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R4sumd. La th60rie du contact 61astique de deux corps developp6e par Hertz [1] est g6n6-
ralisde tenant compte de la contribution des effects visqueux I la tension totale Une dquation

difl6rentielle nonlin6aire est derivAe pour des particles dont les surfaces ont une courbure ar-

bitraire. Elle est r6solue nurnAriquement dans le
cas des particles sphdriques. La d6pendence

du coefficient de restitution riormale de la vitesse d'impact est calcu16e et compar6e avec des

donn6es exp6rimentales obtenues pour la glace aux temp6ratures basses [2,3]. Un bon accord

est trouv6 qui permet l'estimation des constantes du mat6riel dans certains cas. Une applica-
tion astrophysique de nos r6sultats est discutAe brAvement dans un cas d'interAt particuher: des

particles de glace dans des anneaux plan6taires

Abstract, The theory of the elastic contact of two bodies developed by Hertz [1] is gener-
alized including the contribution of viscous effects to the total stress A nonlinear differential

equation for the compression is derived for particles with arbitrary curvature of their surfaces and

is solved numerically for spherical particles The resulting dependence of the normal restitution

coefficient on the impact velocity is calculated and compared with experimental data for ice at

low temperatures [2,3]. A good agreement is found which allows to estimate unknown material

constants in certain cases An astrophysical application of the results
is

briefly discussed for the

especially interesting case of icy particles
in

planetary rings

1. Introduction

Hertz's theory of the contact of elastic bodies [I] has been widely used in contact mechanics.

Unfortunately, up to now no satisfying extension of this theory seems to exist taking into

account in a realistic way such effects like viscosity, although inelasticity effects in collisions

play an important role in physical processes and can affect seriously the development of many-

particle systems. One case of particular interest are planetary rings, e.g. those of Saturn, which

are composed of particles mainly consisting of water ice [4]. The lifetimes of these systems are

influenced by several factors, especially the collisional properties of the particles. Wiesel [5]
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had already found that the stability of planetary rings is not only strongly dependent on their

velocity distribution, but also on the restitution coefficient of the material, I-e the ratio of the

postcollisional relative velocity of two particles to the precolhsional one. In these simulations

a constant value was assumed, but experiments by Bridges, Hatzes et al. [2,3,6] have shown

a strong dependence of the restitution coefficient on the impact velocity Therefore the form

of this dependence is liable to affect the stability and thus the evolution of a planetary ring
Thus, we have started detailed investigations of the collision mechanism which seems to play

an important role in structures related to the gravitational action of satellites [7].

As one of the first attempts to generalize the theory of collisions Poschl [8] proposed the

introduction of a dissipative term proportional to a power of the velocity of the compression.
In the special case of

a
quadratic dependency he was able to express this velocity in form

of a power series in the compression. Although he achieved qualitatively right results, his

proposition had the disadvantage that the choice of the exponent of the velocity was motivated

by mathematical convenience rather than by physical arguments. Thus, no relation of the

coefficients in the equation to the elastic and viscous constants of the material of the colliding
bodies could be derived from his model.

Other theoretical approaches [9,10] were discussed in a recent article by Dilley ill]. He

found that they do not describe well the above mentioned experimental results and presented

a new collision model based on the assumption of viscous dissipation of energy. First, the

particles are treated as point masses Both the deformation and its time derivative appear

in the first power, and the coefficient of the deformation velocity is made dependent on the

impact velocity via a power law The spherical shape of the particles is taken into account by
introducing some effects of the Hertz theory "by hand". This procedure allows for a good fit to

results of experiments with clean ice spheres [3] but requires the right choice of three constants

(coefficients of actual deformation and velocity, exponent of the impact velocity) which cannot

be found
a priori.

