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Rksum4. A l'aide de la mdthode du joint de grain et en
dtudiant la forme d'dquilibre

d'inclusions liquides, nous avons mesurd la tension de surface et le diagramme de Wulff de

l'interface hexagonal-isotrope du mdlange lyotrope C12E06+
eau et du cristal liquide discotique

CBHET- Nous
avons

4galement obtenu la courbe d'dnergie des parois sym4triques dans les deux

systkmes en
fonction de l'angle de d4sorientation des colonnes. De l'analyse de cette courbe

nous
tirons le produit KB des modules 41astiques de courbure d'une colonne iso14e et de com-

pressibilit6 du r6seau hexagonal. Ayant mesur4 B m4caniquement,
nous en d4duisons ensuite

une estimation statique du module de courbure K d'une colonne iso14e. Nous trouvons dans les

deux systbmes des valeurs de K qui sont compatibles
avec les donn6es de rayons X-

Abstract. Using the grain boundary method and from the shape at equilibrium of liquid
inclusions, we measured the surface tension and the Wulff plot of the hexagonal-isotropic inter-

face of the lyotropic mixture C12E06+ water and of the discotic liquid crystal CBHET. We also

obtained the energy curve of the symmetric walls of the two systems as a
function of the misfit

angle of the columns. From their analysis
we

derive the product KB of the elastic constants of

curvature of
an

isolated column and of compressibility of the hexagonal array. Having measured

B mechanically, we then deduce a static estimate of K. In both systems, we find values of K

that
are

compatible with X-ray data.

1. Introduction

When put in presence of water, amphiphilic molecules, such as soaps, detergents or lipids,
form aggregates of various shapes (plane, cylinder, sphere, minimal or random surfaces, etc).
Usually, diluted phases are disordered at long range, whereas concentrated ones may form

lyotropic liquid crystals which are translationnally ordered along one (lamellar phase), two

(hexagonal phase)
or three dimensions (cubic phase) [1].

The molecular structure of these mesophases is now well established. By contrast, their

defects and their viscoelastic or interfacial properties are still poorly known. Also the hexagonal
phase has been much less studied than the lamellar or the cubic phases.

Q Les Editions de Physique 1995
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Fig 2. a) CBHET molecule; b) Columnar hexagonal mesophase.

For this reason, we have chosen to study the hexagonal phase of the binary mixture

CizE06+ water [2,3] (Fig. 1). Another reason is that anomalies in the elastic coefficients have

been reported in an equivalent thermotropic system. Indeed, Durand et al. [4,5] found that the

apparent curvature constant Kapp of the columns in the discotic liquid crystal CBHET (Fig. 2)
is much larger than in nematics (0.1 dyn rather than the expected 10~~ dyn). Their experi-
mental method consisted in detecting the buckling threshold of the columns under mechanical

stress [7], either in compression parallel to the columns [4]], or under dilation perpendicular
to the columns [5]. Their results showed that these instabilities could still be explained in

the theoretical framework of reference [7] (assuming
a curvature-like elasticity of the columns)

on condition that the curvature constant of the columns is increased by five or six orders of

magnitude. The main conclusion of these experiments was that columns are correlated over a

distance ~app
=

Kapp/B
m o.5 ~tm (B

rd
10~ erg/cm~ is the compressibility modulus of the

hexagonal array) much larger than the lattice parameter (of the order of 30 I). More recently,
Durand et al. performed a Rayleigh scattering experiment in the same system and found that,

when the columns are bent over distances larger than o.3 ~tm, the columnar mesophase does not

behave like a smectic A but rather like a three-dimensional crystal [6a]. They concluded that

they did not measure previously the curvature modulus of the columns (this is questionable)
but rather a quantity (which is unfortunately not specified in [6a]) related to this solid-like

elastic behavior. As pointed out by Durand in [6c] this does not mean that this columnar

mesophase is a 3D-crystal, which would be incompatible with X-ray experiments, but only

that there exists a mechanism that remains to be found which would lead to this apparent
3D-elastic behavior and to this very large value of Kapp. A possible mechanism was proposed

by Prost [8] who showed that a large density of column ends
or entanglements could make the
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system stifler and lead to an apparent curvature modulus Kapp much larger than K. But there

is no experimental evidence of the existence of these defects so far.

