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Résumé. — La théorie du contact élastique de deux corps developpée par Hertz [1] est géné-
ralisée tenant compte de la contribution des effects visqueux a la tension totale Une équation
différentielle nonlinéaire est derivée pour des particlies dont les surfaces ont une courbure ar-
bitraire. Elle est résolue numériquement dans le cas des particles sphériques. La dépendence
du coefficient de restitution normale de la vitesse d’impact est calculée et comparée avec des
données expérimentales obtenues pour la glace aux températures basses [2,3]. Un bon accord
est trouvé qui permet l'estimation des constantes du matériel dans certains cas. Une applica-
tion astrophysique de nos résultats est discutée brévement dans un cas d’interét particulier: des
particles de glace dans des anneaux planétaires

Abstract. — The theory of the elastic contact of two bodies developed by Hertz [1] is gener-
alized including the contribution of viscous effects to the total stress A nonlinear differential
equation for the compression is derived for particles with arbitrary curvature of their surfaces and
is solved numerically for spherical particles The resulting dependence of the normal restitution
coefficient on the impact velocity is calculated and compared with experimental data for ice at
low temperatures [2,3]. A good agreement is found which allows to estimate unknown material
constants in certain cases An astrophysical application of the results is briefly discussed for the
espectally interesting case of 1cy particles in planetary rings

1. Introduction

Hertz's theory of the contact of elastic bodies [1] has been widely used in contact mechanics.
Unfortunately, up to now no satisfying extension of this theory seems to exist taking into
account in a realistic way such effects like viscosity, although inelasticity effects in collisions
play an important role in physical processes and can affect seriously the development of many-
particle systems. One case of particular interest are planetary rings, e.g. those of Saturn, which
are composed of particles mainly consisting of water ice [4]. The lifetimes of these systems are
influenced by several factors, especially the collisional properties of the particles. Wiesel (5]
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had already found that the stability of planetary rings 1s not only strongly dependent on their
velocity distribution, but also on the restitution coefficient of the material, i.e the ratio of the
postcollisional relative velocity of two particles to the precollisional one. In these simulations
a constant value was assumed, but experiments by Bridges, Hatzes et al [2,3,6] have shown
a strong dependence of the restitution coefficient on the impact velocity Therefore the form
of this dependence 1s liable to affect the stability and thus the evolution of a planetary ring
Thus, we have started detailed investigations of the collision mechanism which seems to play
an important role m structures related to the gravitational action of satellites [7].

As one of the first attempts to generalize the theory of collisions Poschl [8] proposed the
introduction of a dissipative term proportional to a power of the velocity of the compression.
In the special case of a quadratic dependency he was able to express this velocity in form
of a power series in the compression. Although he achieved qualitatively right results, his
proposition had the disadvantage that the choice of the exponent of the velocity was motivated
by mathematical convenience rather than by physical arguments. Thus, no relation of the
coefficients in the equation to the elastic and viscous constants of the material of the colliding
bodies could be derived from his model.

Other theoretical approaches [9,10] were discussed in a recent article by Dilley [11]. He
found that they do not describe well the above mentioned experimental results and presented
a new collision model based on the assumption of viscous dissipation of energy. First, the
particles are treated as point masses Both the deformation and its time derivative appear
in the first power, and the coefficient of the deformation velocity 1s made dependent on the
impact velocity via a power law The spherical shape of the particles is taken into account by
introducing some effects of the Hertz theory “by hand”. This procedure allows for a good fit to
results of experiments with clean 1ce spheres [3] but requires the right choice of three constants
{coefficients of actual deformation and velocity, exponent of the impact velocity) which cannot
be found a prior:.

In this paper which 1s part of more general investigations on granular material [12] we
propose an extension of Hertz’s theory starting with the consideration of the stresses exerted
on the bodies 1 contact due to their elastic and viscous properties. Following the algorithm
used by Hertz [1,13,14] a differential equation for the time dependence of the compression
is derived Its coefficients depend on the material properties of the colliding bodies and also
on the curvature of their surfaces. The equation 1s solved numerically for the simple case of
spheres where experimentally obtained data are available for ice at low temperatures [2,3], an
example of importance for further applications of models of inelastic collisions for the dynamics
of planetary rings [15]. A good fit of the theoretical curves for the velocity dependent restitution
coefficient with the experimental ones with different dependencies of the restitution coefficient
on the impact velocity is achieved. Only two coefficients have to be chosen for this purpose
Because these are directly related to the maternial properties of the particles, this allows the
estimation of the order of the magnitude of the yet unknown viscosity. This ability of our model
is an advantage in comparison to the theory of melastic impact discussed in [14] which was
intended for the treatment of collisions of metallic bodies. It was based on a static analysis and
the assumption of a constant mean pressure and led to a restitution coefficient proportional to
the power —1/4 of the impact velocity.

