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Rdsumd. La diffusion de lumi+re par des solutions de polym+res flexlbles chargdes de parti-
cules sphdriques est dtudide grice h l'approximation th60rique de Rayleigh-Gans-Debye. L'id6e

de base du travail est que les perturbations des lignes de courant et des taux d'dcoulement

dues h la prdsence des paiticules vont changer la conformation locale des chaines, entrainant

une diffusion de la lumi+re. Traitant ces perturbations comme des fluctuations de viscositd, le

rapport de Rayleigh est calcu16 en tenant compte de la fonction de corr61ation des fluctuations

de viscositd pour les quatres orientations principales des polariseurs, HH, VV, HV et VH, et

pour des dcoulements de cisalllement et d'dlongation. Les cbchds de diffusion de lumibre sont

calcu16s
en

consid6rant une
distribution al6atoire de particules.

Abstract. Light scattering by dilute flexible polymer solutions filled with spherical particles

is studied theoretically within the framework of the Rayleigh-Gans-Debye approximation. The

basic idea of our
work is that the perturbation of stream lines and flow rates due to the presence

of the particles will change the local conformation of the chains, thus inducing
a

light scattering
contribution. This is treated by considering viscosity fluctuations. The Rayleigh ratio is derived

as a
function of the viscosity fluctuation correlation function for the four major polarization

configurations (HH, VV, HV and VH) in shear and elongational flow. Considering
a

random

distribution of the particles, the small angle light scattering patterns are calculated

1. Introduction

Small-angle light scattering is a powerful method for analysing the structure of polymer liq-

uids submitted to a flow (flow SALS). Several new
shear-induced structural phenomena were

found by the method in various polymer systems (semi-dilute solutions of worm-like macro-

molecules [1-3j, lyotropic liquid crystalline polymers [4, 5] and polymer blends [6]). The scat-

tered light forms patterns with complex dependence of the intensity on the azimuthal angle in
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all of these cases. These optical phenomena result from spatial modulations of density and for
orientational fluctuations of polymer during the flow. These structural changes are associated

with different physical reasons. A theoretical analysis for semi-dilute polymer solutions under

shear flow [7-9j showed that it may be accounted for by the coupling between the concentra-

tion fluctuations and polymer elastic stress. In the case of sheared liquid crystalline polymer
solutions, the flow light scattering may be caused by the resulting domain structure [10j.

A common feature of most of the flowing polymer systems with complex structure is the

heterogeneity of the medium viscosity. Fluctuations of the viscosity will disturb stream lines

and induce specific orientation effects in the polymer. This can generate an additional con-

tribution to the light scattering. To take this specific effect into account, we will study the

flow SALS from polymer suspensions composed of a diluted polymer solution filled with rigid
spherical particles. In contrast to the above mentioned systems, the heterogeneity of viscosity
in the latter case is induced solely by the presence of the particles. Since the viscosities of the

polymer solution and the particles are different, local perturbations of the velocity gradient
in the polymer liquid is generated. As a consequence, polymer chains in different points will

experience different levels of stretching. This in turn will result
m a heterogeneous distribution

of polarizability which can give a specific scattering. The objective of this paper is to study
this effect for a diluted polymer solution filled with undeformable spherical particles submitted

to shear or elongational flows.

In Section 2 of the paper, a general representation of the Rayleigh ratio and reference coor-

dinate system are given. In Section 3, the equations for local polarizability of the suspension

are discussed in the framework of the Zimm and Rouse models of polymer dynamics for shear

and elongational flows. The fluctuation of the velocity gradient tensor are considered in Sec-

tion 4 of the paper. In Section 5, the expressions for the flow light scattering from the polymer
suspension are derived. In Section 6, the results of the theory are applied to the analysis of

the flow SALS patterns for shear and elongational flows for different positions of polarizer and

analyzer.

