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Abstract. The dynamic properties o< unentangled adsorbed polymer layers are considered

theoretically. The kinetics of penetration of a chain in an
adsorbed layer is considered as a two-

step process: entry corresponding to the attachment of the chain
on

the adsorbing surface and

spreading
on

the surface. We discuss three types of experiments, the formation of an adsorbed

layer, the desorption from an
adsorbed layer and the exchange between an adsorbed layer and a

bulk solution. The bottleneck for the adsorption of a new chain onto a solid wall (already covered

by polymers) is the spreading stage corresponding to creation of G contacts with the wall with a

total binding energy of order of kT. The desorption of
a

preadsorbed layer in contact with pure

solvent is extremely slow and only a very small fraction of the adsorbed chains is expected to

desorb within the experimental time scale. The exchange between labelled adsorbed chains and

unlabelled chains in solution is slower than the formation of a saturated layer, but much faster

than the desorption process. The molecular weight dependencies of the characteristic times of

the three processes are
predicted using the Rouse-Zimm dynamics for the polymer chains.

1. Introduction

Adsorbed polynlers play an important role in various areas of applied technologies such as lubri-

cation adhesion or colloid stabilization. They have been the subject of nlany experimental and

theoretical studies over the last years. A rather good description of the equilibrium properties
of adsorbed polymer layers has been reached [1-3,17]. Polymers fornl on an adsorbing surface

a fluffy layer with a thickness that can be as large as the radius of gyration of the polymer
chains in solution. The polymer chains form loops on the surface with a very broad distribution

of sizes [4]. The quantitative description of the polymer concentration and of the mechanical

properties of polynler layers adsorbed from a good solvent are based on the self-s1nlilar struc-

ture proposed by De Gennes [1, 2]. Many of the experinlental results obtained from neutron

scattering [5], neutron reflectivity, surface excess measurements or direct measurements of the

forces between opposing layers are in good agreement with this scaling theory.

(*) UPR CNRS 022
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Recently [7], we have proposed a detailed scaling analysis of the statistics of loops and tails

in a polymer layer adsorbed from a dilute good solvent where the tails are the end sections of

the chains going from the surface to the bulk solution. We have shown that the layer has a

double layer structure with an inner part where most of the monomers belong to loops and an

outer part where most of the monomers belong to tails. This segregation between loops and

tails was already observed in the numerical self-consistent mean-field theory of Scheutjens and

Fleer [3, 25]. We are not however aware of any direct experimental evidence of this structure

(note however indirect experimental evidence [26] ).

Most of the studies both theoretical and experimental devoted to polymer adsorption have

considered it as a thermodynamic equilibrium process. The adsorption kinetics is however

known to be a very slow process where the final equilibrium is reached only after very long
times that may in many cases be longer than the accessible experimental time range. Polymer
adsorption is often an irreversible process [8,28,29]. When an adsorbed layer is formed in

equilibrium with a dilute solution and then exposed to a pure solvent, only a small fraction of

the polymer chains desorbs. Most of the chains remain bound to the adsorbing surface. Thus

it is of uppermost importance to build a detailed theory of the kinetics of polymer adsorption
and desorption.

De Gennes [10,11,15] has proposed a two-step process to describe the adsorption kinetics.

In the first step, entry, a new polymer chain penetrating the adsorbed layer must overcome the

potential barrier due to the excluded volume of the already adsorbed chains. This potential
barrier is treated by analogy with a quantum tunneling problem. The spreading process cor-

responds to an increase of the number of monomers of the penetrating chain in contact with

the adsorbing surface. The total nunlber of monomers on the adsorbing surface increases only
in the very early stages of the adsorption. In the later stages, the incoming chain replaces
already adsorbed chains on the surface. The replaced chains unfold to form extra loops. Many
of the observed qualitative features of polymer adsorption kinetics are in agreement with this

theory: for example essentially no
desorption is predicted but the exchange between labelled

and unlabelled chains in the adsorbed layer occurs at a finite rate.

In this paper, we follow the lines of De Gennes's work to discuss the adsorption dynamics
in more details. We assume that the adsorption is slow enough that at each step the adsorbed

layer is in a quasi-equilibrium state. We do not consider the very early stages where a
uniform

polymer layer forms on the surface. The kinetics in these early stages is dominated by the

bulk diffusion of the polymer towards the surface. In the later stages, we keep the same quali-
tative description as De Gennes with a two-step adsorption process, entry and spreading. The

potential barrier opposing the penetration of new chains in the adsorbed layer is determined

from our results on the statistics of loops and tails in the layer and turns out to be quite
different from the one proposed by De Gennes. We explicitly take into account both the entry

and the spreading mechanisms in the adsorption rate determination. We use these results to

discuss three types of experiments: the kinetics of formation of an adsorbed layer, the kinetics

of desorption and the exchange kinetics between labelled and unlabelled chains. In all this

work, we ignore the role of entanglements on the dynamical properties of the polymer chains

in the adsorbed layer and we use a Rouse-Zimm model to describe the dynamical properties
of the polymers [20].

The paper is organized as follows. In the next section, we summarize De Gennes's scaling
theory of equilibrium adsorbed polynler layers and our results on the structure of tails and

loops. In Section 3, we discuss the penetration of a new chain in an adsorbed layer. We first

discuss the potential barrier opposing the penetration and then the adsorption rate equation.
Section 4 is devoted to the three basic experiments: adsorption, desorption and exchange. The

last section presents our conclusions and discusses some possible issues.
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2. Equilibrium Structure of
an

Adsorbed Layer

In this section we present the self-similar construction proposed by De Gennes [1,2] to describe

the structure of adsorbed polymer layers. We then summarize our results [7] on the statistics

of tails and loops in the layer. Finally, we discuss the equilibrium between the adsorbed layer
and a dilute good solvent.