In this paper which is part of more general investigations on granular material [12] we

propose an extension of Hertz's theory starting with the consideration of the stresses exerted

on the bodies m contact due to their elastic and viscous properties. Following the algorithm
used by Hertz [1,13,14]

a
differential equation for the time dependence of the compression

is derived Its coefficients depend on the material properties of the colliding bodies and also

on the curvature of their surfaces. The equation is solved numerically for the simple case of

spheres where experimentally obtained data are available for ice at low temperatures [2,3], an

example of importance for further applications of models of inelastic collisions for the dynamics
of planetary rings [15]. A good fit of the theoretical curves for the velocity dependent restitution

coefficient with the experimental ones with different dependencies of the restitution coefficient

on the impact velocity is achieved. Only two coefficients have to be chosen for this purpose
Because these are directly related to the material properties of the particles, this allows the

estimation of the order of the magnitude of the yet unkno~vn viscosity. This ability of our model

is an advantage in comparison to the theory of inelastic impact discussed m [14] u.hich was

intended for the treatment of collisions of metallic bodies. It was based on a static analysis and

the assumption of
a constant mean pressure and led to a restitution coefficient proportional to

the power -1/4 of the impact velocity.

Our model is also compared with the solutions of other differential equations for the compres-

sion, e-g- that one of P6schl's model [8]. Our rigorous model is found to fit certain experimental
results better than the other ones.

Finally,
we discuss possible extensions of the model and experimental investigations which

are required to check our results.
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2. Collision Theory

2. I STRESSES AND DISPLACEMENTS The elastic stress acting on a solid body is given by
the following expression:

a])
=

I(uiib~k + 2~t*
u~k b~kuiij

(1)
3

with u~k "

~~~
+

~"~
being the tensor of the displacements which is derived from the

2 dxk dx~
deformation u, b~k the Kronecker symbol, K the compression modulus and ~t* the shear mod-

ulus. The latter two are related to the Young modulus E and the Poisson ratio u respectively
and the LamA constants which

we will denote here with ii and >II via

~
3 (1~ 2u) ~~ ~

~~~

~~ 2(1~ u) ~~~ ~~~

We will further use the notation in terms of the Lam4 constants which allows us to benefit

from the analogy between the formulae describing elastic and viscous phenomena. Then the

elastic stress tensor can be written m the form:

a)~
"

~IUllbik + 2~lIU~k (3)

The viscous stress tensor is expressed m terms of the displacement velocity fi~ki

a~(
"

~IUllbJ + 2~llUzk (4)

with the bulk viscosity ~I and the shear viscosity ~Ii Thus, one has for the total stress

a~k "
a)~ + a~(

"
~lUllb~k + 2~iiU~k + l/lUilbik + 2~ilUik (~)

which yields (remember that the force can be expressed as
dark/dxk) the following dynamical

equation for the continuum medium:

(~i + hi V (V u) + hi Au + (~i + ii) V (V h) + ii Au
=

pfi (6)

We introduce
as the characteristic scale R and the characteristic velocity vu of the problem

the particle's radius and velocity, respectively Then
T =

R/uo will be the characteristic

time. Taking into account that iii/p
"

c) and Iii + 2111)/P
"

cl, where cl and ct are the

longitudinal and transversal sound speed in the material, one can rescale the variables and

rewrite the equation in the following way (for simplicity we keep the same notations for the

rescaled variables as for the original ones).

2

(V~ VV.)
u +

~~ (VV
u + c (fl (V~ VV u +'f (VV u)

=

c~fi (7)
ct

where
c =

(vo/ct), and fl
=

~i/(pRct), 'f =
Ii + 2~ii)/(pRct). One can see that if the

characteristic velocity of the problem is much less than the speed of the sound m the material,

e. if c « 1, and if the dissipation in the bulk is low, that means that the coefficients fl, +f are

of the order of unity, one can use the quasistatic approximation

(V~ VV.)
u + ~i) (VV

u =
0 (8)

ct

~
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Thus, iii the quasistatic approximation the displacement field u(r, t) in the material coincides

~vith the one for the static problem u(r) Note that
m the static case onl» the elastic stress

is present. The static (elastic) contact problem had already been solved by Hemrich Hertz in

188? [ii Before we deal with the generalization on the viscoelastic case, u,e will sl;etch briefly
the main results of this classical theory (for details see e.g. [13])

ive assume for simplicity that only normal forces ~vith respect to the contact area act between

two solid bodies labeled and 2 Their surfaces in the contact region will be flattened Using

a coordinate system centered in the middle of the contact region where we set z =
0. one can

write the following equation

JI~~ + ivy~ + u=i + i~=2 "
fi (9)

~vhere u~i " ii=i I-r, y) and uz2 =
u=2(r, y) ii-c z-components of the displacements in the

material of the bodies on the plane
z =

0, fi is the sum of the compressions of both bodies
in

the centre of the contact area while the constants ill and N are related to the radii of cun~ature

of the surfaces in contact via relations (cf. [1,13] ).