2. Basic Relationships

For the sake of simplicity, the refractive index of the suspension at rest will be considered as

homogeneous. If needed, the effect of light scattering due to a difference between the refractive

indices of particles and solution can be taken into account independently. It is also assumed that

the polymer chains are monodisperse and comprise N segments, that the particles are spherical
and do not deform during the flow. This restricts the approach to rigid particles, either solid

particles or mixture with highly viscous minor phase and a large interfacial tension between

the two phases. The Rayleigh ratio of the polarised light scattering from the suspensions can

be written m the framework of the Rayleigh-Gans-Debye approximation as follows ii Ii

~
$

~~C~~(~)~q(~ °~k°~ln ~)°i°m~ktn (I)
o

~

Here I is the far field light scattering intensity from a scattering volume V which contains a

large number of particles, Io is the intensity of the incident light, c is the particle concentration,
P(q)

=
x~ IQ), where X(q) is the form factor of the particle. For monodisperse particles with a

radius a, X(q) is [12]:

x~~)
=

(I (Sin aq aq cos
aq) j~~
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The value Fq(< a[~a$~ >) is the Fourier transform of the correlation function < a[~a$~ >

of polarizability fluctuations in the space of the scattering vector q = qs =
ko k k and ko are

the wave vectors of incident and scattered light; k
= )ko) " )k) =

),
where > is the average

wavelength in the medium. The value of vector q is equal to q =

~~
sin ~, where 0 is the polar

2
scattering angle. The unit vector t gives the polarization direction of the incident wave. The

unit vector O is perpendicular to the vector k and lies in a plane containing the transmission

direction of analyzer and perpendicular to the analyzer plane [13].
To set the angular dependence of the unit vectors s, t and O, we will use the Cartesian

reference system with the xi-axis directed along the wave vector ko of incident beam and

the x3-axis parallel to the direction of the macroscopic velocity. In this reference system, the

components of the unit vector s are

si "
sin ~, s2 " cos

~
sin q~, s3 " cos

q~
(3)

2 2 2

where the azimuthal angle
q~

is measured relatively to the x3-axis.

There are four relative positions of polarizer and analyser: HH, VV, HV and VH where

the letters H and V denote the horizontal and vertical position of polarization directions,

respectively. The first letter gives the orientation of the analyzer and the second letter the

orientation of the polarizer. The vertical orientation is the one parallel to the x3-axis and the

horizontal one is parallel to the x2-axis. The values of components of the vector t for the

vertical position of the polarizer are:

ti
=

0, t2
"

0, t3
=

1 (4)

For the horizontal position, they are:

ti
=

0, t2
"

1, t3
=

0 (5)

Components of the vector O can be obtained from reference [13] as a function of analyzer

transmission positions and polar 0 and azimuthal q~ scattering angles. It is useful to rewrite

them as a function of the components of the unit vector s.
For the vertical position of the

analyzer, it becomes:

O(
=

2sis3(1 4s(s()~~/~, O(
=

0, O(
=

(1- 2s()(1 4s(s()~~/~ (6)

For the horizontal position of the analyzer, we have:

Of
=

2sis2(1- 4s(s()~~/~, O(
=

(1- 2s()(1- 4s(s()~~/~, O(
=

0 (7)

From equations (1-7) it follows that in order to calculate the light scattering intensity from

a flowing heterogeneous medium, it is necessary to derive the dependence of polarizability

fluctuations a[~ on the dynamical properties of the suspension. The type of macroscopic flow

must be specified at this stage.

3. Local Polarizability of Flowing Polymer Suspension

Consider a suspension composed of a diluted polymer solution and spherical rigid particles.

Without any loss of generality we can consider the same concentration of polymer inside the

particles as in the surrounding solution. Since we are interested in the change of the chain
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polarizability under flow, this assumption will not contribute to the final result: the conforma-

tion is fixed inside the rigid spheres. At the same time, this approach provides a way of using
the distribution function ~(z~,x~,...,x'~;r) for chains located at an arbitrary point r

of the

suspension (x~, x~,..., z'~
are the coordinates of the segments and r is the position of the chain

centre of gravity).
First we consider the Zimm model for the chain dynamics. In this case the Smoluchowski

equation for 4l
=

~(z~, x~,
...,

x'~ r) in the steady-state local flow can be written as follows [14]

~ ~$
~'~~~~~~~~~~ ~~~~ ~~""

