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R4sumd. A partir d'une estimation de la dissipation visqueuse, nous avons pr6cedem-
ment 6valu4 la viscosit4 apparente de cisaillement des suspensions homogbnes de sphbres dures

monodisperses et non Browmennes dans les systbmes dilu4s ou concentrds. Nous utilisons la

d6pendance de la viscosit6 de cisaillement
avec

la distance moyenne entre les particules pour

d6terminer les composantes d'un tenseur local de contraintes associ6 h l'amas transitoire de

particules au dessus de la fraction volumique critique de percolation Nous developpons pour

cela un modble bask
sur les forces de lubrification s'exeriant au cours des collisions entre les

particules afin de coupler le tenseur local de contraintes associd aux particules et le tenseur des

contraintes dans la suspension assimilde h un
milieu effectif. Dans le

cas
des dcoulements non

uniformes prdsentant des zones de foible cisaillement, il est ndcessaire de considdrer un tenseur

non local des contralntes car les forces peuvent alors se transmettre directement h travers l'amas

de particules
sur une longueur de corrdlation supdrieure au

diambtre des particules Cette ap-
proche montre que la migration des particules dans un dcoulement est mduite par les variations

spatiales de la contrainte tangentielle Les prdvisions du modble relatives aux profils de concen-

trations en particules dans un dcoulement de Couette
ou dans un dcoulement de Poiseuille plan

sont en bon accord avec les donndes exp6rimentales de la littdrature

Abstract. The apparent shear viscosity, in the non-Browman Ilmit, for a homogeneous

suspension of monodispersed hard spheres in systems ranging from dilute to concentrated
was

previously established. From an
estimation of the viscous

dissipation. We use
the inter-particle

distance dependence of the shear viscosity for determining the components of
a

local stress tensor

associated with the transient network of particles for the volume fraction above the percolation
threshold. For this purpose, we

develop
a

model based on lubrication forces between colliding
particles for coupling the particle stress tensor to the stress tensor of the suspension considered

as

an
effective medium. In the case of non-uniform flows with low shear rate regions, it is necessary

to introduce
a

non-local stress tensor since the stress can
be directly transmitted by the network

of particles over a
correlation length larger than the particle diameter. This approach shows
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that particle migration in
a

flow
is

induced by the spatial variation of the tangential shear stress.

Predictions of the model for the equilibrium concentration profiles in Couette flow or in plane
Poiseuille flow

are
found to be in good agreement with available experimental data

1. Introduction

Computing the effective shear viscosity of a suspension is a well known and long standing prob-
lem in fluid mechanics. The basic problem for suspensions is how to compute the momentum

transfer using the microstructural mechanics. More than half a century passed between the

early work of Einstein presented as his thesis Ill, and the work of Batchelor and Green [2].
Batchelor and Green extended Einstein's formula to second order in sphere volume fraction #:

/114)
=

/1o(1 + 2.54 + k4~) Ii)

where
~Lo

is the viscosity of the suspending liquid medium The k coefficient depends on both

the two-particle hydrodynamic interactions and the suspension microstructure through the pair
distribution function. By making plausible assumptions about particle collision in a well mixed

suspension of hard spheres, Batchelor and Green found that k m 5.2 [2].
For concentrated suspensions of non-Brownian hard spheres in a viscous flow, one has to be

able to compute the many~body interactions and determine the microstructure configuration.
Two important approaches were developed in the last few years: a calculation by Beenakker [3]
based on the method of Mazur and Van Saarlos, and numerical simulations based on Stokesian

dynamics by Bossis and Brady [4].
In the first Section, we recall the expression of the apparent shear-viscosity in the non-

Brownian limit of a homogeneous suspension of monodispersed spheres for systems ranging
from dilute to concentrated [5, 6]. A collection of monodispersed spheres suspended in a viscous

liquid constitutes a single scaled system A mean approach was then used for determining the

viscous dissipation in the suspending fluid. The basis for this calculation is the relationship
between the characteristic mesoscopic scale of the system (the

mean distance between particles)
and the volume fraction which was derived from statistical arguments.

In the second Section, starting from a homogeneous suspension m a
flow, we examine how

the shear induced particle migration may lead to strongly inhomogeneous concentration pro-
files. Recently, Leighton and Acrivos [7] proposed a mechanism for particle migration in non-

homogeneous shear flows. Leighton and Acrivos assume that a driving force perpendicular to

shear planes is resulting from both the effects of spatially varying interparticle interaction and

effective viscosity.
A modified version was later proposed by Phillips et al. [8] who derived a diffusion equation

for describing the time dependence evolution of particle concentration profiles This approach
is based upon the effects of irreversible two-body interactions. The equilibrium concentra-

tion profile obtained for
a given flow depends on an experimentally determined adjustable

parameter.