2.I. SELF-SIMILAR CONCENTRATION PROFILE. In the vicinity of an adsorbing surface, the

concentration of a polymer solution decreases smoothly with the distance
z

from the surface.

Locally close to the wall the solution has the same mesh-like structure as a bulk semi-dilute

solution with a local correlation length (mesh size) ((z) that varies with the local polymer
concentration #(z)

as
((z)

-~

#(z)~"/(~"~~) [12,13], where u =
0.588 is the swelling exponent

of a polymer chain in a good solvent. The distance from the wall being the only characteristic

length scale in the problem, the self-similar construction proposed by De Gennes is obtained

by imposing that the local correlation length be proportional to z. This gives the self-similar

concentration profile as

#(z)
-~

z~/"~~
ci

z~~/~ (2.I)

(here and below the monomer size, a, is closer as unit length). In the limit of strong adsorption
where each monomer in contact with the adsorbing surface gains an energy of the order of the

thermal excitation kT, the short range cutoff for the concentration profile is of the order of the

monomer size a. As discussed below, if the surface is saturated with polymer, the adsorbed

layer cannot be thicker than the size of a free chain RF
-~

N" in a bulk dilute solution. The

self-similar concentration profile is thus observed up to a distance RF- For infinitely long
chains, the surface coverage ro

"

I 4(z) dz has a constant value of order lla~.
Undersaturated or starved layers [9,10] are obtained, either by stopping the adsorption

process, or by forming an adsorbed layer in equilibrium with an extremely dilute solution. The

surface excess is then smaller than the saturation value ro. We define the undersaturation

degree x by
r

=
ro (I x) (2.2)

The concentration profile has the same power law decay as for saturated layers but the thickness

of an undersaturated layer is smaller than the chain radius RF (9,10]. The explicit integration
of the concentration profile leads to:

ci a
x%

ci a
x~~ (2.3)

where we suppose that I > x > N~~~".

2.2. Loops AND TAILS. De Gennes's scaling assumption for the concentration profile in

an adsorbed polymer layer does not give any precise information on the single chain statistics

in the layer. In general two types of chain sections are distinguished: loops are chain sections

starting from the adsorbing surface and coming back to the adsorbing surface; tails are chain

sections starting from the adsorbing surface and dangling towards the bulk of the solution. Here

we summarize our recent results on the relative importance of loops and tails in an adsorbed

layer.
An adsorbed layer has a double layer structure with an inner part where the concentration

is essentially dominated by monomers belonging to loops and an outer part where the concen-

tration profile is essentially dominated by monomers belonging to tails. The crossover between

these two sublayers occurs at a distance I from the adsorbing surface much smaller than the

bulk radius of gyration RF

I
-~

N~/~ (2.4)
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In the inner layer, where the loops dominate, the partition function Z(g) of a loop containing

g monomers is directly related to the loop concentration (approximately equal to the total

concentration) at a distance z =
g"a.

z41(z)
-~

g~Z(g) (2.5)

The partition function of a loop can thus be written as [4]:

z(g)
m~

g-1-2" (2.6)

The partition function of a tail can be obtained by considering a loop of 2g monomers as two

half tails each containing g nlonomers and meeting at their end point. The following relation

is then obtained between the partition functions of loops and tails

z(g)
~J

g~~~~"z/(g) (2.7)

The exponent ~ =
l.162 is the susceptibility exponent [16]. The partition function of a tail is

therefore

z,(g)
-~

g~~~"~/~~~ (2.8)

From the partition function of a tail one obtains the concentration of monomers belonging to

tails

~ ~)
_~

~q-I ~l IV-1 (~ g)
t

The tail concentration is small in the very vicinity of the adsorbing surface where many loops

are fornled; it increases with the distance from the wall and becomes of the order of the total

concentration at a distance of order 2. At larger distances, the concentration of monomers

belonging to tails is larger than that of monomers belonging to loops.
In the outer layer where tails dominate (z > I), the partition function of tails is directly

related to the total concentration by

z#(z)
-~

const g~Zt(g)

where const is N-dependent. Imposing a good crossover at z =
I, we obtain

Zt(9)
-~

N~+Wg~~~~" (2.10)

One can then calculate the partition function of a loop and the concentration of monomers

belonging to loops, ii (z)
-~

Ni+1z~~+%. One easily checks that the loop concentration is

much smaller than the total concentration in this outer layer and that the concentration profile

is indeed dominated by tails.

These predictions can be easily generalized for d dimensions. The final results are

z~/"~~
,

z < I
=

N%
] Z ~ j 1

2.ll~
N -i

z~~~+M
,

I < z < =
G"

for loops, and

'~~~~
°'

z~~~~~ ~

i
~~

i
~~'~~~

for tails where G is the nlaximum size of the tails or loops. Note that d
=

4, ~ =
l, u =

1/2
correspond to the mean-field predictions, whereas d

=
3, ~ =

l, u =
1/2 correspond to an

adsorbed layer in a theta solvent.

For a
starved layer, if the layer thickness is smaller than the crossover thickness I, the outer

region dominated by the tails does not exist.
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2.3. ADSORBED POLYMER LAYER IN EQUILIBRIUM WiTH A DILUTE SOLUTION. The

overall structure of an adsorbed polymer layer is the result of a thermal equilibrium between

the adsorbed chains and the free chains in the bulk solution. We now consider this equilibrium
when the polymer in the bulk is dilute and in a good solvent.