8~~[
~

~ ~"~ ~~~~~i
~

~~~"~l)
~

~ ~~ ~ ~~

(8)
Here summation over the repeated Latin indices from I to 3 is implied. K~k(r) is the local veloc-

ity gradient tensor. The components of the matrix H~~ of segment hydrodynamic interactions

are equal to H~~
=

I at p = u and H~~ =< b/r~~ >eq at p # u, where r~~ is the distance

between p and
u segments and b is the size of one segment. The notation < >eq denotes the

preaveraging over the non-perturbed segment distribution function. This approximation gives

a reasonable accuracy of about 10Sl in the ialculation of the polarizability and flow birefrin-

gence of diluted polymer solution [16]. A closer examination of the hydrodynamic interactions

gives the same quantitative results [15]. The matrix A~~ in equation (8) is the Rouse matrix

whose components are equal to A~~ = 2b~~ b~-i,v b~+i,v. D(r) is the local segment diffu-

sion coefficient taking on different values for particles and polymer solution: D(r) Gt 0 inside

the particles and D(r)
=

Ds in the solvent. Using normal coordinates (~, (~,...,l'~ of the chain

N

segments such that the matrices H~~ and ~j H~~A~~ are diagonal, equation (8) takes the

a=1
following form:

~ ~~~k(r)i~~ ~~~~ ~V $
~ ~~V ~i~~ ~ ~~) ~ ~~~~i

1 k k

N

where u~ and A~ are the eigenvalues of the matrices H~~ and ~j H~~A«~, respectively.

a=I

The polarizability of a small region of the polymer suspension at the point r is the sum of

the effective polarizability of suspension in absence of polymer o)~ and of the polarizabilities
a[)~'~(r) of chains in this region (here we consider the case of equal polarizabilities of the

solvent and the particles)

°ik(r)
" &~k ~'lP~~)~~(~) (i°)

where np is the average number of chains in the suspension per unit volume. Polarizability of

the single polymer chain depends on the chain distribution function as follows [14]:

~j)~'~(~) ~~l ~ ~~ ~ ~"~~~(~) ~~~~

~l

A$j(r)
=

J
/ t$tli((, t~,

...,

t~i r)d( .:dt~ (12)
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where ha
= at ai, at and ai are the longitudinal and the transversal components of

segment polarizabilities. J is the Jacobean of normal coordinate set and p~ is the eigenvalue
of the matrix A~~.

Since the particles and polymer solution have different viscosities, the structure of the sus-

pension can be described in terms of viscosity random field, n(r). It brings to the random

behavior of the local diffusion coefficient, Dir)
=

kBT/(6~bq(r)), and the velocity gradient
tensor, ~~k(r) (see next Section). As is obvious from equations (9-12), this would provide in

turn the dependence of segment distributions function 4((~, (~,..., (~; r) and hence the polar-
izability tensor o~k(r)

on the structure of suspension in a flow mode. The fluctuation part of

the polarizability is equal to the difference between the local and volume average values:

~~k(~) &ik(T)~ < °~k >- ~~ ~ /lv~$~(~) (i~)
~l

where the tensor [()A()
< A$) > is the fluctuation part of the tensor A$[. In equation (13)

we take into account the fact that the suspension under consideration is optically homogeneous
in the state at rest.

In order to calculate the tensor I$) the equation for the full tensor Aft must be written.

Using equations (9) and (12) we obtain:

~v ~~$~ ~IP(i~~ip ~~vbik
"

0 (14)

The brackets at indices mean operation symmetrization over these indices: ~p(~A[(~ = (~~~A[(
~

2

-~pkA[)); t~
= are the local relaxation times of the polymer chain which take different

3DA~
values in the particles and solvent.

Splitting the values ~~k, A[( and D into average and fluctuation parts in equation (14) and

neglecting the terms which contain products of fluctuation part, we obtain after some algebra
two equations for < A[( > and I[(:

~v~<~$~~~~~IP('~~~~(p~~~~~~"~~k"0 (IS)

~i
~?~~ll~<~Pl~>~ijp-~Q[j~<Aiip>+~ ~~l<Az>T7~-<D>Uvbik)=° l16)

where ~[~ = ~~k- < K~k > and D'
=

D- < D > are the fluctuation parts of the velocity
b2

gradient tensor and diffusion coefficient respectively, T~ =< tjl >~~=
~

are the
3 > > A~

average relaxation times of the jhains in the suspension. In our case, < D >= ii c)Ds hence

T~ =

Tf, where Tf
=

/
are the Zimm relaxation times of the chain in the solvent.

I c 3 sA~
(The eigenvalue problem was discussed in Ref. [14]).

For the Rouse model of polymer chain the hydrodynamic interaction between the segments
is ignored and the matrix H~~

= b~~ in equation (8). This means that the eigenvalues of

the matrix H~~ are u~ =
I in this case. Consequently we have A~ = p~, where p~ are the

eigenvalues of the matrix A~~. It follows that equations (15) and (16) hold the same form for

the Rouse model and for the Zimm model except that the relaxation times must be changed to

b2
T~ =

-Tf, where Tf
= are the Rouse relaxation times of the chains in the solvent.

I c 3Dsp~
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Equations IS and (16) will now be solved for two different types of macroscopic flows, shear

and elongation, in the following two paragraphs.

3. I. SHEAR FLow. There are two main orientations of the velocity gradient relative to the

direction of incident light which can be obtained by modern rhec-optical equipment: (I) velocity
gradient parallel to the wave vector ko of incident beam and directed along xi-axis (this type

of arrangement will be called shear I) and (it) velocity gradient orthogonal to the wave vector