Our model is also compared with the solutions of other differential equations for the compres-
sion, e.g. that one of Pdschl’s model [8]. Our rigorous model is found to fit certain experimental
results better than the other ones.

Finally, we discuss possible extensions of the model and experimental investigations which
are required to check our results.
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2. Collision Theory

2.1 STRESSES AND DISPLACEMENTS — The elastic stress acting on a solid body 1s given by
the following expression:

1
0% = Kuybo + 2" (utk - gélku“) (1)

1/0u, 0 . .
3 6; + a—z—k— being the tensor of the displacements which 1s derived from the
k 2

deformation u, &, the Kronecker symbol, K the compression modulus and x* the shear mod-
ulus. The latter two are related to the Young modulus E and the Poisson ratio v respectively
and the Lamé constants which we will denote here with A; and App via

E

2
N= —— — z
YT 3oy Tt

with ., =

_E
T 2(1-v)

*

7 = An (2)

We will further use the notation in terms of the Lamé constants which allows us to benefit
from the analogy between the formulae describing elastic and viscous phenomena. Then the
elastic stress tensor can be written mn the form:

o5 = Atuubu + 2Auk (3)
The viscous stress tensor 1s expressed n terms of the displacement velocity ,;:
O = Muubas + 211tk (4)
with the bulk viscosity #1 and the shear viscosity np. Thus, one has for the total stress
O = O'f,i + 0 = Atuube + 2Antak + Mbuk + 290104 (5)

which yields (remember that the force can be expressed as 9o, /071 ) the following dynamical
equation for the continuum medinm:

M+An) V(V -w)+dp Au+(p+m) V (V -Q) +mi1 Au=pd (6)

We introduce as the characteristic scale R and the characteristic velocity vy of the problem
the particle’s radius and velocity, respectively Then 7 = R/vy will be the charactenstic
time. Taking into account that Ani/p = ¢ and (A + 2An)/p = cZ, where ¢ and c; are the
longitudinal and transversal sound speed in the material, one can rescale the variables and
rewrite the equation in the following way (for sumplicity we keep the same notations for the
rescaled variables as for the original ones).

2
(V2 — VV)u+ (?) (VV)u+e(B (V"" —VV)u+v(VV)u) = e2i (7)
t
where ¢ = (vo/ct), and B = ni/(pRee), v = (m + 2n)/(pRe). One can see that if the
charactenistic velocity of the problem is much less than the speed of the sound 1n the material,
ie. if e € 1, and if the dissipation in the bulk is low, that means that the coefficients 3, v are
of the order of unity, one can use the quasistatic approximation

. 2
(VQ—VV)u+<£>(VV)u:O (8)
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Thus, in the quasistatic approximation the displacement field u(r,#) in the matenal coincides
with the one for the static problem u(r) Note that in the static case only the elastic stress
18 present. The static (elastic) contact problem had already been solved by Heinrich Hertz in
1882 [1] Before we deal with the generalization on the viscoelastic case, we will sketch briefly
the main results of this classical theory (for details see e.g. [13])

We assume for simplicity that only normal forces with respect to the contact area act between
two solid bodies labeled 1 and 2 Their surfaces in the contact region will be flattened Using
a coordinate system centered in the middle of the contact region where we set =z = 0. one can
write the followimng equation

Mz?+ Ny> +ua+us=h 9)

where u.; = wu.i(r,y) and w.s = wu.2(r,y) are z-components of the displacements m the
material of the bodies on the plane z = 0, h 1s the sum of the compressions of both hodies 1n
the centre of the contact area while the constants Al and N are related to the radu of curvature
of the surfaces in contact via relations (cf. [1,13]).