In order to address this problem, we searched for a method to really measure the bending
modulus K of an isolated column. It consists in observing grain boundaries and their inter-

sections with the hexagonal-isotropic interface in a temperature gradient. Indeed, we shall

see it is possible to derive an estimation of K from a measurement of the energy of the grain
boundaries as a function of the misfit angle of the columns. This method has the advantage

of being purely static, in contrast to previous measurements using buckling instabilities.

In order to obtain the grain boundary energy, it was first necessary to determine the Wulff

plot of the hexagonal-micellar interface. This is given in Section 2. We then used the grain
boundary method to obtain the surface tension and the grain boundary energy simultaneously.
This method consists in putting a thin sample into a temperature gradient and in looking
at the grooves which form when grain boundaries intersect the hexagonal-micellar interface.

By analyzing their shape as a function of the temperature gradient, it is possible to measure

the surface tension and the corresponding grain boundary energy. These measurements are

described in Section 3. In Section 4, we explain how to derive from these measurements the

curvature constant K of the columns and in Section 5, we give experimental results obtained

by using the same method in the liquid crystal CBHET used by Durand et al. Finally, we

compare our results to that obtained by Durand et al, in Section 4.

2. WulR Plot

In this experiment, we used a mixture whose concentration is very close to the azeotropic point
(49.6% in weight of polyoxyethylene). Samples are prepared between two parallel glass plates

~

Fig- 3- Fan-shaped structure.
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so ~m

Fig- 4- Liquid inclusion in equilibrium within
a

monodomain of hexagonal phase of C12E06.

and are filled by capillarity in a moist atmosphere in order to avoid bubble formation and

drying. They are then sealed with an epoxy glue (Epotecny Luxtrak LCR o208). Our samples

are homogeneous within 1% and can be kept at the transition temperature during many hours

without visible drying and degradation. Figure 3 shows the fan-shaped texture which is usually
obtained when a sample is homogeneously frozen from the isotropic micellar phase. In this

texture, the molecular columns are parallel to the glass plates, but do not have a well defined

direction. By contrast, directional solidification allowed us to make very good monodomains

with all the columns oriented in a single direction (see Ref. [9]] for more
details). Let us now

describe how to obtain the Wulff plot in planar orientation.

Let i be the surface energy of the hexagonal-micellar interface. This quantity depends on the

orientation of the interface with respect to the columns. The Wulff plot in planar orientation

is, by definition, the polar plot iii) where # is the angle between the normal to the micellar-

hexagonal interface and a given crystallographic direction, for instance the average direction of

the striations perpendicular to the columns. There are two possibilities to obtain this diagram:
either by equilibrating a germ of the hexagonal phase in the micellar one or by doing the

contrary. The first method is unusable because germs spontaneously disorient and grow by
forming developable domains [10] as long as they are visible through the microscope. For this

reason, we rather equilibrated an inclusion of isotropic liquid in a planar monodomain made

in directional solidification. It is important to note that the columns keep their orientation

when the hexagonal mesophase is partially melted and do not rearrange to form developable
domains. This "locking" is certainly related to the apparent 3D-crystalline behaviour revealed

by light scattering experiments [6a]. To reach equilibrium, we used an oven whose temperature
is continuously adjusted in order to keep constant (within 1%) the inclusion surface area. This

experiment and the used experimental set up are described in detail in reference [11]. Of course

the smaller the inclusion, the faster its equilibration time. Typically,
one

hour is necessary to
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equilibrate an inclusion of diameter So ~tm (Fig. 4). To be sure that we reached equilibrium,

we performed the same experiment many times by starting from inclusions of various shapes
and dimensions. Each time, we checked that the final shape was similar to others. Let Rib) be

the polar equation of a germ. Because of the two-fold symmetry, one must have at equilibrium:

Rj~)
=

Ro ii + Rz cosj2~) + R~ cosj49) + ...j ii)

where R2, R4, are the two-fold, four-fold,... anisotropies. In Figure 5, we plotted them as a

function of the size of the inclusion. These quantities are constant within 5Slo: R2 * o.2, R4 *

o.03 and do not depend on the sample thickness which we varied from 20 ~tm to loo ~tm. This

result is important and shows that meniscus effects in the sample thickness are negligible [12].
Using the Wulff construction [13], it is now possible to obtain the Wulff plot iii) (Fig. 6) and

to show that

1(#)
"

loll + 12 COS(2~) +14 C°S(4#) + ...j (2)

with 72 "
o.194 and 74 "

o.013.