ko and directed along x2-axis (this type of arrangement will be called shear 2).
Let us first consider the case of shear I. In this situation, the non-zero component of the

average velocity vector is equal to < u3 >= ~xi The corresponding value of the macroscopic

velocity gradient is < ~~k >=

~ ~ "~ ~
=

~b~3bki Substituting it into equations (IS) and
dxk

(16),
we obtain:

TM
~ ~ ~$~ ~ ~~~l(1< ~~13 ~ ~ ~ ~ ~vbik

"
0 (17)

~,
T7~ii< ~biiiiii~ ~ij~ < Aii~ > +

~ ~ ~

(< Am > Ti~- < D > v~b~~) =
o (18)

The solution of equation (17) for the tensor < A[( > can be written as follows:

< A[( >= u~ < D > T~(b~k + ~T~bij~bk)3) (19)

Substituting equation (19) into equation (18) we can rewrite equation (18) in matrix form:

/~V jMM iv (~~)
ikmn ik ik

where

l~$kmn
" T~ ~iikmn ~lbl(ilk)3mn (~~)

and

l~i
r[~

= u~ < D > T~ e(~ + ~ T~~[~~bk)3 ~
biobk)3 (22)

< >

where e[~ = ~(~~~
is the fluctuation part of the rate strain tensor and (kmJ~

" b4mb~~~ is a

fourth rank unit tensor.

We shall consider the small shear rate limit for which the condition ~T~ < I takes place.
In this case the solution of equation (20) can be found by reversing the matrix li[~~~ and

conserving only the terms which are proportional to the first order of production of the velocity
gradient and relaxation time:

j~l
~~T

=
(/~~~)~kmnt~k ~ UM < D > T? E~k

< D

~ii~~k>3j
123)

Using the relation D
=

kBT/(6~bn), we can rewrite the ratio D'/ < D > in terms of viscosity:
D'/ < D >= -n'/ < n > which is valid since we are dealing with a small concentration of par-
ticles. After substituting this solution into equation (13) and taking into account equation (22),
the fluctuation of suspension polarizability at the point r can be found:
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N

Hete T =

~j
T~. The derivation of the equation (24) required the known relation between the

v=I

eigenvalues: u~p~ = A~ [14].
For the shear 2, the velocity gradient is directed along the x2-axis and average velocity is

< u3 >= ~z2. In this case it is easy to show that the fluctuation part of the polarizability can

be written as:

3.2. ELONGATIONAL FLOW. In this case the components of the average velocity vector are

equal to < u~ >= ~(~)x~. For an incompressible fluid, the macroscopic velocity gradient tensor

is then equal to < ~~k >= ~(~)b~k where ~i = ~2 =

-'~ and ~3 " ~
(there is no summation over

2
the repeated Latin indices if one of them is inside brackets). Substituting this expression for

the velocity gradient tensor into equations IS) and (16) and taking into account the inequality

~T~ < I, we find the following solutions for the tensors < A[( > and I[(:

< ~$~ ~" A(~~b~k,
A)

=

fi (26)
~ ,

l[(
= u~ < D > T)

e[~
+ fl~~(~)b~kj (27)

The expression of the tensor of polarizability fluctuation in an elongational flow is obtained

after inserting equation (27) into equation (13):

o[~(r)
=

n~liaT
e[~(r)

+
~ ~~~

~(~~b~k (28)
3 <'n

>

From the above analysis and equations (24), (25) and (28), it appears that for all considered

modes of flow the polarizability fluctuations are linear functions of the strain rate and viscosity

fluctuations for both the Zimm and Rouse models of polymer chains.

4. Hydrodynamic Fluctuations in a
Diluted Polymer Suspension. Low Reynolds

Number Limit

Here we shall derive the dependence of the velocity gradient fluctuations in the suspension upon

the fluctuations of the viscosity for shear and elongational flows in a low Reynolds number limit.

In this case, the Navier-Stokes equation of incompressible heterogeneous liquid at steady-state

flow can be written as follows:

Qj,kk + Q,k(j,k + Uk,1) i',i "
0 (~~)

Here p is a pressure which depends on the boundary conditions. Splitting the values u~, n

and p into average and fluctuation parts we obtain the hydrodynamic equation for the velocity

fluctuation:

u(
~~ = (p'~ 2n'~ < e~k >) (30)

' < il > ' '
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In general the solution of equation (30) may be written with the help of a Green function G(r)
of the equation G,kk

=
-b(r) where b(r) is a delta-function. We get:

~~
< >

~ ~ ~~~~ ~~~~ ~ ~~~ ~~ ~~~~

where the asterisk denotes the integral convolution. Using the incompressibility condition

iv(
~

=
0) to exclude the pressure p' and making differentiation of u[ over the xk in equation (31)

we'obtain the expression for the fluctuation part of the velocity gradient tensor:

~[~
=

~
(b~pG,kq *

q'+ G,~k * G,pq *
q') < epq > (32)

< n >

It is necessary to note that the second derivation of the Green function is the homogeneous
generalised function of the (-3) degree. It has a singularity at the origin of coordinates which

can be regularised as follows 11?]

G,ik(r)
"

gikb(r) + Gl~k(r) (33)

where G(~~(r) is the formal second derivation of the Green function (out of singular point). In

the case of spherical shape of the particle the tensor g~k =
G ~dS~

= b~k (18].
' 3

It can be easily checked that the value of the velocity gradient inside the sphere is controlled

by the first term in the right-hand side of equation (33), whereas ~[~ outside the particle is

determined by the second term. Substituting equation (33) into equation (32) we obtain

~[~
=

~ ~
b~pbkqn'+ (b~pG~~~ + G~~~ * G~~~) *

'j
< ep~ > (34)

< n > 3
' ' '

Here we used up the incompressibility condition. Further on we have to know the Fourier

transform of the tensor ~[~. For arbitrary value of < e~k >, it is equal to