2(M + N)
2 2
1 1 1 1
4M-N? = [ - — — 4+ —
- = (-5 *(R'l Ré)
1 1 1 1
200520 [ =— — — | [ = + — 10
RS Q(Rl Rz) <Ri +R'2) (0
where Ry, Ry and R}, R are the principal radu of curvature of the two bodies and ¢ 1s the
angle between the planes corresponding to the curvature radit Ry and R] The values of u.1

and u:. may be expressed in terms of the normal pressure P.(x,y), that acts between the
bodies in the plane z =0

1 P.(z', vy .
u:1(z,9.0) = ;Al//——‘——(r v) dz'dy’
;. 1 Py ,
w22, y') = ;A2// —(?r—il da'dy’ (1)
A+ 224

ANy (O + M)
15 simply related to the total normal force F¢!

I
|
+
|
|
+
|

Here 7 = /(x — )2 + (y — ¥')2, and A, = ,+ = 1,2 The normal pressure P,

3Fel 2 yQ

2mwab az B

where a and b are the semmaxes of the contact ellipse. The latter values as well as the compres-
sion h may be found from the set of equations [1,13,14]

P.(z,y) = (12)

el o0 el
. FD/ dq( _2F D_l_K(k)
™ Jo V@@ +q) (b +q)q T b
y - FD /°° dg _ 2FIDBE(k) — a?K (k)
T Jo (@+(@@+q) (P +q)g ™ a?b(b? — a*)
Felp [ dg 2FD K (k) — E(k)
™ Jo (P +g)y/(a?+q) (b +q)g T b(b® —a?)
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with D = (3/4) (A1 + A2) and E(k) and K (k) being the Jacobian elliptic functions 1n usual
notation [16,17]. k = vb% —a?/b 1s the eccentricity of the contact ellipse (b > a without
restrictions for generality). The size of this ellipse depends on the normal force, its semiaxes a
and b are related to F®! via the second and third of the above equations. Using this dependence,
from the first of equations (13) Hertz’s famous solution of the elastic contact problem can be
derived [1,13,14]: for all bodies 1n contact the total elastic force and the compression are
related by a power law

Fe(h) = const h3/? (14)
with a constant depending on the elastic constants of the materials and on the local curvatures
of the surfaces of the collding bodies. If we assume that both bodies consist of the same
material, 1n the case of spherical particles the above equation reads:

2EVR W31

Fel(h) — m

(15)
where R = R, R» /(R1 + Ry) and Ri, Rs are radi1 of particles in contact.

The most important property of the solution of the elastic contact problem 1s that the
displacement fields u; (r) and uy(r) are completely defined by the value of 7!, and thus by the
value of the compression &~ To emphasize this we write u(r) = u(r, 2) so that the displacement
field parametrically depends on the compression. We obtain for the field of the displacement
velocities 1n the quasistatic approximation:

Ou(r, h)
dh
Now we turn to the calculation of the dissipative part of the stress. We assume for simpheity
that the collding particles are of the same material. The general case may also be considered

using an appropriate coordinate rescaling.
Using (16) we can write for the dissipative part of the stress tensor -

u(r, t)=h (16)

15) 0
o= ET {muubu + 2nun} = h %Ufﬁ (A1 = m1, A+ i) (17)

Here we emphasize that the expression in the curled brackets in the right-hand side of the
above equation is the same one as for the elastic stress with the only difference that the viscous
constants are substituted by the elastic ones. Note that the component o2, of the elastic stress
1s equal to the normal pressure P, at the plane 2 = 0, which is given above Namely, we have .

g, Ou, Ou. ou 3Fe 22 2
el - LA Wit = 1= - 18
02:(2,9,0) = A ( oz 5y Jy + Oz > 2M Oz 2wab a? b2 (18)
We transform the coordinates in the following way
z=oar ,y=ay' ,z=12 (19)
with
_mM (A1 + 2Xm) (20)
AL (m + 27mm)
and obtain-
Ouz  Ou, Ou, Ou, du, 6uy 8u2> . )
"‘(az+a EE >+”“a aA1< (01’ % ng5r
el 12 12 Fel 2
e Ly I Ly P )
oA 2mab a? b? a\ 2rab a?a?  a2h?
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Applyng the operator h 8/3h on the last expression in the preceding equation we obtamn the

viscous stress .
e ) 3Fe‘\/ x? y?
Yy, 0) = b — — 1- - 22
7::(2,3,0) 8h al 2wab a2a? a2b? (22)

The total viscous force may be obtained by integrating the viscous stress over the contact area,
yielding the following result-

vis __ ] 3 el
P = Ah = F(h) (23)

where

A_2<ﬂ>2)\1+2/\n_2 B (1-v?)(1-2) (24)

T3\XN/) m+2m 3 m+2m Ev?