In this work, we introduce a stress tensor associated with the transient network of particles
for volume fractions above a percolation threshold. The stress tensor components are derived

from the previously established relationship relating the apparent viscosity to the meP n distance

between particles. Finally, we deduce the diffusive flux of particles in the direction transverse

to the mean flow and the steady state concentration profile without any adjustable parameter.
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2. Apparent Shear Viscosity of Suspensions of Hard Spheres

We consider an elementary volume containing fluid (density pi) and hard particles (density pp)
m purely hydrodynamic interactions. The volume averaged velocity field V is

V=#Vp+(I-#)Vf

where Vp and Vi are the volume-averaged velocities of particles and fluid, respectively, and #
the particle volume fraction. The suspension is incompressible

divv
=

0.

The velocity field is governed by a transport equation for the momentum

< p > dtv
=

-grad p + divT + F (2)

where p is the pressure, < p >= #pp + (I #)pf is the mean density of the suspension considered

as an effective continuous medium, dt is the substantial derivative and F the external force per

unit volume. In a stationary flow at low Reynolds number, the left term in equation (2) can

be neglected. In a simple shear flow, the relationship between the viscous stress tensor and the

rate of strain tensor further reduces to

T =
/L(4,1°)1° (3)

where ~L(#, j°) is the apparent shear viscosity of the suspension and j° is the shear rate.

In a previous study [5, 6], a relationship between the effective shear viscosity p(#,j°) and

the mean distance d(#) between particles (radius a) was established. The viscous dissipation

can be expressed as the square of the ratio of the mean velocity variation (vi of fluid between

particles (scaling
as

j°a) and the characteristic length d of the flow between particles

dtD
-

~1(<)~f°~ = /Lo ?l~
~

(1 <). (4)

In the concentrated regime 11 > 0.2), the apparent shear viscosity is further well fitted by
the following expression (5) proposed in our previous papers [5,6]

P(4)
= ~lo

~~

~~ ~((~~
(5)

where qi* is the critical volume fraction relative to the transition threshold between the fluid

state and the solid state

The random dense packing of monodispersed hard spheres is qi~ m o.637 and corresponds to

an isotropic microstructure around the zero shear rate limit. In the high shear rate limit, the

shear forces between particles make the pair distribution function anisotropic along the main

strain axes [7]. The flow-induced amsotropic microstructures (deformation and orientation of

transient clusters in a shear flow) and the maximum packing fraction then closely depend on

the shear rate. In a Couette flow, the maximal packing fraction allowing the flow ofsuspension
is #~ m 0.67.
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3. Shear Induced Particle Migration

3. I. TRANSVERSE DIFFUSIVE FLux. Following a conjecture proposed by de Gennes [8], we

expect a transient infinite cluster above a critical volume fraction corresponding to a percolation
threshold (<per C# o.2).

In the concentrated regime Ii > #~ > piper with fl > I) the strong lubrication interac-

tions between particles thus result in the transmission of viscous stresses through a transient

connected network of spheres. Under uniform shearing conditions, the life time of the infinite

cluster being much shorter than the characteristic flow time I /~t°, the apparent shear viscosity

and the derivative b~/b# are smooth functions of the volume fraction. Nevertheless, a discon-

tinuity could appear above the percolation threshold for the diffusive flux dependence. Hence,

above #~, we consider a stress tensor «p associated with interacting particles and we introduce

two velocity fields as in [9, lo]. The first velocity field V describes the motion of particles
and fluid as an incompressible effective medium and the second one Vp gives the average local

velocity of the neutrally buoyant particles. At low Reynolds number, the vector momentum

equation for both the effective medium and the set of particles (radius a)
can be written as:

o
=

-grad p + div
r

with div V
=

o (6a)

o
=

-# grad p + div «p #poP~
~~

~

~
(fib)

a

where the last term is the external friction force exerted on particles (mean velocity Vp) by
the suspension considered as an effective medium with a mean velocity V. The dimensionless

function p~(#) takes into account the multibody interactions.