~~~'~~~~
< >

~~~~~~
~~~~~~~ ~ ~~~~~~~~ ~ ~~~ ~ ~~~~'~ ~~~~

where Fq(n') is the Fourier image of the viscosity fluctuation. In the particular case of shear I

the velocity gradient tensor of the suspension is < ~~k >= ~b,~b~i. Hence the average strain

rate tensor is equal to < e,k >= ~bi(ibk)3. Substituting this < e~k > into equation (35) we

obtain:

Fq(~[~)
=

~'~ ~b~(ib3)k
b~~is3)sk +

~sksis~j Fq(n') (36)
< n > 3

In the case of shear 2 the average strain rate tensor is equal to < e~~ >= ~b~(~b~)~. Substituting
it into equation (35) we obtain:

'~'~~~~ <~> ~~~~~~~~
~~~~~~~~ ~ '~~~~~~~ ~~~'~ ~~~~

For the elongation flow we have < e,k >=< ~,k >= ~(~)b,k. The Fourier image for the
fluctuation of the gradient tensor in the case is equal to

~~~~~~~
< >

~'~~~~~~
'~~~~~~~~

'~~~~~~~~~~~ ~~~~'~ ~~~~

Hence the Fourier transformation of the velocity gradient fluctuations are proportional to the

Fourier image of the viscosity fluctuations in all the cases discussed.
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5. General Expressions for Light Scattering by Diluted Polymer Suspension at

Shear and Elongational Flow

To derive the reduced light scattering intensity according to equation (I), the relationship
between the Fourier transforms of the correlation function of the polarizability fluctuations

and of the viscosity fluctuations must be found. Using equations (24), (25), (28), (36-38) we

can see that the tensor of the polarizability fluctuations can be written in the following general
form:

where the tensor B~~
depends

on the
types of macroscopic flow. Equations

the
general

ion or the
Rayleigh ratio at

=

Here the value k(q)
=

~
Fq(< n'n' >) is an evaluation of the heterogeneity of viscosity

< >

and consequently is the structure function of the suspension. The dependence of light scattering

intensity upon the viscosity-viscosity correlation function is the main physical result of this

work. For HH, VV, HV and VH orientations of polaroids, R can be expressed as follows:

RHH
"

A~P(q)(B120) + B220()~k(q) (41)

RVV
"

A~P(Q)(B13°( ~ ~33°()~~(Q) (~~)

RHV
"

A~P(Q)(B13°) ~ ~23°')~~(Q) (~~)

RVH
"

A~P(q)(B120[ + B230( )~K(q) (44)

where A~
=

()lian~ck~)~. The expressions for the intensity of the reduced light scattering

of such polymer suspensions in shear (of the two types) and in elongational flows can now be

derived.