From the last equation one can find the general relation for the total force which acts between
two viscoelastic bodies colliding 1n the quasistatic regime:

F' = const <h3/2 + g—A/zl/2h> (25)

The constant 1n this equation coincides with that one for the elastic force so that equation (25)
reads e.g for spherical particles:

2EVR 3 ,
F= 3007 <h3/2 + 54 h1/2h> (26)

As one can see from the above equations, the total force between the colliding particles exceeds
the elastic force in the first stage of the collision when A > 0, and the particles decelerate more
efficiently than in the elastic case. The maximal compression is thus less than mm an elastic
collision On the other hand, when the particles move away from each other and h < 0,
the force is less than in the elastic case and yields a lower acceleration. As a result the
postcollisional velocity 1s lower than the precollisional one. Their ratio defines the normal
restitution coefficient (¢, is the duration of the collision).

en = h(tc)/ h(0) (27)

For an interpretation of the constant A we notice that the viscous constants 51 can be
written as follows:

M/ = Tws AL/l (28)
where 7y,s is the relaxation time for the dissipative processes in the material accompanying
the time-dependent deformation. If we assume for simplicity that the relaxation times are the
same for both viscous coefficients, one can see from this equation as well as from the definition
of A that A = 7,,5. Furthermore, the order of magnitude of 4 is h/¢. Thus, one can write

ARY2h = ARP2 [t & (Tus/te) K3/2 (29)

If the viscous relaxation time is much shorter than the duration of the collision’ (7y,s/t.) < 1,
one can write the total force in the following form:

F = const (h +A h)3/2 (30)

The familiarity between equations (25) and (30) can also be demonstrated by an expansion 1n
a power series of the latter. We note that the approximative formula (30) can be obtained by
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considering u and u in equation (6) as independent variables [7], which is in reality not the
case.

We conclude that in the quasistatic regime in the case of moderate bulk viscosity all the
results for the elastic contact theory may be used if instead of the compression h the renor-
malized one h + Ah is substituted in the relations. In Section 3 we will compare the solutions
for both equations

With the viscous relaxation time one can also estimate the coefficients 3 and v introduced
above. We obtain e g. 8 = n1/(pRe) ~ (Twisc)/R (assuming A; = Ayp). That means that the
case of moderate viscosity corresponds to the condition (mysct)/R ~ 1

2.2, INFLUENCE OF THE SHAPE OF THE COLLIDING PARTICLES. — Particles in granular gases
have a wide distribution of masses. radii, and curvatures at the point of contact. Therefore,
for practical simulations of the evolution of the granular gases one should know how the shape
of the particles influences their collisional behaviour and how the shapes of the particles are
distributed

We will now briefly discuss the influence of the curvature of the particle surfaces in the
vicinity of the point of contact in analogy to the elastic case already discussed in [14] From

equations (13) follows:
M E(k)-(1-kE)K(k) a1
N~ (1-k)(K(k)— E(k)) (31)
We see that the eccentricity of the contact ellipse depends only on the ratio M/N,ie finally
on the curvature of the two bodies in the point of contact. The force acting between them and
their material will only affect the absolute size of the contact figure From equations (13) also

the relation between force and compression

v=(52)" (v omm) 2

can be obtained, and equation (25) for the viscoelastic force can be fewritten.

- Ny 172
F= 2—% (éi%_kz—ﬂ’”—)) (K (k)% <h3/2 + gAh1/2h> (33)

With the reduced mass g = myma/(m; + my) we can write the following dynamical equation
for the collision of nonspherical viscoelastic particles:

' T K (k) — B(k) Ve y=3/2 [ 1372, 3 1/2'>__
ht 2uD ( Nk? ) (I (k) (h + -2-Ah h)=0 (34)

with the mitial conditions h(0) = gn and h(0) = 0 gn is the precollisional velocity. The last
equation (34) and the dynamical equation with the force (26) have both the same form except
for the factor

7 (K~ ER\Y? ., s
= Kk 35
¢ 2;1D< NiZ (B ) (3%
which takes the value (spn = 3—?;—2—}—1—) in the case of spherical particles This shows that the
—v

problem of the collision of particles with nou-spherically curved surfaces can successtully be
mapped onto the corresponding collision problem for spherical particles after an approprnate
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rescaling of the initial particle velocities. We see that the collision problem for the spherical
particles 1s actually a “benchmark” problem for the treatment of binary collision processes.