In this expression, # is the angle between the tangent to the interface and the molecular

columns.

Equation (2) shows that the surface energy is minimal when the columns are perpendicular
to the interface. This means that ends of columns are energetically favourable at the hexagonal-
micellar interface. Let us now discuss how to obtain the prefactor lo

3. The Grain Boundary Method

This is one of the most general methods used by metallurgists for measuring the solid-liquid
surface energy [14]. It consists in observing the shape of the hexagonal-micellar interface

constrained by the presence of a grain boundary between two disoriented domains.

In order to obtain a flat hexagonal-micellar interface, we put a planar sample in a linear

temperature gradient G. When a grain boundary (or
a wall) separating two developable

domains of the fan texture intersects the interface, a groove is formed (Fig. 7a): its shape and

its depth obviously depend on the wall energy, on the surface tension and its anisotropy and
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and 00.

on the temperature gradient. To simplify, we shall only analyze symmetric walls of the first

species [10,15] (Fig. 7b). Let 290 be the misfit angle of the columns at point P (at the bottom

of the groove), E(90) the wall energy and
a the angle between the tangent to the interface and

the wall at this point. The equilibrium condition of point P is [16].

E190)
=

21114) COSIO) i'14) Sinla)1 13)

where 7'
"

di/d#. This equation gives the wall energy, provided ill) and are known. The

shape and the depth h of the groove are given by integrating the Gibbs-Thomson relation. If



N°7 SURFACE TENSION AND ELASTICITY OF HEXAGONAL PHASES 945

s

2.l'
Mak from M.94

to: 4S.@7 (
onaat- 3@.95 /'

pmax- M-mJ% I.W

j

I-s

.75

o

Temperature [Cl

Fig. 8. Heat flux
versus temperature (scanning velocity is 5 °C/mn).

~
l

i12
~io
z ~

% ~ ~

~
~

0 0 0 0 2 0 3 0 4 0 5 0 6

G'~'~ (cm~~~°C'~~~)

Fig. 9- Groove depth h
as a

function of temperature gradient G.

the surface energy is isotropic ill')
"

lo)
i

this calculation can be done analytically and yields:

h
=

~?°~~ ~)~
°~~

14)

where To is the melting temperature and L the latent heat per unit volume that we found to
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be close to 1.2 x
10~ erg/cm~ in our system (Fig. 8). This value is in good agreement with

previous measurements of Clunie et al. [17]. Equation (4) shows that h/@@ must vary
like G~~/~. We checked this dependence experimentally (Fig. 9) and found lo * o.22 erg/cm~
with the help of equation (4).

This value is approximate because we have neglected the surface tension anisotropy (about
20% in our system). For this reason we used another method proposed by Arbel and Cahn [18]
to go through our experimental data (see Appendix A). This method allowed us to take into

account surface tension anisotropy given in the preceding section. This gives:

lo * 0.26 ~ 0, 02 erg/cm~ is)

We shall use this value in the following.
We are now in a position to determine the wall energy as a function of the misfit angle 90

using equation (3) Indeed a and 90 can be easily measured through the polarizing microscope.
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Our experimental results are given in Figure 10.

4. Determination of the Curvature Constant K

We know from previous studies [15] that different types of wall exist in hexagonal mesophases
depending on the value of the misfit angle 90.

If 90 is very small (Fig. 11a), columns bend continuously and form a wall of curvature of

energy

Ec m

(@9( (6)

where K is the curvature constant of the columns and B the compressibility modulus of the

hexagonal array.