S-I. SHEAR I. The expression of the tensor B~k in this case can be obtained by using

equations (24) and (36) and taking into account the fact e[~ = ~)~~~:

Bik
= ~T

)bi(~bk)3
2b~)(is3)s(k +

2s~sksis31(45)
By introducing the components of this tensor into equation (41)-(44) and utilizing the depen-

dence of the vector O on the component of the unit vector s
(see Eqs. (6) and (7)) the four

Rayleigh ratios can be found:

RHH
"

(~~~~~~~~~
i

~~
~8(

~~~~ ~~~~

~VV ~~~~~~~~~~~~~~~45~~~~~ ~~~~ ~~~~

RHV
"

(A'~T)~~(Q)~~~~~~~/~~~~~~
~~~~
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RVH
"

(~'~T)~~~Q) ~~~~4s/~~~~ ~~~~ ~~~~

5.2. SHEAR 2. In this case, the direction of velocity gradient is directed along x2-axis and

the expression for B~k can be obtained from equations (25) and (36)

B~k
= ~T

b~(~b~)3
2b~)(~s~)s(~ +

2s~s/s2s31(50)3

The Rayleigh ratios at the four positions of polarizer and analyzer are:

RHH
"

(~'~T)~~~~~ ~~~~~s(~~~~ ~~~~ ~~~~

R~~
=

(A~T)~P(q)
~)~~(~j)/~~

~~Q~ ~~~~

R~~
= ((A~T)~P(q)

~~ ~ ~~~~~ ~i~i~ ~~~~~ ~~~~ ~~~~

i
~

(2 + 12s(S( ~ ~~(S( ~~~)~ K(q) ~~~~RVH
" @(~'~T) ~~~~

l 45(~(

5.3. ELONGATION FLow. For this type of flow (along the x3-axis), B~k, is obtained from

equations (28) and (38):

Bik
= T

(tt(i)bi~
s~s~ j(~~~~ + ~~~~ 2~psjl (55)

Substituting components of this tensor into equations (41-44), the following expressions of the

Rayleigh ratios can be found:

RHH
" ((~~l~~~~~~~

~~~~~ ~~~ ~~~ ~~~~ ~~~~

RVV
"

(~'~T)~~(~)~~~~~~ ~ ~~~( ~~~ ~~~~ ~~~~

RHV
" ((~'~T)~~(~~ ~~~~~~4s(~(~~~ ~~~~ ~~~~

RVH
"

(~'~T)~~(Q~~~~~~4s/~/~~ ~~~~ ~~~~

It has to be stressed that the results obtained in this section are adaptable to both Zimm and

Rouse models of polymer chains. The difference between them is only in different values of the

relaxation times, T. The relationships for the Rayleigh ratios are valid at arbitrary values of

the scattering angle. In the next section we shall discuss their consequences for special cases

of the flow SALS.

6. Numerical Predictions and Discussion

Provided that the reduced viscosity-viscosity correlation function k(Q) is known, equations
(45-59) give the flow SALS patterns for shear and elongational flows. The analysis of these
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patterns is performed for the four classical orientations of the polarizer and analyzer, HH, VV,
HV and VH.

The present theory being restricted to a random distribution of particles, the correlation

function depends only on the value (not
on the direction) of the scattering vector. In the

simplest case of an ideal random twc-phase structure which is under consideration, k(q) has

the following form [19]:

~~~~
(l

~~2)2
~~ ~~~~

where a is the size of the particles. Since the value of the scattering vector depends only on

the scattering angle, the azimuthal dependence of the scattering patterns is assigned by the

components of the tensor B~k (see Eq. (40) ).
The four sets of calculated SALS patterns (HH, VV, HV and VH) which are limited by

15° of scattering angle are given for the three types of flow conditions (shear I, shear 2 and

elongation) in Figures 1, 2, 3, and 4 in units of (A~T)2 and at all
=

I.