In order to deternline the chemical potential of the polymer in the adsorbed layer, we consider

the adsorbed layer as a two-dimensional melt of blobs. For a two-dimensional melt with a

density of chains r/N, the free energy per unit area can be written as

F/kT
=

f(r) +
(

In
~ ~

ln(N~2D~~) (2.13)

The first term depends only on the monomer two-dimensional density r and not on the molec-

ular weight N, it describes the interactions between monomers. The second term represents
the translational entropy of the chains and the last term is the configurational entropy of each

chain in a two-dimensional melt. The susceptibility exponent ~2D is exactly known in two

dimensions from conformal invariance arguments [14]

~2D =
3/16 (2.14)

An adsorbed polymer layer is a melt of blobs of varying size formed by the loops and tails. In

each adsorbed chain, a finite fraction of the monomers are in direct contact with the adsorbing
surface and the number of loops per chain is of order N. The direct contribution of the loops

to the free energy is dominated by short loops and is thus independent of molecular weight.
The loop contribution to the free energy can therefore be incorporated in the interaction term

f(r). The tail contribution to the free energy is directly calculated from the tail partition
function

11
"

-2kTln(Zs)

The factor 2 accounts for the existence of two tails in each chain and the relevant partition
function is obtained by integrating the tail partition function over the tail length.

Zs
"

/
Zt(g') dg'

-~

NW (2.15)

Here we have assumed that the undersaturation is snlall enough so that size of the largest tails

G
-~

l~/" is larger than the crossover size §
=

2~/"
-~

N~/(~"). The partition function Zs is

dominated by tails of size §.
The existence of tails and loops could also renormalize the exponent ~2Di this has not been

studied to our knowledge and we
shall in the following use here the melt value. The free energy

per unit area of the adsorbed layer reads then

Fads
"

f(r) +
(

In )A In N

where A
= ~2D -1+ fit, and where we have chosen kT as the energy unit here and below.

The chemical potential per monomer is

~ads + ~(~~ "
-/h~(x) + ln

~ ~
lnN (2.16)

/h/t(x) +
) is the effective attraction energy of one mononler on the adsorbing wall. If the

layer is starved, this chemical potential term is dominant since all the other terms decrease as

I IN. The formation of a large tail or loop of g monomers costs an energy g/h/t. The maximum
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tail or loop size that fixes the thickness of the layer, obtained when this energy is of order kT

is

G
=

lllh/t (2.17)

The chenlical potential of a monomer in a
dilute solution of concentration c smaller than the

overlap concentration c*
-~

N~~~" is

/tmj =
ln

I ln N~~~ (2.18)

where the first term is the translational entropy and the last term is the configurational entropy
of the chains [12, 13].

The balance of the chenlical potential in the bulk and on the surface leads to

N/G % N /h/t
=

A' In N In ~ (2.19)

where A'
= ~ ~2D + 3u (1+ ~/u)/2 ci 0.25. In the vicinity of the overlap concentration,

the maximum tail size is G
=

£
ci

$ and the layer thickness
-~

G"a is indeed of the order

of the radius of gyration of
isolled polymers in a good solvent.

3. Penetration of a Chain in an
Adsorbed Polymer Layer

We now discuss the penetration of a new
chain in the adsorbed layer. We ignore here the

early stages of the adsorption where a uniform continuous layer is fornled on the surface. The

adsorption kinetics is in this stage limited by the bulk diffusion of polymer chains towards the

surface and shows no specific polymeric effect. In the following stages, there is a homogeneous
polymer layer on the adsorbing surface where already adsorbed chains form loops and tails. We

assume throughout the paper that this layer has the equilibrium structure of a starved layer as

described in the previous section. It is thus characterized by an undersaturation degree x or

equivalently by the size of the largest tails or loops G
-~

x~. This equilibrium assumption
is valid if the incoming flux of adsorbing chains is small enough that at each step the layer can

relax to its equilibrium structure. Below we show (see the end of Section 4.I) that this local

equilibriunl assumption is always valid for a Rouse adsorption from a dilute solution.

We first consider the potential barrier seen by a penetrating polymer chain: the penetration
is done in two steps, entry where the penetrating chain has no monomer in direct contact with

the surface and sees the excluded volume due to the already adsorbed chains and spreading
where the monomers of the penetrating chain come into contact with the adsorbing surface.

During the spreading step, the penetrating chain must expell front the surface the already
adsorbed chains that form larger loops or tails. A chain is irreversibly adsorbed if it has

gained an energy larger than kT upon adsorption. This is the case if the number of adsorbed

monomers g in the chain (I.e., the monomers involved in loops) is such that g/h~ » l. A chain

is thus considered as irreversibly adsorbed when the number of adsorbed monomers is larger
than the cutoff number G. At later times the chain relaxes towards its equilibrium structure

of tails and loops.
We then discuss the dynanlical resistance of the potential barrier that fixes the flux of

inconling chains. We use here Kramers rate [24] theory and the Zimm-Rouse description of

the dynamics of polymer chains [20].