2(fit+N)
=

+ +
,

+
Ri R2 Ri RI

~~~~ ~~~ Ii /~
~

~ /[ ~ /[ ~

+2cos2~ + [10)
Ri R2 Ri R2

where Ri> R2 and R[, R[ are the principal radii of curvature of the tu.o bodies and qJ is the

angle between the planes corresponding to the curvature radii Ri and R[ The values of u~i

and uz2 may be expressed m terms of the normal pressure fix, y), that acts between the

bodies m the plane
z =

0

uzilx, Y, o)
=

hi
/ / ~ ~'~" ~'~ dz'dy'

7r r

Uz2(/,Y')
"

~h2 / / ~~~"~'~
dJ"d§' (11)

7r r

Here
r =

j(x ~')2 + Iv y')~, and 11
=

~~ ~ ~~~~
i =

2 The normal pressure P~
~(i (~( + ~(i)

is simply related to the total normal force F~'

3F~~ ~(12)
~'z(~>Y)

" fi a~ b2

where a and b are the semiaxes of the contact ellipse. The latter values as well as the compres-

sion
h may be found from the set of equations [1,13,14]

~
"

~[~ %~ /ia2 +
I[b2

+ q) q
" ~~l~~ l~~l~~

F~'D j°° dq 2F~'D b~E(k) a~I((kj
~~ j o~

ia2 + q)/ia2 + q) ib2 + q) q ~ a2bib2 n2)

~ ~~~
ib2 +

)~/ia~~)
q) ib2 + q) q

~~ ~
~~~

~~~
~~~~
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with D
=

(3/4) (hi + h2) and Elk) and I<(k) being the Jacobian elliptic functions m usual

notation [16,17]. k
=

@fi16
is the eccentricity of the contact ellipse (b > a without

restrictions for generality). The size of this ellipse depends on the normal force, its semiaxes a

and b are related to F~' via the second and third of the above equations. Using this dependence,
from the first of equations (13) Hertz's famous solution of the elastic contact problem can be

derived [1,13,14]: for all bodies in contact the total elastic force and the compression are

related by a power law

F~'(h)
=

const h~/~ (14)

with a constant depending on the elastic constants of the materials and on the local curvatures

of the surfaces of the colliding bodies. If we assume that both bodies consist of the same

material, in the case of spherical particles the above equation reads:

~~

2E4
j~3/2 (15)~ ~~~

3 (1 u2)

where fl
=

RiR2/(Ri + R2) and Ri, R2 are radii of particles in contact.

The most important property of the solution of the elastic contact problem is that the

displacement fields ui (r) and u2(r)
are completely defined by the value of F~', and thus by the

value of the compression h To emphasize this
we write u(r)

=
u(r, fi) so that the displacement

field parametrically depends on the compression. We obtain for the field of the displacement
velocities

m the quasistatic approximation:

i1[r, t)
=

h ~~(j ~~
(1G)

Now we turn to the calculation of the dissipative part of the stress. We assume for simplicity
that the colliding particles are of the same material. The general case may also be considered

using an appropriate coordinate rescaling.
Using (16) we can write for the dissipative part of the stress tensor

°~( ~l
(

(l/IUllbik + 2l/IIUIk) h (°~~ (~I
~+ l/I> ~II

~+ l/II) (l~)

Here we emphasize that the expression in the curled brackets in the right-hand side of the

above equation is the same one as for the elastic stress with the only difference that the viscous

constants are substituted by the elastic ones. Note that the component a][ of the elastic stress

is equal to the normal pressure Pz at the plane
z =

0, which is given above Namely, we have

We transform the coordinates m the following way

x=az',g=oy',z=z' (19)

with

° )i ~~ ())~
~~°~

and obtain-

~/~

It
+

)
+
1)