This energy quickly increases with angle 90 because of the dilation of the hexagonal array

in the midplane of the wall. A convenient way to reduce this dilation is to introduce pairs of

transverse edge dislocations at regular distances (Fig. 11b), a model that has already been

proposed in smectics by Williams [19]. The best compromise is obtained when
=

2b/9( where

b is the Burger vector of the dislocations: in this case, the dilation of the hexagonal array is

suppressed in the plane of symmetry of the wall. The wall energy is thus essentially due to

dislocations:

@2
~~~ " 2(~~~~~' ~~~

The subscript "cd" means that we are dealing with a curvature wall containing dislocations

and Edisi is the energy of a tranverse edge dislocation that we know to be equal to [7,20]:

The first term represents the elastic contribution to energy while the second is a core energy

(we assume that the core is dissociated in its glide plane and has energy lo Per unit surface).
Minimization as a

function of the core radius rc gives

E~~~j m
jKB)1/4jio)~/~b j9)

and

Ecd *
IKB)~/~j10)~/~91 li°)

This dependence in 9( shows that this combined wall is rapidly better than a curvature wall

when 90 increases (in fact when 90 > 10° ). For this reason we used equation (10) to fit our

experimental data in the range 10 < 90 < 30°. The best fit (solid line in Fig. 10b) gives

~f
m 31 (11)

This value must be regarded as an order of magnitude. Indeed, we only took into account

the self energy of dislocations, neglecting elastic interactions between them. Nevertheless, this

approximation seems to be reasonable when dislocations are far enough from each other. This

is the case when 90 is small. Let be the distance between two dislocations in the same glide
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Fig- II- a) Curvature wall; b) Mixed wall; c) Discontinuity wall; d) Sub-grain boundary.
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plane (Fig. 11b); for 90
"

10° l
=

2b/9(
m 0.25 ~tm (with

=
40 I). According to Williams

and Kldman's calculations [21], their interaction energy reads:

W
=

~Bb~ ~
(12)

4 ~ri

~ ~

where ~
= ~fl~/~ is the penetration length. As Edisi *

Bb~ (because rc m ~)
we calculate

W/Edisi *
~/lrl m

2% by taking ~
=

6 I (see hereafter) and 1= 1 ~tm. In fact, this ratio is

always small in our experiment (it equals 6% when 90
#

30° which justifies our approximation

a posteriori
When 90 ranges from 40° to 70°, the density of dislocations becomes very large and it is

more reasonable to suppose that the wall "melts" locally "wall of discontinuity", Fig. 11c) [14].
This interpretation is sustained by measurements since we have in this regime (Fig. lob):

Ed * 210 (13)

Finally, the energy decreases when 90 > 70° to vanish when 90
"

90° since the columns are

again parallel to each other. When 90 is close to 90°, the wall is composed of dislocations

separated from each other by distance (1r 290)16 (Fig. 11d). In this limit, the wall energy

reads:

E~gb * (KB)~/~(70)~~~(7r 290) (14)

As previously we only sum the self energies of dislocations. This procedure is justified because

the elastic interaction between dislocations vanishes when they are in the same climb plane [21].
The best fit to the experimental data (dashed line in Fig. 10b) gives:

~
m 23 (15)

lo

in satisfactory agreement with our previous estimation. In the following we shall take
~

m

lo

27 ~ 4. Using lo * 0.26 ~ 0~ 02 erg/cm~,
we obtain

li
m 7 erg/cm~ (16)

As a conclusion, the grain boundary method allowed us to estimate the product KB. To

measure B, we used a special cell equipped with piezoelectric ceramics [22]. This cell and the

B measurement are described in Appendix B. We found

B m 1.2 x
10~ erg/cm~ (17)

at the transition temperature, which gives

~ m 6 I and K m 4 x 10~~dyn. (18)

This value of K is of the same order of magnitude as in usual nematics. The value of ~ is also

very close to that found by X-ray diffraction by Clerc in this system at another temperature

and concentration (~ rd 20 I at T
=

20 ° C for a mixture with 55% in weight of C12E06). We

also performed the same experiment in the discotic liquid crystal. Our results are summed up

in the next section.
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5. Comparison with the Discotic Liquid Crystal

In order to know whether our value of K is specific to lyotropics, we performed the same