3.I. POTENTIAL BARRIER

3.I.I. Tails and Hairpins Partition Fbnctions. In order to study the entry of a new chain in

the adsorbed layer, we first determine the partition function of a chain touching the surface by
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a) b)

Fig. 1. a) end entry; b) hairpin entry.

a single monomer. We distinguish the case where this nlononler is one of the end monomers

of the chain that we call end entry (Fig. la) and the case where this mononler is a mononler

in the middle of the chain that we call hairpin entry (Fig. lb).
If the number N of monomers in the chain is equal to the nlaximum tail size G, the partition

function of the chain attached by one end Z~ is the partition function of a tail of G monomers

Zt(G) given by equations (2.8) or
(2.10) when G is smaller or larger than the crossover size §,

respectively. If the entering chain is much larger than G, it forms a very long tail outside the

adsorbed layer and it behaves as a free chain attached to a hard repulsive wall. The partition
function of such a tail is Z

=
N~i ~~ where ~i is a surface exponent introduced for polymers by

Duplantier [14]. There is no precise numerical est1nlate of this exponent in three dimensions:

the
e expansion in dimension d

=
4 e is known to first order ~i I

=
-1/2 + e/8; in

two dimensions the exact value is known front conformal theory ~i -1
=

-3/64. We have

extrapolated between these two values by assuming a quadratic variation of ~i with the space

dimension. We obtain the approximate value

~i t 0.676 (3.I)

These two limiting behaviors impose the scaling form of the partition function of a chain

attached by one end in the adsorbed layer

Z~
=

(N/G)"~~Zt(G) (3.2)

The penetration of a chain in the adsorbed layer with a front monomer close to the end point

is very similar to the end-point penetration. Thermal fluctuations then favor the existence of a

short tail (shorter than G) during penetration. The partition function of a chain forming such

a small tail is obtained by multiplying the partition function of a chain touching the surface

by its end point by the partition function of a tail with any length g (where 0 < g < G),

Zs(G)
=

J/ Zt(g)dg (compare with Eq. (2.15)):

Z~~
=

(N/G)"~~Zt(G)Zs(G) (3.3)

As already noted if G > §, the average tail size is given by the crossover value §. We thus

expect that when a chain touches the surface close to its end point, it forms on average a
small

tail of size §.
The other possibility is that the chain touches the surface by one of its nliddle points to

make a hairpin. It then has two long tails going outside the adsorbed layer. If the nunlber

of monomers N is of order G, the chain is equivalent to two tails and its partition function is

JOURNAL DE PHYSIQUE fl T 3, N° 6, JUNE I MS 34



866 JOURNAL DE PHYSIQUE II N°6

GZ/(G) where the extra factor G accounts for the fact that any of the monomers can be in

contact with the surface. If the chain is very long, it behaves as a chain attached to a repulsive
hard wall by any of its points. The partition function of a chain touching a hard wall by any

middle point [14] does not involve any surface exponent, it varies as Z
-~

N~~~. If only the

closest monomer touches a repulsive surface, the number of configurations of the chain is not

significantly reduced and, the partition function is the saute as that of a
free chain. Looking

for a scaling law, we find the partition function of a hairpin touching the adsorbing wall by

one monomer as

zhP
=

(N/G)~-iGzj(G) (3.4)

3.1.2. End and Hairpin Entry. We now determine the potential barrier seen by a polymer
chain during the entry process. As in the previous section, we consider two different entry

mechanisms: end entry and hairpin entry. In all this section, we label the position of the

penetrating chain by the position z of the closest monomer to the adsorbing surface. It turns

out to be more convenient below to use the coordinate g =
(zla)". The potential barrier U(z)

seen by the entering chains is such that exp(-U(z))
=

Z(z)/Zo where Z(z) is the partition
function of a chain with its closest monomer at a distance z from the surface and Zo

-~

N~~~

is the partition function of an isolated chain in a good solvent. The partition function Z(z) is

inferred here from scaling arguments.
We first consider the end entry process in the case where the chain end is the monomer

closest to the surface and when the undersaturation is large enough, G < §. When the end

monomer is on the adsorbing surface
z =

0 the partition function is given by equation (3.2),
Z(z)

=
Z~. When the end point is on the surface of the adsorbing layer, g =

G, the entering
chain can be considered as a chain of blobs of size G attached to an infinitely repulsive surface

by its end point and Z(z
=

I)
=

G~~~ (N/G)~i ~~. Assuming a power law behavior in g between

these two l1nlits we find for g < G

~
ze

~~~~ ~~ zt(g) ~~'~~

where Zt(g) is the partition function of a tail of g monomers inside the adsorbed layer given
by equation (2.8). When the distance of the end point from the wall is equal to the radius RF
of a free chain, the wall has no influence on the chain configurations and the partition function

is that of a free chain Zo. Looking for a scaling law, we find the partition function Z(z) for

G < g < N

Z(z)
=

N~i ~~g~~~i (3.6)

The potential barrier for end entry when G < § can thus be written as

exP(-U(z))
=

(g/N)~~~
)

(3.7)

where we have defined Z~(g)
as the tail partition function Zt(g) if g < G and as the partition

function of a chain of g monomers with its end point attached to the adsorbing surface (given
by Eq. (3.2) where N is replaced by g) when G < g < N.

When the undersaturation is lower and G > §, the potential barrier can be determined using
the same procedure. One must here impose that when g < § the partition function has the

same g dependence as when G < §. Imposing the same boundary conditions as above when

g =
0, g =

G and g =
N, we find that the potential barrier exp(-U(z)) is still given by

equation (3.7) where the tail partition function is given by equation (2.8) if g < §, and by
equation (2.10) if G > g > §.



N°6 POLYMER ABSORPTION KINETICS 867

As seen in the previous section, it is more favorable for the entering chain to attach to the

surface not precisely by its end point but to make a small tail with an average number of

monomers of order §. Using the same kind of scaling argument as above, we find the potential
barrier for end entry taking into account this small tail. We assume below that g < G since

for g > G the adsorbed layer is unimportant. If G < §

exP(-u(z))
=

(~ /N)~-i Z~ZS(G)
Z~(9)Zs(g)

(3.8)

where Zs(g) is the integrated partition function of the tails given by equation (2.15), with

an upper integration bound g. For lower undersaturations, G > §, when g < § the potential
barrier is given by

~~~~ ~~~~~ ~~~~~~ ~ /~~~)) ~~'~~

When § < g < G, the small tail does not play any role and the potential barrier is given by
equation (3.7).