We also see that for simulations of the evolution of granular gases the distribution of the
shapes of the particles can be characterized by the distribution of the value of ¢, which may
be considered as a stochastic variable The restitution coefficient can then be calculated as a
function not only of the impact velocity, but also of the stochastic variable { Therefore for
the dynamical description of granular material one has to solve the twofold problem

(1) calculation of the restitution coefficient ey (gn, <)
(11) evaluation of the distribution function f(¢).

As we have just noticed, the first problem can be reduced after an appropnate rescaling to
the calculation of the restitution coefficient for colliding spherical particles as a function of the
umpact veloaity, ie of ex(gn)

To find the distribution function for the variable ¢, an approximation for the elliptic integrals
by means of elementary functions is useful. Because the usual approximations of high precision
for the Jacobian elliptic function [17] also contain logarithmic terms they cannot be easily solved
mm k Thus, we tried to express the factor in & in equation (34) in terms of the ratio A7/N wn
equation (31) by a sumple numerical fit. We found:

K(k)— E(k) _ k
k2 T 1125(1 — k2)0 665

(36)

The eccentricity & of the contact ellipse can be estimated from the ratio A//N approximately

as
N 1315

We can now express the factor in k m terms of this ratio as follows

. <1~V>1 315
K(k) - E(k) _ M
k? 1125 (%)0874

(38)

The deviations of our fits (36) and (37) from the values obtained by using the “polynomial®
approximations [17] turn out to be less than 1 %. This justifies the use of these rather simple
fits for the further treatment of collisions of non-spherical bodies

Finally we give one of the “polynomial” approximations for K(k) (cf. [17]): K (k) = (aqo

+a1(1 = k) + az(1 - £%)%) + (bg + b1(1 — &) + bo(1 — £2)?) In T with ag = 1 3862944,
a; = 01119723, a; = 0.0725296 and by = 0.5, b; = 0.1213478, by = 0 0288729. Substituting
the above expressions mnto the dynamic equation. one can solve 1t numerically, and find the
restitution coefficient

In the following we will only deal with spherical particles because this 1s a “benchmark”
model, and besides, it is the only case where up to now experimental data are available which
are of interest for our applications.

3. Comparison of Collision Models with Experimental Results

We have solved numerically the differential equation

- 1
h= o Fx (39)
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for forces Fiv given by equations (25) and (30) and with the iitial conditions A(0) = 0 and
h(0) = gn, i.e for zero imtial deformation and a given impact velocity. From the value gy
of the relative velocity at the end of the contact between the two bodies the normal restitu-
tion coefficient has been calculated Its dependence ex(gn) on the impact velocity has been
compared with the results of experiments [2,3] In these experiments, spherical ice particles
with a diameter of some centimeters hit a plane 1ce block which can be considered to be a
sphere of infinite radius. The reduced radius R 1s then equal to the radius of the ice sphere.
The conditions were chosen to reflect those typical for planetary rings. the temperature was
T =~ 150 K, the impact velocities were in the order of some centimeters per second or less, the
apparatus was mounted 1n an evacuated container.

We have also estimated the time dependence of the deformation and of the relative velocity
during the collision.

The same was done with differential equations for other collision models which we will briefly
discuss here As already mentioned, Poschl (8] proposed to include the dissipative effects due
to the nonelasticity of the material in form of a power law of the relative veloaity, ie. to
formulate an equation of the form

h+ A3/ + Ah° =0 (40)

with a constant As and an exponent « as fitting parameters. As above, h denotes the com-
2 VERE

pression We have abbreviated 4; = 5—(1——2—) With respect to the analytical integrability
w(l —v

of this equation, thus only motivated by mathematical convenience, Péschl took o = 2 and
obtained a dependence of 2 (h) in form of a power series. We have examined also the behaviour
of the solution of equation (40) for other exponents, namely o = 3/2 [15]. This choice can
be motivated heurstically by arguing that the curved shape of the surfaces in contact would
affect the dependence of the force on the time derivative of the deformation in a similar way
as the one on the deformation 1itself.