+ ~~/~~t i ~~ Ill
+
II

+
Ill

+ ~~~~t,

/~i ~~~
~

~~i ~~~ ~~2 /~2 ~~~~



1730 JOURNAL DE PHYSIQUE II N°11

Applying the operator fi d/dh
on the last expression in the preceding equation we obtain the

viscous stress

°~~~~'~'~~ ~ ~i ~~i ~~~
~~2

~~2 ~~~~

The total viscous force may be obtained by integrating the viscous stress over the contact area,

yielding the following result-

~~~~ ~~ ~
h~~~~~~

~~~~

Wilere

'~ ~
~ ~ ~~~

~I

~q~~ ~~
~~~ ~~~

(24)

From the last equation one can find the general relation for the total force which acts between

two viscoelastic bodies colliding
in

the quasistatic regime-

F
=

const h~/~ +
~

A fi~/~h (25)
2

The constant in
this equation coincides with that one for the elastic force so that equation (25)

reads e-g for spherical particles:

As one can see from the above uations, the total force
the lliding particles exceeds

the elastic
force

in the first stage of the llision when h >
0, and the

efficiently than in the elastic case. The maximal
compression is thus less than in an lastic

collision
On the other hand,

when
the particles move away from

each

other and h < o,

the force is less than in the elastic case and yields a lower

postcollisional velocity is
ower than the one. Their

e~ =
hjt~ if hjoj (27j

For an interpretation of the constant A we notice that the viscous constants ~I/II can be

written as follows:

~I/II =
Tv,sir/II 1281

where Tv,~ is the relaxation time for the dissipative processes in the material accompanying
the time-dependent deformation. If we assume for simplicity that the relaxation times are the

same for both viscous coefficients, one can see from this equation as well as from the definition

of A that A m Tv,~. Furthermore, the order of magnitude of h is h/t~ Thus, one can write

A h~/~h
re

Ah~/~/tc
m (Tv,~/tc) h~/~ (29)

If the viscous relaxation time is much shoI.ter than the duration of the collision- (Tv,~ /tc) « 1,

one can write the total force in the following form:

F
=

const (h + A
)~~~

(30)

The familiarity between equations (25) and (30) can also be demonstrated by an expansion in

a power series of the latter. We note that the approximative formula (30) can be obtained by
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considering u and fi in equation (6) as independent variables [7j, ~vhich is in reality not the

case.

We conclude that in the quasistatic regime in the case of moderate bulk viscosity all the

results for the elastic contact theory may be used if instead of the compression h the renor-

malized one h + Ah is substituted in the relations. In Section 3 we will compare the solutions

for both equations
With the viscous relaxation time one can also estimate the coefficients fl and 7 introduced

above. We obtain e g. fl
=

~I/(pRct)
r-

(Tv,~ct )/R (assuming ii * )II ). That means that the

case of moderate viscosity corresponds to the condition (Tv,sct) /R
r-

2.2, INFLUENCE OF THE SHAPE OF THE COLLIDING PARTICLES. Particles in granular gases
have a wide distribution of masses, radii, and curvatures at the point of contact. Therefore,

for practical simulations of the evolution of the granular gases one should know how the shape
of the particles influences their collisional behaviour and ho~v the shapes of the particles are

distributed

We will now briefly discuss the influence of the curvature of the particle surfaces in the

vicinity of the point of contact in analogy to the elastic case already discussed in [14j From

equations (13) follows-

~~ ~ ~ ~~ ~~ ~

i
11

2) I~(k) j~k~)
~~~~

We see that the eccentricity of the contact ellipse depends only on the ratio Jf/N,
e finally

on the curvature of the two bodies in the point of contact. The force acting between them and

their material &~~ill only affect the absolute size of the contact figure From equations (13) also

the relation between force and compression

~ ~~~~~ ~Ii(k~~E(k) ~~~~ ~~~~

can be obtained, and equation (25) for the viscoelastic force can be rewritten.

F
=

$ ~~~~
fi~~~

~~~
(I((k))~~/~

h~/~
+ ~Ah~"h) (33)

2D Nk' 2

With the reduced mass ~ =
mim2/(mi + m2) we can write the following dynamical equation

for the collision of nonspherical viscoelastic particles:

ii +
fi ~~~~~ )~~~

~~~
(Ii(k))~~/~

h~/~
+

Ah~/~h)
=

0 (34)
2~D Nk 2

with the initial conditions fi(0)
= gN and h(0)

=
0 gN is the precollisional velocity. The last

equation (34) and the dynamical equation with the force (26) have both the same form except

for the factor
~~~