experiments in CBHET.

The main difficulty was to prepare planar samples. Indeed, unlike lyotropics, it is much

easier without surface treatment to obtain homeotropic orientation in thin samples of discotics

rather than planar one. To force planar aligment~ we coated our glass plates with a silane

(ZLI 3124 from Merck Corp.) which is known to give homeotropic anchoring with nematics.

In this case, disc-like molecules prefer to be perpendicular to the glass and planar alignment
of the columns is slightly favored. In addition, directional solidification at very small velocity
(less than I ~tm/s) is necessary to obtain good planar domains and symmetrical walls. In-

deed, homeotropic anchoring is always observed at large pulling velocity whatever the surface

treatment. Our experiments being similar to the previous ones, we just report our experimen-

tal findings in Figure 12. This curve (which was obtained by taking 72 * O-II? [23]) closely
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resembles that obtained with lyotropics. The best fit with theoretical laws (10) and (14) gives

~
m 50 (19)

lo

This ratio is larger than that found in lyotropics. As for lo and B~ they have been measured

previously [24] and are respectively equal to 0.52 erg/cm~ and 10~ erg/cm~. With these values,

we calculate:

~ m 26 I and K m 6.8 x
10~~ dyn (20)

This value is about 10 times larger than in discotic nematics [25] and 30 times larger than the

value obtained by X-ray diffraction by Davidson et al. [26] in the hexagonal phase of a similar

system (hexallexylthiotriphenylene): K rd 1- 4 x
10~~ dyn.

6. Concluding Remarks

Our main result is that the value of the curvature constant K is, as expected, of the same order

of magnitude as in nematics or smectics. This value has been obtained by measuring the energy
of edge dislocations. Because the column distorsions are mainly localized within a small region

around the core of dislocations, this measurement only reflects the elastic behavior of the phase
at a micrometric scale. The smallness of K also explains why a germ of the hexagonal phase in

equilibrium with its isotropic liquid disorients spontaneously by forming developable domains

when it is extremely small, I-e-, of a few mm in diameter. This result shows again that the

hexagonal phase behaves as a usual liquid crystal at a micrometric scale. This phenomenon is

equivalent to the formation of "Friedel bitonnets" in smectics and comes from a competition
between surface tension anisotropy Al * 70'f2 and curvature elasticity K [27]. It occurs when

the germ size is larger than roughly K/A7. In our systems, this critical size is of the order of

1 ~tm in discotics and is still smaller in lyotropics~ which agrees qualitatively with observations.

Let us see now whether we can use our values of K at a large scale, for instance when

calculating the core radius and the energy of a developable domain of a macroscopic size

(disclination). We know from previous observations [15, 28] that the core of such a line defect

is very large (a few tenths of a ~tm in diameter) in discotic systems. By contrast, in lyotropics,
the core size is too small to be measurable with an optical microscope. A standard calculation,

assuming a curvature-like elasticity of the columns at large scale, gives for an S
=

1 disclination:

Edev "1rK In
~

+ Ec (21)

where R is the outer radius of the domain (100 ~tm typically in usual textures), rc the core radius

of the disclination and Ec its core energy. In this calculation we have assumed for simplicity
that the cylinders are circle-shaped and centered on the disclination axis. To calculate the core

radius we can imagine that either the core is filled with hexagonal mesophase, or it is filled

with isotropic liquid.
The first model was already proposed in reference [15]. In this model, the columns in the

core are parallel to the disclination axis and the core energy reduces to a surface term of the

order of

Ec m 21021rrc (22)

where 210 is the measured energy for a discontinuity wall. Minimizing Edev with respect to rc

gives:

rc rd

~
(23)

lo

loURNAL DE PtJYStQtIE fl T 5, N° 7, JULY 1W5 V
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With our values of K, we find r~ m 150 1 in the C12E06 and r~ m 1300 1 in CBHET. These