The potential barrier is constructed in a similar manner in the case of hairpin entry. The

scaling analysis leads to

zhp
~~~~ ~~~~~ ~~~~~~ ~

z~P(g) ~~'~°~

where we have defined the partition function of a hairpin of g monomers Z~P(g) as
Z~P(g)

=

gZ/(g) if g < G and by equation (3.4) where N is replaced by g if g > G.

Both for end entry and hairpin entry we thus find a potential such that exp(-U(z)) decreases

as a power law of the distance between the closest monomer and the surface. The repulsion
due to the excluded volume interaction decays therefore logarithmically from the surface. The

prefactor of the logarithmic decrease is a complicated combination of the exponents ~, u and ~i

The numerical value of the prefactor turns out to be of some importance in the deternlination

of the adsorption rate. The maximum of the potential seen by the penetrating chain occurs

when the first monomer touches the adsorbing surface. The height of the maximum (given by
Eqs. (3.9) and (3.10)) is larger for hairpin entry for weakly starved layers G > g* and larger
for end entry for more starved layers. The crossover occurs at

9*
"

N" Where a =
(1 + ~ ~i )/(~ + 2u ~i "

0.89 (3.I1)

Note that g* is larger than the crossover size §.

3.1.3. Spreading. When the first monomer of the chain touches the surface, the chain spreads

onto the surface to form a train and more and more monomers come in contact with the surface

and become involved in loops. We characterize the configuration of the chain by the number g

of monomers forming a train on the surface which is proportional to the nunlber of monomers

in direct contact with the adsorbing surface. The partition function of the penetrating chain

can then be written as
Z(g)

=
Z(g

=
I)Z~P(g) where Z(g

=
I) is the partition function of a

chain with one monomer in contact with the surface that we just determined and Z~P(g) is the

partition function of a chain of g monomers adsorbed on the surface with no tail. Following
the lines of Section 3.3, we write this partition function as

Z~P(g)
=

e~~"g~2~~~ (3.12)

The potential seen by the penetrating chain is then

exp(-U(g))
=

e~~"g~~~~~N~~~z(g
= 1) (3.13)
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The partition function Z(g
=

I) is given by Z~~, equation (3.3) when the penetration occurs

by end entry and by Z~P, equation (3.4), when the penetration occurs by hairpin entry. If

only a few monomers are adsorbed on the surface, g < G
=

lllh/t the potential decreases

logarithmically as g increases. When many monomers are adsorbed g » G the chain is

irreversibly adsorbed and the potential decreases linearly with g.

3.2. ADSORPTION RATE. We now discuss the dynamics of penetration of new chains into

the adsorbed layer. The flux J of monomers belonging to newly adsorbed chains is limited by
the diffusion through the potential barrier that we just described. As the barrier involved is

larger than kT, we use Kramers rate theory [24] that characterizes the potential barrier by a

resistance K which relates the average incoming flux to the external monomer concentration

c, c =
KJ. If we

define a reaction coordinate X, the resistance of the barrier is given by

K
=

/ ~~~ ~~~
dX (3.14)

D*

where U is the potential and D* is the effective diffusion constant.

As above, we split the potential barrier into two parts corresponding to the entry and the

spreading processes and write the resistance as a sum of two terms, K
=

K~ + K~p. For the

entry process, we use the position z of the monomer closest to the surface as the reaction

coordinate; for the spreading process, we use the number g of monomers of the penetrating
chain in direct contact with the wall.

3.2.I. Rouse Dynaniics. The dynamics of polymer chains in an adsorbed layer strongly
depends on the presence of entanglements. Although, for static purposes, the layer essentially
behaves as a two-dimensional system (where no entanglement is possible), it is quite possible
that the polymer chains are entangled (if the molecular weight is high enough) since the

thickness of the layer is larger than the monomer size, a. Moreover, we expect the number of

monomers per entanglement, N~, in an adsorbed layer to be of the same order as in the bulk.

For actual experiments, the molecular weights are often in the entangled regime, N > N~ [2,17].
This regime was considered by De Gennes [10,11] within the framework of the reptation theory.
However from the theoretical point of view, the entangled regime is more complex in these two-

dimensional systems [18] and the classical reptation picture [19, 20] cannot be used as such.

The reptation dynamics is considerably slowed down by a coupling with excluded-volunle

interactions which have a very strong effect in 2D systems. Recent results indicate that the

disentanglement time, Tdis, is very long (21j and increases exponentially with the molecular

weight N > N~:

Tdis -~

exp(constN/N~) (3.15)

We therefore expect an extremely slow relaxation of a nearly saturated layer to its equilibrium
state when N » N~. The relaxation time might in some cases be much longer than the t1nle of

the experiment. This stresses the importance of a detailed study of the structure and dynamics
of non-equilibrium layers. We leave this problem for future efforts. In the present paper, as a

first step, we simply assume that the adsorbed polymer layer is not entangled, N < N~.
We thus use the Rouse-Zimm dynamics to describe the motion of the polymer chains in the

layer. Locally the adsorbed layer has a structure similar to that of a semidilute polymer solution

and the hydrodynamic screening length is proportional to the local correlation length [20], I.e.,

to the distance z from the wall. The friction constant of a loop or a tail containing g =
(z la) ~/"

monomers is (
=

67rqz where q is the solvent viscosity. In the vicinity of the adsorbing surface,

there are mostly small loops of size a and the screening length is of the order of the monomer

size; the friction constant per monomer is then of order (o
"

67rqa.
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3.2.2. Entry. The resistance of the potential barrier due to the entry process is given by

K~
= /~~ dz e~(~~/D(z) (3.16)

o

The relevant diffusion constant D(z) is inversely proportional to the friction constant related

to a movement of the front monomer from a distance
z to the surface, D

=
kT/((z). This

motion does not require a motion of the chain as a whole but only that of a piece of chain
(blob) of size z. The friction constant is thus ((z)

=
67rqz, therefore the diffusion constant

D
=

kT/(67rqz). In the limit of small undersaturation, G > the integral giving the resistance

of the potential barrier has two contributions one coming from the large distances z =
RF and

one coming from distances of the order of the crossover distance I.

For end entry we find:

K]
=

67rq[N~" +
N~~~i~3 G"+~"] (3.17)

The existence of
a small tail does not influence this result. The first contribution is that of a

transparent potential barrier U ct 0. The exluded volume interaction limits the penetration of

new chains inside the adsorbed layer only in the case where the second term dominates, I.e.,
#~~

when the size of the biggest tails G is large enough G > N Yi+2~
-~

N°.~°~.

For hairpin entry, we find

K)P
=

67rq[N~" + N~~~IG~+~"] (3.18)

In the case of hairpin entry, also, the potential barrier is not transparent only at large values
~fi

of the maximum loop size G > N
Y 4M

-~

N° ~°°.

If the undersaturation is large G < §, the potential barrier is always transparent; the poten-
tial barrier is too weak to reduce the flux of incoming chains.

3.2.3. Spreading. The contribution of the spreading process to the resistance of the potential
barrier is

Ksp
=

/
dg e~~9~/D(g) (3.19)

where U(g) is determined by equation (3.13). The effective diffusion constant is now determined

by estimating the dissipation associated to the spreading process. The dissipation has two

origins: a direct friction on the incoming monomers (directly given by the Rouse dynamics)
and the dissipation associated with the expulsion of the already adsorbed chains from the area

when the penetrating chain spreads.
Polymer chains in a two-dimensional melt obey nearly-Gaussian statistics (apart from loga-

rithmic corrections) in particular, the end-to-end distance of a chain is roughly proportional
to the square root of the number of monomers [23]. Thus the area occupied on the adsorbing
surface by a chain which has spread over g monomers is A

-~ g. The 2D concentration, g IA, in

the occupied region is thus of order unity: the penetrating chain pushes a considerable fraction

of the monomers of the already adsorbed chains out of this region. The spreading implies then

an outward 2D flow of the monomers. Assuming that the 2D concentration in the adsorbed

layer is nearly fixed, I.e., that the layer is 2D-incompressible, we find that the flux j =
27rrur

of monomers through
a circle of radius r is nearly constant (here

u is the typical velocity of the

flow at the distance r from the center of the region). Therefore u -~ j /(rr), where j =
dg/dt

is the flux of "new" monomers into the layer. The total dissipation due to this flow is

1J
=

(o
/ ru(r)~ 27rr dr

-~
~) ln(Rmax/R) (3.20)