(= ~
~~~~

fi~~~ (IV(k))~~/~ (35)
2pD Nk

which takes the value (~ph =

~~i
in the case of spherical particles This shows that the

3 ii
u

problem of the collision of particles with non-spherically curved surfaces can
successfully be

mapped onto the corresponding collision problem for spherical particles after an appropriate

JOURNAL DE FHYSIQIJE J1 T 3, N° 11, NOVEMBER 1W3 33
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rescahng of the initial particle velocities. We see that the collision problem for the spherical
particles is actually a "benchmark" problem for the treatment of binary collision processes.

We also see that for simulations of the evolution of granular gases the distribution of the

shapes of the particles can be characterized by the distribution of the value of (, which may
be considered as a stochastic variable The restitution coefficient can then be calculated as a

function not only of the impact velocity, but also of the stochastic variable ( Therefore for

the dynamical description of granular material one has to solve the twofold problem

ii) calculation of the restitution coefficient EN (gN, ()

iii) evaluation of the distribution function f(().

As we have just noticed, the first problem can be reduced after an appropriate rescaling to

the calculation of the restitution coefficient for colliding spherical particles as a function of the

impact velocity, e of EN (gN
To find the distribution function for the variable (, an approximation for the elliptic integrals

by means of elementary functions is useful. Because the usual approximations of high precision
for the Jacobian elliptic function [17] also contain logarithmic terms they cannot be easily solved

in k Thus, we tried to express the factor
in

k in equation (34)
in terms of the ratio 3f/N

in

equation (31) by a simple numerical fit. We found:

~~~~~i~~~~ " 1125ji
~

k2)o66s
l~~)

The eccentricity k of the contact ellipse can be estimated from the ratio JI/N approximately

as

~~~

k re 1-
(

j37)
~

We can now express the factor
m k

in tei ins of this ratio as follows

iv 1315

K(k) Elk)

&?~

~~~~k~ '~

1 125 (()° ~~~

The deviations of our fits (36) and (37) from the values obtained by using the "polynomial"
approximations [17] turn out to be less than %. This justifies the use of these rather simple

fits for the further treatment of collisions of non-spherical bodies

Finally we give one of the "polynomial" approximations for I((k) (cf. [17j). Ii(k)
=

(ao

+ai Ii k~) + a2(1 k~ )~) + (bo + bill k~) + b2(1 k~)~) ln
~~

with ao "
3862944,

al "
0 1119723, a2 "

0.0725296 and bo
"

0.5, hi
"

0.1213478, b2
"

0 0288729. Substituting
the above expressions into the dynamic equation, one can solve it numerically~ and find the

restitution coefficient

In the following we will only deal with spherical particles because this is a "benchmark"

model, and besides, it is the only case ~vhere up to now experimental data are available which

are of interest for our applications.

3. Comparison of Collision Models with Experimental Results

We have solved numerically the differential equation

fi
=

FN (39)
P
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for forces FN given by equations (25) and (30) and with the initial conditions h(0)
=

0 and

h(0)
= gN, I-e for zero initial deformation and a given impact velocity. From the value g[

of the relative velocity at the end of the contact between the two bodies the normal restitu-

tion coefficient has been calculated Its dependence eN(gN)
on the impact velocity has been

compared with the results of experiments [2, 3j In these experiments, spherical ice particles
~vith a diameter of some centimeters hit a plane ice block which can be considered to be a

sphere of infinite radius. The reduced radius h
is then equal to the radius of the ice sphere.

The conditions were chosen to reflect those typical for planetary rings. the temperature was

T ts 150 K, the impact velocities were in the order of some centimeters per second or less, the

apparatus was mounted
in an evacuated container.

We have also estimated the time dependence of the deformation and of the relative velocity
during the collision.