Since two-particle hydrodynamic interactions are known to be reversible in Stoke's flow, we

need a source of irreversibility to produce a net lateral displacement of particles ma two-body
collisions. Particle roughness was proposed by Leighton and Acrivos Ill]

as a candidate for

the irreversibility source but, as pointed in [12], the close contact of particles also may lead

to chaotic trajectories and irreversible interactions during two-body collisions. In a transient

cluster, irreversible interactions between particles should give rise to a transverse normal stress

similar to that which occurs in the static "arching" of grains in contact. In a bounded flow,
each particle of the solid phase described by equation (fib) experiences transverse forces either

transmitted from the wall through the connected network over a correlation length ( [13] or

due to the shear stress r m the effective medium described by equation (6a). Both, the shear

rate and the flow geometry may influence the correlation length (. In the case of a uniform

shear field, the length ( is about the mean distance between two particles. On the other hand,
the flattened velocity profile in the core region of a Poiseuille flow increases the correlation

length which then scales as the distance to the channel center. In the very dilute regime and

in the absence of irreversible processes, the time average transverse force is zero.

We propose here a model based on lubrication forces for relating the stress tensor «p and

the mean viscous stress tensor r in the suspension. The diffusive fluxes of particles result

from the mean energy received by colliding particles in the shear flow. During a collision, the

microflows between particles give rise to lubrication drag forces along and perpendicular to

the shear planes. The hydrodynamic drag between colliding spheres scales as the shear stress

component along the shearing surfaces.

The time-averaged lubrication drag force Fh experienced by a
particle (radius a) during a

collision is then proportional to the shear stress force due to the effective medium surrounding

the particles and to the inverse of the dimensionless distance (a Id) between near particles [14]:



N°lo RHEOLOGY AND STRUCTURE OF CONCENTRATED SUSPENSIONS 1601

Fh m
ra~ for ala « (7)

The mean shear stress «p resulting from irreversible particle collisions can be obtained by
multiplying the time-averaged lubrication force Fh by the mean number N m

#la~ of particles

per unit surface in a shear plane-

«p " NF~ ~z
T4~ (8)

Equation (4) established in the first part of this article gives a further relationship between the

effective shear viscosity and the space-averaged distance between particles:

m(4, d) m mo(1 4) ())~ (9)

Substituting equation (9) into equation (8), we then obtain an estimate for the mean stress

tensor in the concentrated regime:

«P ~# T

Ill ~~~

~i i~i/~ (lo)

In the diluted regime, we may no longer use the effective medium concept for deriving the

mean stress tensor which then scales as «p m
#~r [11].

The y component of the vector momentum equation (fib) along a direction perpendicular to

the shearing planes in a creeping flow is:

u
=

-i~o~l~(<) )I + °~a» + d~a~~ + azaz~ (ii)

The last two terms of equation (11) vanish since the components of the stress tensor are

constant along the shearing planes.
We finally obtain for the transverse diffusive flux of particles:

J
= <VP -

-S i [~ll~~[lil~l(12)
where ~r(#) is the relative effective shear viscosity.

It follows from equation (12) that the transverse diffusive flux of particles is not dependent

upon the viscosity of the free suspending fluid in agreement with the experimental results from

Abbot et al. [15]. The diffusive flux dependence on the square of particle radius would lead to

strong segregation effects in flows of highly polydispersed concentrated suspensions or granular
media considered as fluids.

3.2. STEADY STATE CONCENTRATION PROFILE. The diffusion equation in a Eulerian

reference frame is written as

Dt4 + div J
=

0

where Dt
=

at + v is the material time derivative. For viscometric flows, the term v.grad is

clearly zero and the diffusion equation then takes the following form:

dt4 + div J
=

o
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Under steady state conditions in viscometric flows, the condition for equilibrium concentra-

tion profiles implies zero transverse diffusive flux everywhere in the flow:

~
"

$l (/~~()i/2j
"

° ~~~~

Integrating this equation over the space variable y with an integration constant fixed by
the boundary conditions then gives the equilibrium concentration profile over the flow cross

section:

~~
_)~l/2 l~l/~~

"

~~

_)
~l/2

ill[~~W (14)
w

where the subscript "w" refers to the wall.

As a remark, we note that in flow between plane parallel plates with relative motion, no

migration is predicted by the model as observed experimentally On the other hand, in Cou-

ette flow or in Poiseuille flow, the space variation of the shear stress along the y direction

perpendicular to the shear planes induces migration.

