processing time. Therefore; a small sampling time leads us to analyze
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a swmall portion of trajectory. Increasing the sampling time conversely allows us to analyze a
larger portion of the trajectory, i.e. to obtain more relevant information on the object under
study.

4.1. THE EFFECTS OF SMOOTHING. -~ Many experimenters use smoothing techniques before
processing their data. Let us examine the effects of one of these techniques [27, pp. 495-497],
which removes any linear trend, and then uses a Fast Fourier Transform to low-pass the data.
The linear trend is reinserted at the end of the process. The amonnt of smoothing is defined by
a constant A'. Then, the cut-off frequency is given by f. ~ n /K x f. where f, is the sampling
rate, and ny the greater power of two which is smaller than or equal to the size of the data
record.

As shown in Figure 12, the results obtained for a smoothed experimental time series clearly
indicate a strong difference for the forecasting error between experimental and surrogate data,
and the critical ratio is large. Two conflicting interpretations may then a priori be proposed:

e The signal is deterministic and chaotic. But the non-linear features were masked by the
experimental noise,
e The signal is stochastic, but the smoothing procedure introduced low-frequency effects
which falsify the results.
We tested these assumptions by applying the same procedure to the analysis of an autore-

gressive noise. For the untreated process, we obtained a critical ratio smaller than two, and a
forecasting error very close to surrogate forecasting error, indicating stochasticity as it should.
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On the contrary, when the time series was smoothed, results displayed in Figure 13 would have
lead us to reject the null hypothesis and to conclude to the presence of chaos. which would be
a spurious conclusion. Therefore, the use of a noise reduction technique may falsify the results
given by the surrogate data method. Our final conclusion on the distinction between noise
and chaos for our data is then that the experimental time series measured in the fluidized bed
are not generated by a low-dimensional process, but can be the results of a stochastic process.
The next step is then to ask whether we can characterize this process.

5. Hurst Analysis

S()Hl(‘ Ht(’)('h?lﬁﬁ(‘ DIOCessSes ("Xh”’)if 1()]1”‘{("1’[11 Ht?l‘tiﬁ'fi(”rll (1(‘ )(,‘l]d("ll('(\ anmong th(‘ﬂl th(r\ fl'ﬂ(‘fid
& =]
Brownian motions (fBHl). V&'hi(,’h Vf‘]'ify [28]

e the increments By(ty) — By (t1) and By (ty) — By (t;) are independent

e an increment By (ts) — By (ty) follows a Gaussian law, with zero average and a standard
deviation proportional to |ts — {1].

The main property of the fBm is related to the value of the correlation C'(t) between By (—t)
and By (1), given by:
C(t) =@ -1 (3)

Thus, we can distinguish three cases:




Ne12 CHAOS IN FLUIDIZATTION 1897

m=15, p=1, n=10, n1=6000, n20=500

2.0 T T i
G- -O original time series
& surrogate data £
15 " :
u 1.0 “
0.5 I a o
1 o
0.0 = s I Tl '
0.0 5.0 10.0 15.0
T
60.0 T T
500 -~ o+ t by 1
L J . + -
3 R S +
40.0 - + -+ + + + M
r
| + .
G
& so0 - e
+ 3 .
T
20.0 s
10.0 i
0.0 L ; ‘ e
0.0 5.0 10.0 15.0
T
Fig. 13. Forecasting error, and critical ratio, for a smoothed autoregressive noise.

e H = 0.5. The correlation between By (—t) and By(t) is always zero, i.e. the process is
a Brownian motion, as defined by Wiener in 1923 [29], with no memory.

e [ > 0.5. The correlation is always positive, i.e. the trends of the graph at the time —¢
are conserved at the time ¢. Large excursions appear ou the curves giving By () versus
t. and the signal is said to be persistent.

e H < 0.5 Here exactly the contrary is true. The signal is said to be antipersistent, and
the curves appear to be much more crinkly.
Hurst’s analysis [30, 31] allows the H-value to be deduced from a time series, as follows.
First, from the time series (x;), considered on a total lag time 7, the cumulative departure
X(t,7) to the average is computed:

t
X(tr)=> i —{a), (4)
1= 1
Then we define a range R which is equal to the maximum of the cumulative departure minus
its minimum, and depends only on 7:

7

¢ X{t) ~ ll(’I/lti}/l X(t) (5)

Finally, the quantity R/S, where S is the mean square deviation of the time series, follows
the empirical law:
R/S o (ar)¥ (6)
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Fig. 14. — Hurst’s exponent versus superficial velocity (o), for measurement of right-hand absolute

pressure, at point 4, the symbol (+) indicate error measurement on H.

Therefore, by plotting log(R/S) for different lag times 7. the value of H can be evaluated
by linear regression.

5.1. APPLICATION TO THE EXPERIMENTS. We calculated the value of H, and plotted
it versus superficial velocity, as shown in Figure 14. For a small velocity, H is quite large
(=2 0.8), i.e. strong correlations are present in the signal, corresponding to very low frequency
effects (the signal is persistent). H decreases with an increase in the superficial velocity, and
eventually reaches values around 0.6, which is not far from the value expected for a Brownian
motion. I we consider the fractal dimension associated to H (Dy = 1/H), the latter increases
with velocity, representing the fact that the number of bubbles in the bed increases, and that
the re-circulation time of the particles decreases.

We noticed that the values found for H, for different taps, and for differential pressures as
well as for ahsolute pressures are quite close, so that the difference between them can be due
to meagurement uncertainties. In this case, it would be possible to associate to a given H a
bubbling intensity, and therefore to find a way of controlling the bubbling.

6. Conclusion

To analyse pressure measurement in a fluidized bed |, we used several techniques to discriminate
between noise and chaos. In particular, from results obtained by using a surrogate data method,
we concluded that the experimental time series generated by the fluidized bed were probably
random, and at least were not low-dimensional chaos. It has been illustrated that much care
must be taken to avoid spurious identification of deterministic chaos.

In particular, a naive use of correlation dimension evaluations may be misleading due to the
fact that some random processes, characterized by strong correlations, may lead to misleading
low-dimension effects. Once our process has been assumed to being random, Hurst’s analysis
allowed us to suggest that the random process could possibly be, as a first approximation. a
fractal Brownian motion characterized by a Hurst exponent H. The complicated dynamics
exhibited by the fluidization process may then be characterized by a single number. The use
of such a synthetic number could allow the identification of fluidization regimes.

It should however be noted that our study has been carried out in terms of a noise/chaos
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distinction. In many cases, both aspects are mixed. Therefore, if there exists a deterministic
component in our signals, a more refined conclusion would be that this component conld not be
detected by our analysis, i.e. the dynamics of the fluidized bed is dominated by randomness.
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