The same was done with differential equations for other collision models which we ~vill briefly
discuss here As already mentioned, P6schl [8] proposed to include the dissipative effects due

to the nonelasticity of the material
in

form of a port,er law of the relative velocitj~, I-e- to

formulate an equation of the form

h + Aih~/~ + A21~
=

o (40)

with a constant A2 and
an exponent a as fitting parameters. As above, h denotes the com-

pression ~Ve have abbreviated Ai
=

~ ~~
With respect to the analytical integrability

3 p(1- u2)
of this equation, thus only motivated by mathematical convenience, P6schl tool< a =

2 and

obtained a dependence of fi (fi) in form of a power series. We have examined also the behm~iour

of the solution of equation (40) for other exponents, namely
a =

3/2 [15]. This choice can

be motivated heuristically by arguing that the curved shape of the surfaces in contact would

affect the dependence of the force on the time derivative of the deformation in a similar way

as the one on the deformation itself.

For numerical convenience we scaled the differential equation (25) by a characteristic length

lo and a characteristic time to according to h
=

lox and t
=

toi. The scaling values lo and to

have been determined using the results of Hertz's theory for a non-dissipative collision of two

spheres with the ~~oung modulus E
=

Ei
"

E2 and the Poisson ratio u = vi " u2. For these

calculations we have taken gN =
cm/s, which has been a characteristic impact velocity in

the experiments [2, 3] In the following the scaled velocities are labeled by VN

With these scalings and assuming typical values for ice at low temperatures [18]. the Young
modulus E m 10 GPa, the mean density (p) m

10~ kg m~~,
a Poisson ratio u m 0 3, and a

typical particle size
h

m
10~~ m, one obtains the scaling values lo "

10~~R and to "
10~~

s and

the constant Ai
m 1. The above values of the material constants are valid for temperatures

of about -3.5 °C which is quite too high compared with the conditions in planetary rings
This raises the necessity of extended investigations of the material properties of ice at low

temperatures, and thus, the above values have to be considered as approximations

Analogous scalings were made for the differential equations of the type (40). The problem

is that it is not always easy to relate the constant -42 to the physical properties of the material

except in the case of a =
3/2 where this is possible at least concerning the dimension

In Figure la the results for the time dependence of the deformation are shown for au initial

(impact) velocity of VN
"

1 for these different models and compared with the results of Hertz's

model. Using the above material parameters, the constants take the values of ~41 "
and A2

=

o 7 Figure 16 sho~vs the time dependence of the relative velocity. We remember ottr discussion
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Fig 1 a) Time dependence of the deforniation for
an impact velocity of1 cm/s Solid line Hertz's

model (elastic collision) Long dashes Solution of equation (25) short dashes solution oi equation

(30) Dots Poschl's model b) Time dependence of the deformation velocity for
an impact velocity

of1 cm/s Solid line Hertz's model (elastic collision). Long dashes Solution of equation (25) Short

dashes Solution of equation (30) Dots Poschl's model
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of the collision process in the context of equation (26) ~vhich is very well illustrated by these

figures It can easily be seen that the presence of the dissipative terms leads to a more efficient

deceleration
in

the first and to a lower acceleration
in

the second stage of the collision This

is the case for all three models which have been examined At the end of an inelastic collision

which is reached when the acceleration has dropped to zero, a certain perinanent deformation

remains. These, of course, are common features of all three models Differences are visible

especially
in the first stage of the collision, in particular in the time dependence of the relative

velocity (Fig 16). The curve which we have obtained from equation (25) sho~n.s a behaviour

similar to the one of Hertz's model: the deceleration is very low at the beginning of the collision,
but increases later Iii contrary, equations (40) (with

a =
2) and (30) lead to curves where the

deceleration already has a significant value at the beginning of the collision and then undergoes
only little changes over a quite long time range This indicates that different models might be

suitable for different types of material of the colliding bodies although the behaviour in the

latter case seems to be quite unconventional for most materials

The dependence of the restitution coefficient
E~V on the imp~Lct velocity gN is shown

in

Figures 2a-c where we compare our numerical results with the experimental ones [2, 3]. Here

the constants have been chosen in a n~ay that the best fit to the experimental curves is achieved.

We find that the results of our model with the forces given by equations (25) and (30) agree

very well ~vith the experimental curves obtained for frost covered ice spheres, not~vithstanding
the abovementioned different behaviour

in the first stage of the collision. Also the model with

o =
3/2 shows a quite good agreement [15]. P6schl's model (a

=
2) gives decreasing values

of the restitution coefficient with increasing velocity, ~vhich is qualitatively right. lJut doesn't

provide a good agreement with these experimental curves. We have found that the choice

a =
1 leads to results in complete contradiction to the experiments However, in a previous

work [15j we had already demonstrated that no matter ho~v the constants are chosen the best

fit for an equation of the type (40) is not reached for both exponents being equal to 3/? but

for somewhat different values This might indicate the presence of mixed terms in
both h and

fi.. Thus,
our model seems to be preferable It shows the best agreement with the experimental

results for frost covered objects, and it has the advantage that only the two constants Ai and

A2 have to be estimated.