Figure I gives the predicted HH patterns. Let's recall that HH is defined
as having the

polarizer parallel to the analyzer, both perpendicular to the macroscopic flow direction. They

are parallel to the vorticity axis in the case of shear I and to the shear gradient axis for

shear 2. We can see that for shear I the light scattering pattern have a four-leaf structure, for

shear 2 it is eight-leaf pattern with zero intensity at the azimuth angle equal to 0° and 90°

and for the elongational flow the pattern has four leaves which are parallel and orthogonal to

the flow direction. The last one is in qualitative agreement with known results for stretched

filled polymer networks [20-22j. The HH scattering of shear I is also characterized by a

non-monotonical dependence on the scattering angle that is in a contrast with shear 2 and

elongation.
The very weak intensity in the case of shear I is due to the fact that the gradient is directed

along the incident beam. The effect of flow field distortions due to the shear gradient on the

scattering is minimised in this condition. In the case of shear 2 and elongation, the flow is

mainly perturbing the shear rate distribution in a plane perpendicular to the incident beam,
maximising its effect for the light scattering.

Figure 2 gives the predicted VV patterns. Again,
a large difference between considered flows

is found. Two leaves with no intensity at 90° azimuthal angle are found for shear I while

shear 2 and elongation exhibit eight- and four-leaf patterns, respectively. A large difference in

scattering intensity between shear I and the other two is also found. The reason is similar to

the case of HH. For shear 2, it must be noted that HH and VV are very similar. It means that

the fluctuations in this geometry have a symmetry of revolution around the beam. (Note that

to have a symmetry of revolution around the incident beam is not enough to give HH
=

VV,

see polymer spherulites for example). The flow field distribution around each particle has also

a circular symmetry.
Figure 3 gives the predicted HV patterns. Shear I and shear 2 show different four-leaf

patterns and elongation of the eight-leaf pattern. The total intensity at shear I is weak due

to the small depolarisation of the scattering light in this configuration. As for VV and HH,

there is no scattering intensity at zerc-angle for shear I. Such an
eight-leaf pattern in the

elongation case has been experimentally found and theoretically predicted for stretched filled

elastomers ill,20-22j. To find a similar result is not surprising since hydrodynamic and elastic

equilibrium equations have a very close structure.

Figure 4 gives the predicted VH patterns. There is a difference between VH and HV patterns:

in the last case we obtained
a

six-leaf pattern with maximum intensity distribution along 90°

azimuthal angle. Both patterns are exactly similar for shear 2, which correlates with the fact
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Shear I. HA-scattering.

I

Shear Z. HH-scattering.

g

Elongation. HH-scattering.

Fig I. Contours of light scattering intensity from polymer suspensions at shear I, shear 2 and

elongational flow under the HH position of polarizer and analyzer.
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Shear I. VV-scattering.

j
j

i

Shear Z. VV-scattering.

g

Elongation. VV-scattering.

Fig. 2. Contours of light scattering intensity from polymer suspensions at shear I, shear 2 and

elongational flow under the VV position of polarizer and analyzer.
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c

Shear I. HV-scattering.

Shear 2. HV-scattering.

'

Elongation, HV-scattering.

Fig. 3 Contours of light scattering intensity from polymer suspensions at shear I, shear 2 and

elongational flow under the HV position of polarizer and analyzer.
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Shear I. VH-scattering.

,&

Shear Z. VH-scattering.

>t

g

Fig. 4. Contours of light scattering intensity from polymer suspensions at shear I, shear 2 and

elongational flow under the VH position of polarizer and analyzer.
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that VV and HH are similar in this case. HV and VH patterns are also similar in the case of

elongation due to reasons of symmetry.

7. Conclusion

The flow light scattering by a diluted polymer suspension is induced owing to the difference

between particle and solvent viscosities. The scattering intensity is proportional to the Fourier

transform of viscosity-viscosity correlation function in the case of equal refractive indices of

the components at rest. This result does not depend on details of hydrodynamic interactions

of chain segments. The angular behavior of flow SALS patterns depend on a flow mode and

position of polarizer and analyzer.
Before extending the theory, the next step will be to compare it to experiments. In this

context, the case of shear I is very interesting since the non-monotonical behaviour of the

light intensity versus scattering angle allows a quantitative comparison to be made. Moreover,
shear I is a simple geometry as far as rhec-optical experiments are concerned.
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