For numerical convenience we scaled the differential equation (25) by a characteristic length
lo and a charactenstic time ¢y according to h = lpx and ¢ = tot. The scaling values Iy and to
have been determined using the results of Hertz’s theory for a non-dissipative collision of two
spheres with the Young modulus £ = Ey = F5 and the Poisson ratio v = v; = . For these
calculations we have taken gy = 1 cm/s, which has been a characteristic impact velocity in
the experiments [2,3] In the following the scaled velocities are labeled by Vi

With these scalings and assuming typical values for ice at low temperatures [18]. the Young
modulus E & 10 GPa, the mean density (p) ~ 10° kg m™>, a Poisson ratio v =~ 0 3, and a
typical particle size R &~ 102 m, one obtains the scaling values Iy &~ 107 R and tp ~ 107* s and
the constant A; =~ 1. The above values of the material constants are valid for temperatures
of about —35 °C which is quite too high compared with the conditions in planetary rings
This raises the necessity of extended investigations of the material properties of ice at low
temperatures, and thus, the above values have to be considered as approximations

Analogous scalings were made for the differential equations of the type (40). The problem
is that 1t is not always easy to relate the constant 4, to the physical properties of the matenal
except 1n the case of @ = 3/2 where this is possible at least concerning the dimension

In Figure la the results for the time dependence of the deformation are shown for an initial
(impact) velocity of Vy = 1 for these different models and compared with the results of Hertz's
model. Using the above material parameters, the constants take the values of 4; = 1 and A =
0 7 Figure 1b shows the time dependence of the relative velocity. We remember our discussion
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of the collision process in the context of equation (26) which 1s very well illustrated by these
figures It can easily be seen that the presence of the dissipative terms leads to a more efficient
deceleration 1n the first and to a lower acceleration 1 the second stage of the colliston This
15 the case for all three models which have been examined At the end of an inelastic collision
which is reached when the acceleration has dropped to zero, a certain permanent deformation
remains. These, of course, are common features of all three models Differences are visible
especially 1n the first stage of the collision, 1n particular in the time dependence of the relative
velocity (Fig 1b). The curve which we have obtained from equation (25) shows a behaviour
similar to the one of Hertz's model: the deceleration is very low at the beginning of the collision,
but increases later In contrary, equations (40) {(with & = 2) and (30) lead to curves where the
deceleration already has a significant value at the beginning of the collision and then undergoes
only little changes over a quite long time range This indicates that different models might be
sumitable for different types of material of the colliding bodies although the behaviour in the
latter case seems to be quite unconventional for most materials

The dependence of the restitution coefficient ey on the impact veloaty gy 1s shown 1n
Figures 2a-c where we compare our numerical results with the experimental ones [2,3]. Here
the constants have been chosen in a way that the best fit to the experimental curves 1s achieved.

We find that the results of our model - with the forces given by equations (25) and (30) - agree
very well with the experimental curves obtained for frost covered ice spheres, notwithstanding
the abovementioned different behaviour in the first stage of the collision. Also the model with
a = 3/2 shows a quite good agreement [15]. Péschl’s model (@ = 2) gives decreasing values
of the restitution coefficient with increasing velocity, which 1s qualitatively right. hut doesn’t
provide a good agreement with these experimental curves. We have found that the choice
a = 1 leads to results in complete contradiction to the experiments However, in a previous
work [15] we had already demonstrated that no matter how the constants are chosen the best
fit for an equation of the type (40) 1s not reached for both exponents being equal to 3/2 but
for somewhat different values This might indicate the presence of mixed terms in both h and
h. Thus, our model seems to be preferable It shows the best agreement with the experimental
results for frost covered objects, and it has the advantage that only the two constants 4; and
As have to be estimated.

One problem in this comparison (already mentioned in [11]) 1s the following: since in the
experiments the ice balls were mounted on an apparatus, the dependence of ex on the particle
mass could not be estimated If this dependence is known, we are able to estimate unknown
matenal constants, in particular the viscostty, from fitting our curves to the experimental ones.
Here we can only estimate the order of the magmtude With the above values of A, and A,
we are led to viscosities of about 10 MPa s [15]). This quite low value indicates a really soft
surface hke a frost layer Apparently, the main processes of the collision take place in this
1elatively thin layer This 1s plausible regarding the low collision velocities and small masses
of the bodies in the experiments An improved knowledge of the material constants which can
only be obtained by new measurements will allow more conclusive statements