3.3 COUETTE FLOW For a Couette flow, the 0 component of the vector momentum

equation m cylindrical coordinates yields:

[drjr~T~~)
=

0 jls)
r

Integrating equation (15) over the space variable
r gives:

Tr@ #

j
(16)

r

Substituting the expression of the shear stress into equation (14),
we obtain-

(i -11))1/2 ~~~~l (i -t)1/2~~~~k ~~~~

where the subscript "w" refers to the outer cylinder (r
=

Rw).
Equation (17) together with expression (5) of the effective shear viscosity gives the particle

volume fraction #(r) over the flow cross section:

4(r) Rw ~ j~

(1 4(r)/4~) / " (1 #~ /j~~ "
~ (18)

We finally obtain

#(r) I

?
I + fi Ii+l~ ~~~~

for R, < r < Rw and # > #~ with-

~
~~ ~~

~j( ~ ~j~~ ~~
~ ~j ~j( j~

(l ~w/~~) ~

~, ~ ~ ~
2

~~
~ ~

where the subscript ~'i" refers to the inner cylinder.
This expression is the same as that recently proposed by Phillips et al. [16]. However, these

authors introduced two mutually compensating incorrect terms in their theoretical formulation.
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0.2 0A 0.6 0.8
r/llw

Fig. 1. Equilibrium concentration profile #(r) along
an axis perpendicular to the velocity field

for suspensions of 675 vm particles m a
Couette flow (inner radius ~

=
0 64 cm and outer radius

Rw
=

2.38 cm) Experimental data from Phillips et al. [16] for particle volume fraction #
=

0 45 (Zi),
#

=
0 50 (O) and #

=
0 55 (o) The soI1d line is obtained from equation (19) with d~

=
0.67 using

the average volume fraction ~ as input of the model

First, the shear stress component along the shearing planes does not appear explicitly in the

diffusion equation, but as the product of the shear viscosity by the shear rate. Secondly,
the expression of the shear stress component given in reference [16] (Tr~ =

parI§ instead

of T~~ =
pd~v~ pv~/r) is not correct, especially in the wide-gap Couette device used in

reference [16].
The theory is compared in Figure I to the data in [16] using the average volume fraction # as

input ofthe model. The relation (19) well describes particle migration in the high concentration

regime. For less concentrated suspensions, the predictions deviate from the experimental data

since the transverse diffusive flux is noticeably decreased in regions close to the inner cylinder
where the local volume fraction derived from equation (19) may be less than the percolation
threshold (Fig. I). However, the predicted transition for the stress tensor «p in the vicinity of

the percolation threshold is clearly supported by the experimental results.

3.4. POISEUILLE FLow. For a Poiseuille flow, the z component of the vector momentum

equation in cylindrical coordinates yields

~d~(rT~z)
=

dzp
= p (20)

r

where dzp is the z component of the pressure gradient driving the flow.

Integrating equation (20) over the space variable
r gives.

~~~

~
~~~~

In cylindrical coordinates, the transverse diffusive flux of particles over the flow cross section

is then given by

J~
=

<up
=

-Sl
[I(r~rr)

~~/rj
(22)
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with

~" ~~~ (i
~)l/2i~~~~~z

Integrating the steady state condition J~
=

o over the space variable
r with an integration

constant fixed by the boundary conditions gives the equilibrium concentration profile over the

flow cross section

(1 ~~)/))~/~~~~~i (i -ij)~/~ ~~~~~~~ ~~~~

where the subscript "W" refers to the outer wall of the channel (r
=

Rw with #(Rw)).
Substituting equation (5) for the relative shear viscosity into equation (23), we then obtain

the equilibrium particle volume fraction #(r) in a Poiseuille flow

~(r)
r ~j~

(I #(r) /#~) Rw (I #w /~~)
~ (24)

which finally gives:

4(r)
~

l
~~~~

j~ i + ~/1

for0>r>Rwand#>#~with

j Rw j~2
A

= ii <1/<~~
<ir)rdr

-

41 and <w
=

<iRw).

The volume fraction profile reaches a maximum #~ at r =
o which reflects particle migration

toward the centre of the channel (Fig. 2). We point out that the packing value is reached after

an infinite time since both the shear rate and the transverse diffusive flux decrease to zero near

the channel axis r =
o.

Expression (25) is similar to the relation obtained through a semi-empirical approach by
Phillips et al. [16]. However, the concentration profile exhibits a sharp cusp near the flow

centre (Fig. 2) which shows the limitations of the present model in the low shear rate regions
of non-uniform flows. A sharp cup also appears in the case of a plane Poiseuille flow between

two infinite parallel plates with a separation distance 2H:

#(Y) 1
(26)

j~ j* y
~ 7H

fore<y<Hand#>4~with

A
= ii li/<~~ £~ <iY)dY

-
<H and <W

-
<iH).

A Non-Local Stress Tensor

As noted earlier, we expect the formation of a transient infinite cluster above the percolation
threshold <per m o.2 [8]. In the concentrated regime, the strong lubrication interactions between

particles thus result in the transmission of stress through a transient connected network of

spheres over a correlation length (.
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Fig. 2. Theoretical equilibrium concentration profiles ~(r) along a radial axis perpendicular to the

velocity field m a
Poiseuille flow for various mean particle volume fraction in the channel with diameter

Rw. The soI1d line is obtained from equation (25) with ~*
=

0 62

The volume fraction dependence of the shear viscosity in a Couette flow displays no slope
discontinuity since the life time of the transient structure over a length ( remains short com-

pared to the eddy diffusion time over the same length. On the other hand, the shear rate at

the centre plane in a planar Poiseuille flow is always zero and therefore the life time of a cluster

can be longer than the eddy diffusion time. Hence, above <per, we consider a non local stress

tensor «( in the centre region of the flow.

For a plane Poiseuille flow, the z component of the vector momentum equation in Cartesian

coordinates yields

d~(T~z)
=

dzP
= P (27)

where dzp is the
z component of the pressure gradient driving the flow between the two infinite

planes y =
~H. Integrating equation (27) over the y space variable gives

T~z =
Py (28)

In a previous section, we determined the stress tensor «p associated with particles by as-

suming that particle collisions in each shear plane isotropically distribute over space a part of

the mean tangential shear stress. This process induces a normal shear stress a~~. The non

local normal stress «( is obtained by integrating over a correlation length y the shear force

transmitted along the chain of particles normally to the shear plane:

ai~ c~ ai
/~~

i~/~ T~zd(yla)
=

i

/~~ ii~ (29)

We then deduce the transverse diffusive flux

~ ~~~ L~lL* ~~~~~ ~~~~
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Integrating the steady state condition J~
=

o over the space variable y with an integration
constant fixed by the boundary conditions, we

find

4(Y) jyj" 4w
~ ~~~~(l 4(v)/4*) H (l 4w/4*)

with a =
2 for o < y < ( and o =

I for ( < y < H.

Then, we obtain an estimate for the equilibrium concentration profile which exhibits no cusp
in the centre region of the flow

#(Y) 1
(32)

#* + ~i Iii) ~

fore§y§Hand#>#~with

A
= ~i li/<~~ £~ <(Y)dY

-
<H and 4w

-
<iH).

Recent experimental results by Koh et al. [12] concerning the flow of concentrated suspensions
(#

=
o.3) in a rectangular channel indeed show concentrations #(y

=
o) m o.62 near the

centre plane close to the predicted random packing volume fraction #~ m o.62 and a strong
blunting of the velocity profile. As a matter of fact, the velocity profile becomes blunted

from the parabolic for particle volume fraction # > o.2 above the percolation threshold [17].
Furthermore, the relatively large slip velocity between particles and fluid for this particular
experimental study shows that the correlation length ( is of the same order as the channel gap.
Under the assumption (

=
H, we thus compare in Figure 3 the experimental data from Koh

et al. [12] to the theoretical concentration profile using the average volume fraction # as input
of the model

#(Y) 1
(33)

4~ 1+ ~i jj~

fore<y<Hand#>#~with:

A
- ~i ill/<~~ £~ <(Y)dY

-
<H and <W

-
<(H).

It is noteworthy that equation (33) derived from a non-local stress tensor provides a good
description of particle migration in planar Poiseuille flow without any adjustable parameter.

In the case of a Poiseuille flow in circular cross section pipe, the diffusive flux expressed
m

cylindrical coordinates obeys a similar relation without cusp near the centre axis r =
o of the

channel (Fig 4):

#(r) I

/
1 ~ #~ (~)~ ~~~~

A Rw

fore<r<Rwand#>#~with

j Rw j~2
A

- ii <1/<~~ <(r)rdr
-

iii and <W
-

<(RW).
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effective medium. This coupling induces a transverse diffusive flux proportional to the diver-

gence of the particle stress tensor. This model shows that migration is initiated by the spatial
variation of the tangential shear stress, instead of the rate of strain. Comparison between the

theoretical concentration profiles and experimental data further suggests that particle migra-

tion mainly occurs above a volume fraction threshold. In fact, a non-zero transverse diffusive

flux exists even for low volume fractions Ill]. Of immediate importance for future work, is the

detailed study of concentration profiles for less concentrated suspensions in the vicinity of the

expected percolation threshold.

In the case of a Poiseuille flow, it appears that near the centre region of the channel, the

stress is directly transmitted by the network of particles over a correlation length larger than

particle diameter. In the case of non-uniform flows, it is then necessary to introduce a non~local

stress tensor for describing particle migration in low shear rate regions of the flow.

To sum up, particle migration can be described through a local particle stress tensor related

to lubrication forces only if the correlation length of the flow is of the same order as the

particle diameter over the whole flow cross section. On the other hand, for non~uniform flows

with correlations over large scales, we have to consider a non-local stress tensor depending on

the flow geometry.
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