estimates are in agreement with experiment. With the value of K given by the measurements

of the buckling instability (Kapp m 0.I dyn [6]), we would find r~ m 2 mm, which is impossible.

Let us now consider the second possibility, I-e-, a core filled with isotropic liquid. In this

case, the core energy reads:

~
LAT

(24)E~ m 27rr~io + 7rT~ ~

where the first term corresponds to the surface energy and the second one to the bulk energy
of the undercooled liquid (with AT

=
T~ T). Minimization of the total energy (21) with

respect to r~ gives:

~~
~ 2LAT

l~
~° ~~~~

With our values of K we find at AT
=

I °C, r~ m 70 1 in C12E06 and r~ m 350 1 in CBHET.

As expected the core radii are smaller than in the previous model. In particular the value

obtained for the discotic liquid crystal is too small and incompatible with observations. Finally,

we calculate r~ m 6 pm with Kapp
=

0.I dyn, which is also incompatible with experiment.

In conclusion, only the first model, assuming that the core is filled with perfect hexagonal
mesophase, is compatible with observations. This calculation also suggests that our values

of K are usable whatever the scale of the deformation, as long as only static properties are

considered.

This conclusion is reinforced by another observation. Indeed, we know from previous work

[15] that discontinuity walls are unstable at long time (many days) with respect to the for-

mation of ~N.alls of developable domains of macroscopic size when 90 > 60°. This spontaneous
transformation was observed both in lyotropic and thermotropic systems. It confirms that the

curvature energy stored within developable domains is always very small, which is compatible
with our current estimate of K.

In conclusion, our measurements again raise the question as to why dynamic measurements

of buckling instability under rapid compression or dilation give much larger values of Kapp.
A possible answer proposed by Prost [8] could be that ends of columns linked together by

screw dislocations make the system stifler at "high" frequency (kHz or more). These point
defects could also be responsible for the "abnormal" Rayleigh scattering produced by these

phases [29] (without the necessity to resort to some 3D-solid-like elasticity as proposed in

Ref. [6a]). But there is so far no direct experimental evidence for these defects. Also this

interpretation supposes that defects are frozen and do not move by permeation during the

buckling process (which is quite possible). It would be thus very interesting in the future to

measure Kapp as a function of frequency.
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Fig. 13 Definition of the measured quantities xi, wi, in the method of Arbel and Cahn

Appendix A

The Method of Arbel and Cahn for Measuring Surface Tension in Anisotropic
Materials

In 1977, Arbel and Cahn proposed a graphic method to measure the anisotropic surface tension

of a solid-liquid interface from the shape of grain- boundary grooves which are observed in a

temperature gradient [18]. Their method allows a direct determination of the vector function

(
= in + 7't in terms of distances and areas directly measurable on the micrographs. The

vectors n
and t are the unit vectors respectively normal and tangent to the interface of equation

z =
w(x) (Fig. 13). Also 7'

"
d7/d# where # is the local angle between the normal to the

interface and the striations (directly measurable on the micrographs). Of course, Arbel and

Cahn do their calculations by assuming that the crystal is a monodomain on each side of

the grain boundary. This assumption is not rigorously satisfied in our experiment because

the columns are generally bent and centered on the core of a S
=

1/2 disdination. Let h

be the groove size and D the distance between the groove and the center of curvature of the

columns. This curvature effect introduces two corrections in the usual Gibbs-Thomson equation
(i + i" /R

=
LAT/T~): a geometrical one of the order of (7"/R) (h ID and another due to the

curvature elasticity of the order of K/R~ [30]. The latter correction is always negligible because

R » K/i
m 0.01 pm. By contrast, the former can be important, except for the grooves for

which h/D < 10i~. To simplify, we only measured these grooves for which we can directly

apply the theory of Arbel and Cahn. Their results can be summed up in two equations:

~ ~ X2

~~X~X"Xl
~