One problem in this comparison (already mentioned in [11]) is the following: since in the

experiments the ice balls >.ere mounted on an apparatus, the dependence of EN on the particle

mass could not be estimated If this dependence is kno~n.n, we are able to estimate unknown

material constants, in
particular the viscosity, from fitting our curves to the experimental ones.

Here we can only estimate the order of the magnitude With the above values of Ai and ~42

~ve are led to viscosities of about 10 MPa s [15]. This quite low value indicates a really soft

surface like a frost layer Apparently, the main processes of the collision take place
in

this

ielativelj, thin layer This is plausible regarding the lo~v collision velocities and sniall masses

of the bodies in the experiments An improved kno~vledge of the material constants which can

only be obtained by new measurements will ~Lllow more conclusive statements

Surprisingly, our model does not seem to &~-ork for ice spheres which &~,ere designed to have

very clean surfaces where an exponential fit instead of a power law had been found [3]. This

indicates that other than purely viscoelastic phenomena ion n,hich our model is
based) play a

role
in these collisions However, a cur~.e obtained from P6schl's model ~vith a =

2 shows in

this case not a perfect. but a better agreement than the ones we got from our model

In the experiments [3) a compression of the initial frost layer was observed, which caused

the surface of the particles to smooth after some collisions, and a saturation effect was found

in the dependence of EN on the number of collisions a particle had survived. Because in these
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Fig 2 a) Restitution coefficient EN us. impact velocity gN comparison of
our

model with

the experiments made with frost covered spheres [2j Dash-dotted experimentally obtained
curve

Dashes curve obtained using equation (30). Solid line
curve

obtained using equation (25)
b) Restitution coefficient EN us impact velocity gN comparison of

our
model with the experi-

iuents made with frost covered spheres [3j Dash-dotted experimentally obtained curve Dashes

curve
obtained using equation (30) Solid line

curve
obtained using equation (25) c) Restitution

coefficient EN us impact velocity gN comparison of Poschl's model with the experiments performed
with clean, smooth spheres [3j Dashed experimentally obtained curve Solid line Poschl's model

with A2
=

0 75

experiments the particles hit the ice brick only ~vith one and the same side, we believe that

this behaviour is in reality more complicated. In particular, continued brittle fracture is likely

to produce a quite soft surface layer ~vhich,
in turn, can protect the bull< material from further

destruction Thus, we do not consider this case to be relevant for our applications.

In addition, the surfaces of particles in natural systems are usually not as clean as it is

possible to produce in a laboratory. They may be covered ~vith mineral dust or other material.

In particular, particles in planetary rings which have already survived many collisions from

several sides during the loitg existence of the system are unlikely to have smooth suifaces.
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4. Conclusions

In the present study we have developed a theoretical model for the collision of viscoelastic

particles. We have used
a quasistatic approximation which corresponds to the case where the

collision velocity is much lower than the sound speed in the material The expression for the

total viscoelastic force is then a generalization of the &~~elLknown Hertz relation 11,13] for the

elastic contact problem. An explicit relation has been obtained for the force acting between

spherical colliding particles. The general case of the collision of particles of arbitrary shape

may be mapped onto the collision problem for spherical particles The theoretical results

for the restitution coefficient have been compared with experimental data for spherical icy
particles [2,3].

Our model is based on
simple viscoelastic phenomena It provides a very satisfying agreement

with experimental estimations of the restitution coefficient of frost covered ice spheres The

low value of the viscosity which could be estimated approximately from our theory agrees
well with the assumption, that the main processes of the collision take place

in
this quite soft

layer, whose properties may resemble to a fluid. We assume that this case is most relevant

for applications towards the evolution of planetary rings, because during the long time of the

formation of these systems the particles have already survived many collisions which may have

fractured their surfaces. This and the fact, that the ring particles seem to be covered with

dust, will contribute to surface properties similar to those of the frost layer in the experiments.