~~~ ~
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N

a) N b)
N

m

'9

Fig. 2. A typical chain conformation after spreading of
-~

G monomers
("critical" spreading): a)

for end entry; b) for hairpin entry.

where (o
=

67rqa is the bare Rouse friction and where Rmax is the long-range cut-off for the

flow due to the small compressibility of the layer. The logarithmic factor in equation (3.20)
always has a value between

-~
I and

+~
In N. In the following scaling estimates, this factor is

omitted. Thus we simplify equation (3.20)
as

~
(o

jdg)~~ F &

The effective friction due to the expulsion of the other chains is thus of the same order as

the direct Rouse friction and the spreading process can be roughly considered as an ordinary
(Fickian) diffusion along the "coordinate" g, with the effective diffusion constant Do

"
kTr/(o.

The contribution of the spreading process to the potential barrier resistance is dominated

by a number of spread monomers of the order of the size of the largest tails G. Thus we find

using equations (3.19) and (3.13) and assuming that r
-~

I:

K~p =
67rq[N~~~G~~~2~] /Z (g

=
1) (3.21)

The typical conformations with
-~

G spreaded monomers after end entry and after hairpin

entry are shown in Figure 2a and 2b. When G > §, if the penetration occurs by end entry, the

resistance is

j~e ~~ fil~-1/2-m ) G2-~2D+m+2u fit-1.00 ~p2.66 (~ ~~)
sp

" fl " ~

If the penetration occurs by hairpin entry

K$~
=

67rqN~~/~~lG~~~2~+~+~"
-~

N~~.~~G~.~~ (3.23)

The total resistance of the potential barrier can now be determined from equations (3.17),
(3.18), (3.22) and (3.23). The mechanisnl (end or hairpin penetration) that leads to the lowest

resistance is the dominant mechanism. One can easily see that the total resistance is always
dominated by the spreading process. Hairpin entry is favored if G < g*, where g* ci

N°.~~ is

given by equation (3.ll), and end entry is favored if G > g*.

In the re#on G < the entry barrier is transparent: K~
=

Kj°~
-~

6irqN~". The hairpin
spreading resistance for G < is determined by equations (3.19),(3.13) and (3.4):

K$~
-~

67rqG~~~2D+"

Thus the barrier for penetration is completely transparent if K$~ < Kj°~, i.e., if G < gi "

N~+~~Y2d
ci

N°.~~. Note that gi is very close to §
=

N3
ci

N° ~~. For G > gi the resistance

is determined by the spreading process.
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In the following, we focus on weakly undersaturated layers where G is large and the potential
barrier resistance is donlinated by the spreading process and end penetration is favored, K

=

K]~ (Eq. (3.22)).