Surprisingly, our model does not seem to work for ice spheres which were designed to have
very clean surfaces where an exponential fit instead of a power law had been found [3]. This
mndicates that other than purely viscoelastic phenomena (on which our model 1s based) play a
role in these collisions However, a curve obtamned from Pdschl’s model with o = 2 shows 1n
this case not a perfect. but a better agreement than the ones we got from our model

In the experiments [3] a compression of the initial frost layer was observed, which caused
the surface of the particles to smooth after some collisions, and a saturation effect was found
i the dependence of ey on the number of collisions a particle had survived. Because in these
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Fig 2 — a) Restitution coefficient ey vs. 1mpact velocity gy - comparison of our model with
the experiments made with frost covered spheres [2] Dash-dotted experimentally obtained curve
Dashes curve obtamned using equation (30). Sohd line curve obtained using equation (25)
b) Restitution coefficient ey vs 1mpact veloaity gy - comparison of our model with the experi-
ments made with frost covered spheres [3] Dash-dotted experimentally obtained curve Dashes
curve obtained using equation (30) Solid ine curve obtained using equation (25) <¢) Restitution
coefficient ey vs 1mpact velocity gy - comparison of Poschl’s model with the experiments performed
with clean, smooth spheres [3] Dashed experimentally obtamned curve Solid line Poschl’s model
with A2 =075

experiments the particles hit the 1ce brick only with one and the same side, we believe that
this behaviour is in reality more complicated. In particular, continued bnittle fracture 1s likely
to produce a quite soft surface layer which, in turn, can protect the bulk matenal from further
destruction Thus, we do not consider this case to be relevant for our applications.

In addition, the surfaces of particles in natural systems are usually not as clean as it 1s
possible to produce 1n a laboratory. They may be covered with mineral dust or other material.
In particular, particles in planetary rings which have already survived many collisions from
several sides during the long existence of the system are unlikely to have smooth suifaces.
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4. Conclusions

In the present study we have developed a theoretical model for the collision of viscoelastic
particles. We have used a quasistatic approximation which corresponds to the case where the
collision velocity 15 much lower than the sound speed in the material The expression for the
total viscoelastic force is then a generalization of the well-known Hertz relation {1,13] for the
elastic contact problem. An explicit relation has been obtained for the force acting between
spherical colliding particles. The general case of the collision of particles of arbitrary shape
may be mapped onto the collision problem for spherical particles The theoretical results
for the restitution coefficient have been compared with experimental data for spherical icy
particles [2,3].

Our model 15 based on simple viscoelastic phenomena It provides a very satisfying agreement
with experimental estimations of the restitution coefficient of frost covered ice spheres The
low value of the viscosity which could be estimated approximately from our theory agrees
well with the assumption, that the main processes of the collision take place in this quite soft
layer, whose properties may resemble to a fluid. We assume that this case is most relevant
for applications towards the evolution of planetary rings, because during the long time of the
formation of these systems the particles have already survived many collisions which may have
fractured their surfaces. This and the fact, that the ring particles seem to be covered with
dust, will contribute to surface properties similar to those of the frost layer in the experiments.

The worse agreement with the experimental results for spheres which were designed to have
very clean surfaces can be explained by the experience that ice - especially at very low temper-
atures - 1s a very brittle material. Consequently, mnstead of viscoelasticity, fracturing processes
will govern these collisions even at low impact velocities. This is likely to produce fractal sur-
faces Preliminary investigations [19] have shown that the model according to equation (40) is
more suitable for this type of surfaces

The comparison with the results of tlie different experiments shows that the processes gov-
erning the collisions of icy objects found e.g 1n planetary rings seem to be more complicated
than pure viscoelasticity We can therefore state that the collisional behaviour 1n normal di-
rection is influenced not only by the properties of the bulk material, but also by the properties
of the surfaces. This should be proved by a microscopic examination of ice spheres used 1n
such experiments.

Tt 15 also necessary to estimate the influence of the mass of the particles on the outcome of the
collisions, and we think that new experiments, perhaps using particles falling in an evacuated
tube, can help to clarify these problems.

A comparison should also be made with experiments with bodies consisting of other material
(e g. metal) with known viscous and elastic properties. Furthermore, the material constants
of ice at low temperatures as i the experiments should be estimated

Topics of future theoretical interest are the physical meaning of the constants and exponents
1 equations of the type (40) which may be more suitable for the treatment of bodies consisting
of special materials or having particular surface geometries and the solution of the collision
problem without the assumption of quasistationarity.
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