The worse agreement ~vith the experimental results for spheres which were designed to have

very clean surfaces can be explained by the experience that ice especially at very low temper-

atures is a very brittle material. Consequently, instead of viscoelasticity, fracturing processes

will govern these collisions even at low impact velocities. This is likely to produce fractal sur-

faces Preliminary investigations jig] have shown that the model according to equation (40) is

more suitable for this type of surfaces

The comparison with the results of the different experiments shows that the processes gov-

erning the collisions of icy objects found e.g in
planetary rings seem to be more complicated

than pure viscoelasticity We can therefore state that the collisional behaviour in normal di-

rection is influenced not only by the properties of the bull< material, but also by the properties
of the surfaces. This should be proved by a microscopic examination of ice spheres used in

such experiments.
It is also necessary to estimate the influence of the mass of the particles on the outcome of the

collisions, and we think that new experiments, perhaps using particles falling in an evacuated

tube, can help to clarify these problems.
A comparison should also be made ~vith experiments with bodies consisting of other material

(e g. metal) with known viscous and elastic properties. Furthermore, the material constants

of ice at low temperatures as ii the experiments should be estimated

Topics of future theoretical interest are the physical meaning of the constants and exponents

in equations of the type (40) which may be more suitable for the treatment of bodies consisting

of special materials or having particular surface geometries and the solution of the collision

problem without the assumption of quasistationarity.

Acknowledgments

We would like to thank the referees for their comments which helped to make the paper more

readable. In particular we address our thanks to Jean-Marc Petit, Observatoire de Nice, ~vho

checked very carefully our calculations helping to make the paper moie convincing



1738 JOURNAL DE PHYSIQUE II N°11

References

iii Hertz H
,

J Reme Angeiv Math 92 (1882) 156

[2j Bridges F G Hatzes A and Lin D N C., Nature 309 (1984) 333

[3] Hatzes A, Bridges F G and LmD N C, Mon Not R Astr Soc 231(1988)1091

[4] Cuz21 J N
,

Lissauer J J
,

Esposito L. W
,

Holberg J B Marouf E A
,

Tyler G L and Boischot

A
,

Saturn's Rings Properties and Processes, In "Planetary Rings". R Greenberg and A Brahic,

Eds (The University of Arizona Press, Tucson, 1984)

[5] Wiesel W, Icarits 71 (1987) 78

[6] Hatzes A
,

Bridges F G., Lm D N C, and Sachtjen S, Icarus 89 (1991) 113

[7] Spahn F
,

Scholl H and Hertzsch J -M
,

Icarus (to appear, 1994)

[8] Poschl Th, Zeitschr Phys 46 (1928) 142, See also Handbuch der Physik, El Geiger and Ii

Scheel, Eds (Springer, Berlin, 1928) VOI G, pp 547-550

[9] Andrews J P, Philos Mag 9 (1930) 593

[10] Tabor D, Proc Roy Soc A 172 (1948) 24i

[11] Dilley J P, Icarus los (1993) 225

[12] Brilhantov N V, Spahn F, Hertzsch J -M and Poschel Th, A model for collisions
m

granular

gases, submitted to Phys Rev E

[13] Landau L D and Lifschitz E M, Lehrbuch der theoretischen Physik, Elastizititstheorie

(Akademie-Verlag Berlin. 1965)

[14] Johnson K L
,

Contact mechanics (Carubridge University Press, Cambridge, 1985)

[15] Spahn F, Hertzsch J -M and Brilhantov N V The role of particle collisions for the dynamics

m
planetary rings In Proceedings of the ~VE-Heraeiis-Semmar 1993 m

Caputh

[16] Grobner W and Hofreiter N, Integraltafel Teil Unbestimmte Integrale 2 Ted Bestimmte

Integrale (Springer Verlag Berlin, Heidelberg~ New York~ 1965~1966)

[17] if Abramowitz and I Stegun. Eds, Handbook of Matheniatical Functions (Dover Publications,

New ~'ork. 1970)

[t8] Landolt-Bornstem, New Series. VOI V/16 (Springer Verlag~ Berlin, Heidelberg, New York~ 1982)

[19] Poschel Th private communication