4. Adsorption, Desorption and Exchange

We now discuss the three basic exper1nlents, formation of an adsorbed layer, desorption and

exchange between adsorbate and solution, for a weakly starved layer where G > g* (defined
by Eq. (3.ll)) exposed to a dilute solution of the same polymer. The variation with time of

the surface coverage, r, is due to the adsorption of new chains front the solution that create

an inward flux J+ and to the desorption from the layer to the solution that creates an outward

flux J-: $
~+ ~~ ~~'~~

The inward flux J+ is monitored bj the resistance of the potential barrier given by equa-

tion (3.22):

J+
=

c/K]~ ci pN~~"~~+~/~+~> +l G~~+~2~~'~~"
ci

pN°.~~G~~ ~~ (4.2)

where p =
c/c* is the reduced concentration of the solution and where we have chosen To "

(oa~/(kT)
as the unit time.

In order to calculate the outward flux J- we note that at equilibrium the inward and outward

fluxes are equal J+
=

J- so that J-
=

c(x)/K(x) where c(x) is the concentration of the solution

in equilibrium with the layer characterized by a given undersaturation degree
x.

The saturated

surface coverage, ro, corresponds to a layer of infinitely long chains, N
- cc. The chemical

potential balance between the adsorbed layer and the bulk, equation (2.19), gives

p(x) + c(x)/c*
-~

N~'exp(-N/G)
-~

N°.~~ exp(-N/G) (4.3)

where G
-~

x~. The flux of desorbing monomers is then

J-
~

G~~+~2~~"~~"N~+~>~~2~ exp(-N/G)
-~

N° ~~G~~'~~ exp(-N/G) (4.4)

When the layer is not in equilibrium with the bulk solution, we assume that the desorption
flux does not depend on the actual bulk solution concentration but that it defiends only on

the degree of undersaturation. We thus make the assumption that the desorption flux is still

given by equation (4.4). Let us also recall that at each time we assume that the adsorbed layer
has an equilibrium structure and thus that the inward and outward fluxes are small enough to

allow reequilibration.

4.I. FORMATION OF AN ADSORBED LAYER. We consider a moderately starved layer,

g* < G < N, exposed to a dilute polymer solution. In this situation, the desorption is

exponentially small and can be neglected. The adsorption rate equation can then be written

"

II
-

-J+
=

-PN° ~~x~~.~ ~~.~~

where we have used for simplicity the numerical estimates of the exponents. The undersatu-

ration degree decreases with time as

x -~

N~° "~(pt)~° °° (4.6)
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Thus the surface coverage approaches the saturation limit according to a very slow power

law: a decrease of x by a factor of 2 implies an increase of the relaxation time by a factor of

-~

20000. Taking into account the direct relation between the surface coverage and the cut-off

tail length, G we can rewrite this equation as

t
-~

N~° ~~G~.~~ (4.7)
P

Note that in the region of interest, G > N°.~°, the characteristic relaxation time t
=

t(G)
is always longer than both the relaxation time of a terminal G-part which is spread over the

adsorbing wall, TR -~
G~, and the characteristic time corresponding to motions of largest tails

and loops, Tz -~

G~"
cf

G~.~~.

Substituting G
-~

N in equation (4.7) we get the longest relaxation time for the fornlation

of an adsorbed layer: tads
-~

)N~/~+~"~3+~~~2~
-~

)N~ ~~. In the regime t » tads the

surface coverage approaches equilibrium according to a simple exponential law: r(cc) r(t)
c~

exp (-t /tads
Note that the adsorption time tads thus obtained is always longer than the longest time of

conformational relaxation, TR -~

N~ provided that the solution is dilute (p $ I). This justifies
the local equilibrium assumption.

4.2. DESORPTION. We now consider the reverse situation of an adsorbed layer first prepared
in equilibrium with a dilute solution of concentration co, and then suddenly exposed to a pure

solvent. The surface coverage decreases due to an outward flux, J-. The desorption rate

equation is written as:

~~
~

~~ ~~~ ~ ~~ ~~~~ ~~~~ ~~'~~

The initial condition x(0)
= To is determined by the equilibrium with a solution at a concen-

tration co We define go "
N/Go

or equivalently xo -~
(go /N)~"~~. The equilibrium condition

gives

go t 0.25 In N In po (4.9)

where po % co/c*. The variable go increases thus only logarithmically when the molecular

weight is increased or when the concentration is decreased. Note that although xo is snlall, it

does not vanish: the surface coverage of a saturated layer of finite chains, r~
=

ro(I xo), is

slightly smaller than the limiting value ro corresponding to an infinite molecular weight.
The undersaturation degree increases as

x ct
N~~~"

[go + In (I + t/tdes))~"~~ (4.10)