~~~~~~ ~ ~~X~X"X2 ~~~'~~
0

~i

(f~)~=~~
= (lW~(x~) W~(«i)i + lf~)~=~i lAib)

In the first equation, the integral represents the hatched surface area in Figure 13. Because we

know the i(#)-dependence from the experimental Wulff plot, each of these two equations is in

itself sufficient to determine lo The values of lo obtained separately from these two equations

are in excellent agreement.
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Fig. 14. Schematic representation of the dilation cell used to measure
the elastic modulus B.

Appendix B

Young Modulus Measurement

Our experimental set-up is described in detail in reference [22]. The sample is deformed by
three stacks of piezoelectrics through a rigid frame (Fig. 14). It is prepared between two circular

glass plates of diameter I cm, polished to 1/10. The parallelism (better than 2 x
10~~ rd) and

the spacing (usually between 25 and 400 pm) between the two plates is adjusted with three

differential screws within +I pm. A ring of water surrounds the sample to avoid evaporation.
This precaution allows us to work during one hour without visible variations of the water

concentration. After this time, the sample is changed because the sample starts to dry on the

sides. A planar orientation of the columns (fan-shaped texture) is obtained by slowly freezing
the sample from its isotropic phase. The temperature is stable to about 1/100 °C but is not

perfectly homogeneous within the sample because of the presence of the observation windows

and of the LVDT (linear variable differential transformer) which is fixed on the oven to measure

the sample deformation. Indeed this sensor produces a small amount of heat, so that there

exists a small temperature gradient across the sample of the order of 0.05 °C /cm. Thus, it

is impossible to approach the transition to better than 0.05 ° C which is of the same order of

magnitu(e as the freezing range of our mixture.

In order to determine the mechanical response of the sample to a sinusoidal deformation,

we measure with the LVDT (Schaevitz MHR005) and a lock-in amplifier (Stanford 5R850)
the displacement ai(t) and its phase shift with the ceramics displacement ~t(t). We used a

sinusoidal deformation of very small amplitude (less than TOO 1 at the level of the sample)
and frequencies varying between I and 100 Hz. We checked that all our results were independent
of the amplitude chosen (linear regime). Also we found that inertial terms are negligible in this

range of frequency and that the cell behaves elastically as a set of springs (Fig. 15). In this

equivalent scheme (the simplest one we have found to explain all our
experimental results),

alit) is the displacement which is measured with the LVDT (slightly different from the sample
thickness variation because of the finite tightness of the oven), ~t(t) the ceramics displacement,
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kj k~

k~ ko ~

aj a~
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Fig. is. Equivalent mechanical model of the dilation cell.

ki and k2 the force constants of the metal rods on which the oven is suspended and which are

secured to the thick rigid metal ring which transmits the ceramic displacements. Finally, ko is

the force constant of the oven itself, that we expect to be larger than ki and k~, both of the

same order of magnitude by construction Also r is the glass plate radius and the distance

between the center of the sample and the LVDT. Finally bi and b2 are the displacements on

both sides of the sample (slighly different because of the asymmetry of the cell).
Let us now see how to determine experimentally these three force constants kz ii

=
0, 1, 2).

To do that experimentally, we used a silicone oil (Rhodorsil 47V1000 from Prolabo) of viscosity

1~ =
10.2 Poise, that we know to be Newtonian at low frequency (up to 10 kHz), and we

measured the amplitude ratio jai (/(~t[ as well as the phase shift q7
between ai and ~t for a

sinusoidal excitation:

~t = [~t[
exp(iuJt) (B.la)

ai "
(ai(exp(wt +1q7) (B.lb)

The equations of motion (for forces and torques)
can be written for a viscous sample of thick-

ness d within the lubrication approximation [31] (which is valid here because of the extreme

smallness of the displacements) in the form:

fllk0 + fl2k0 + kl £Yl(k0 + kl) + k2 °2(ko + k2)
"

0 (B.2a)

kit k21 + flikoT fl2koT al (kit +
i~~

+ 021k21+
i~~

=
0 iB.2b)