where
-4+~2D-m

~~~ ~~~_~~ j yi~'~~ N2.24 (4.I1)
~

go N3 3
D

v -~des
p~ Po

This gives the following asymptotic limits
:

x ci xo [1 + (2u 1) gp~ In (I + t/tdes) (4.12)

for t/tdes < exp (go)
-~

N° ~~ /po, and

x -~

N~~~" [In (I + t/tdes))~~~~ (4.13)

for t/tdes » exp (go)-
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Note that in the region t » tdes the rate of desorption is primarily governed by the effective
desorption barrier, N/h/t

=
N/G, which is large for a starved layer. The desorption time of a

fraction
x of initially adsorbed chains is exponentially large (for

x » To):

t
-~

tdes exp (aNx% (4.14)

where a is a numerical factor.

The desorption is very slow on a large time-scale. The characteristic fraction of the chains

that effectively desorb is of order N~~~"
ci

N~° ~76 (apart from a logarithmic factor which

cannot be large: for example t
-~

10~°tdes corresponds to a logarithmic factor [In(I + t /tdes)~"~~
in the r.h.s. of Eq. (4.13) equal to ci 1.7). Therefore the fraction of the desorbed chains is

always small unless the time of desorption is extremely large.

4.3. EXCHANGE SOLUTiON-ADSORBATE. The third basic experiment is the exchange ex-

perin1ent where a layer prepared by a preliminary adsorption of radioactively labelled polymers
is then exposed to a solution of chemically identical non-labelled chains. We call r* the surface

excess of the labelled chains, and r~ the total surface excess. The total coverage is constant

since the adsorbed layer remains in equilibrium with the bulk solution during the whole ex-

change process: the total fluxes J+ and J- are equal and constant. Using equations (4.2), (2.19)
and (4.9)

we get
J~

=
J+

=
J-

-~

poN~~ ~~g( 66

The labelled species are being gradually washed out from the layer. The corresponding outward

rate is proportional to J~ and to the fraction of labelled chain, r* /r~, in the layer:

dr* r*

S " ~fl~~

The solution of the last equation is

r*(t)
=

r*(0) exP (-t/T*)

Where

~

l
-2 66 fil2 42 (~ l~)

T ~ -Y0
PO

The exchange time is inversely proportional to the bulk concentration as was first predicted by
De Gennes [10]. Note also that generally the exchange (washing out of the labelled polymers)
is much faster than the desorption, which is exponentially slow (see Eq. (4.14)). On the other

hand, the exchange time, T*, is longer than the maximum time corresponding to adsorption,
tads

T* /tads
~

Y( ~~N° ~~

As pointed out by De Gennes [10], the difference between T* and tdes is similar to the difference

between cooperative and self-diffusion rates: the driving force for an exchange is of order of

kT, whereas a formation of an adsorbed layer is generally associated with a much stronger
force

-~
N/h~

=
N/G.

5, Concluding Remarks

We have discussed the kinetics of adsorption of a dilute polymer solution onto a solid wall. We

have described the penetration of a new chain in the layer as a two-step process. The entry
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process is controlled by the excluded volunle interaction of the incoming chain with the already
adsorbed chains. The spreading process requires the expulsion of already adsorbed chains to

maintain nearly constant the total number of monomers in direct contact with the surface

during the penetration of a new chain. A detailed analysis of the Rouse-Zimnl dynamics of an

entering chain coupled with the effective barrier due to excluded volunle interactions provides a

possibility to predict the molecular weight dependences of all the relevant characteristic times

for adsorption, desorption and exchange processes. In particular, we showed that desorption
is normally much slower than exchange, which in turn is slower than adsorption, in qualitative

agreement with earlier predictions of De Gennes. However, the particular nlolecular weight
dependences of the relaxation times are new and different from those obtained by De Gennes.

There are three reasons for this discrepancy: I)
we explicitly take into account the structure of

tails and loops in the adsorbed layer that leads to an effective repulsion of the chain end points
from the adsorbing surface; 2) we assumed Rouse-Zimm, rather than reptation, dynamics
of polymer chains; 3) we consider the rate of penetration of new chains in terms of purely
dynamical quantity, the effective resistance of the potential barrier created by already adsorbed

polymers, in contrast to the quasi-equilibrium consideration of De Gennes.

Thus it is not surprising that we also get a few qualitatively new results: we showed that it is

the spreading stage that controls the adsorption rate if the layer is nearly saturated (the cut-off

tail size G > N°.S~). In the case of stronger starvation of the layer (G < N°.S~),
we predict

no barrier for adsorption at all (I.e., the adsorption rate is controlled by diffusion of inconling
chains only in this regime). We also predict that end-entry is the dominant mechanism of chain

penetration for a saturated or moderately starved layer (G > N° ~~), whereas hairpin entry is

dominant for more starved layers.
In particular, in the very late stages the adsorption is limited by the spreading process and

the chain penetration is always done by end entry. The resulting potential barrier experienced
by a penetrating chain is higher than that previously calculated by De Gennes [10,11,27]. This

leads to a much slower kinetics of formation of the adsorbed layer- the surface excess reaches

the saturation value only as a very slow power law of t1nle t~° °" (see Eq. (4.6)). The longest
relaxation time for the formation of an adsorbed layer is inversely proportional to the nlonomer

bulk concentration.

Chain desorption induced by washing out an adsorbed layer by a pure solvent is predicted
to be an extremely slow process. The typical fraction of chains that can actually be desorbed

is in principle rather small, f
-~

N~~~"
ci

N~° ~76. In practice, this does not however al-

ways give small numbers: even for large N
-~

10~
we get f

-~

20$l. The desorption time

for an appreciably larger amount of polymer grows exponentially with the molecular weight
(Eq. (4.14)), and probably cannot be achieved in experiments. This conclusion is in agreement
with the experimental fact that an adsorbed layer can not be taken off by washing with pure
solvent [2, 17]

We have also considered the exchange of polymer chains between an adsorbed layer of labelled

chains and an unlabelled solution. The final picture agrees with that previously suggested by
De Gennes [10]. The characteristic time of exchange is inversely proportional to the solution

concentration in agreement with De Gennes's theory [10] and the experimental observations [28,
29].

Other new predictions correspond to the molecular weight dependencies of the characteristic

times. In particular we show that the exchange time scales as T*
m~

N2.42, whereas the terminal

time for the formation of a (saturated) adsorbed layer is t~ds c~
N~ ~~. For large N the exchange

time is thus much longer than the adsorption time [10].
The main limitation of the present theory is that it is based on the assumption that the

polymer chains are not entangled. Definitely, the effect of topological constraints must be
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1nlportant for adsorbed layers formed by very high molecular weight polymers. A future work
is thus required to generalize this approach and to discuss the kinetics of formation ofentangled

adsorbed layers.
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