dike + a2ko pi (k +
~~~~

fl2(k + ~~~~~
=

0 (B.2c)

with

1
=

e~~/~, a, =

~~
and Pi

=

~~ (B.2e)
~t ~t

This set of equations can be solved analytically using Mathematica, which gives:

ai =

~~
=

(
(B.3a)

~t
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Fig. 17. Parameters w~ used in Figure 16 to fit the experimental data
as a

function of sample
thickness d.

and
~

wz =

~ ~
(B.3b)

l~r

From this law it is possible to extract both the ratio jai [/[~t[ and the phase shift q7 that

we measure experimentally. These two quantities depend on frequency f
=

27r/w) and on

unknown parameters tJz.

In Figure 16 we plotted the experimental ratio jail /(~t[ and the phase shift q7 as a function of

frequency for various values of the sample thickness as well as their best fit with the theoretical

law (B.3.a). For each thickness, we determined
a triplet of values (too, tJi, tJ~) that we reported

as a function of the thickness d in Figure 17. We see that each tJ)/~ is proportional to d as

predicted (see Eq. (B.3b)). From the slopes of these three curves, we deduce the force constants

in CGS units:

ko
"

3.77 x
10~ (B.4a)

ki
"

2.53 x
10~ (B.4b)

k2
"

2.03 x
10~ (B.4c)

As expected ki and k2 are of the same order of magnitude. Nevertheless we see that there

exists a non negligible asymmetry (of about 20$l) in the elastic rigidity of our system. This is

easily understandable because the bend modulus ko of the rods which support the oven varies

as the third power of their thickness (of the order of I mm). That means that their thickness

difference is of the order of 0.07 mm, which is quite reasonable.

To test our calibration of the cell, we measured the compressibility modulus of the smectic

A phase of the thermotropic liquid crystal BOCB. We found for example B
=

7.3 x 10~erg/cm~

at f
=

100 Hz and AT
=

T TVA
=

I °C. This value is in good agreement with previous

measurements [32].
We can now measure the elastic modulus B of our mixture. More precisely, what we measure

in this experiment is the compressibility modulus of the hexagonal array (Bi with the notation

of Ref. j7)). In Figure 18, we plotted the ratio jai )/)~t) and the phase shift
q7 as a function of

time for a sample of thickness d
=

400 pm at frequency f
=

90 Hz. We see that about 20 mn
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Fig. 18. Time evolution of the amplitude (a) and the phase (b) (C12E06 at T
=

36.67 °C).

are necessary to obtain a stable signal after the sample has been cooled down from its isotropic
liquid. On the other hand, we observe one hour later a brutal increase of the amplitude and a

strong decrease of the phase shift: this accident clearly occurs when the sample starts to dry
and to melt on the sides (see the phase diagram). On the plateau, the phase shift is also very

small, which means that the response of the sample is essentially elastic at this frequency. In

Figure 19, we plotted jai (/(~t[ and
q7 at saturation as a function of frequency f for a sample

of thickness d
=

400 pm (we have chosen this thickness because it is a good compromise
between obtaining a good ratio signal /noise and keeping a good planar orientation). We see

that the response is elastic above 20 Hz (within 99$l) while plastic effects occur below. Also

the amplitude ratio saturates above 80 Hz. For this reason we measured B at f
=

90 Hz. As

before, we must solve the motion equations for calculating B. If one assumes that dissipation

is negligible, I-e- the sample is elastic, of Young modulus B, the equations to solve read:

fliko + fl2ko ai(ko + ki) + ki a2(ko + k2) + k2
"

0 (B.5a)
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kit k21 + flikr fl2kor ai (ki1+
~°~

+ a2(k21+
~°~

=
0 (B.5b)

~

l

~

dike + o~ko Pi
~

+ ko) fl2
~

+ ko)
"

0 (B.5c)

al 0T~
~

£Y2
°~~

fl2(~0T ~ ~~ ~ ~~~~°~ ~ ~~ ~ ~~ ~~~

'~~~~~

x
=

~~

,

S
"

7rT~ ~~'~~~
87rrd

The resolution of this set of equations gives, using experimental values (B.4a-c):

°~ 3.3/~~12~~ ~~/ 0~~B~+
/~2~~~0~B*2 ~~~~ ~~~~~~ ~~'~~~

where B*
=

B/d.
As expected ai is a real number and q7 =

0 (elastic behavior). This equation gives the elastic

modulus B as a function of the amplitude ratio ai which is measured experimentally:

~

B
i~

0.20 oi + 0.90~/0.03 0.24ai + a(
~

d
~'~~ ~ ~~

14.7ai 1.23
~~'~~

Our results as a function of temperature are given in Figure 20 for three different samples.
We see that B decreases when the temperature increases and tends to a finite value at the

transition temperature of the order of:

Btrans;t;on * 1.2 + 0.I x 10~ erg/cm~.

At low frequency if < 20 Hz), the situation is more complicated, the amplitude ratio jail
increasing while q7 decreases. Nevertheless, q7

always remains very small (q7 m -10° at f
=

I Hz) which means that the sample response remains essentially elastic. The variation of

the amplitude ratio is thus mainly due to a decrease of the elastic modulus. For instance,
Eli Hz) m 5 x 10~ erg /cm3 at AT

=
I °C which is a value about three times smaller than that

found at high frequency at the same temperature. This variation of B with frequency could

be due either to pinned dislocations or to undulations of the columns which systematically
develop in samples when they are cooled down (striations).
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