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Abstract. A chain of N monomers is attached to a small colloidal particle, and is pulled
(at

a
velocity VI inside

a
polymer melt (chemically identical, with P monomers per chain). The

main parameter for this problem is the number X(V) of P chains entangled with the (N) chain.

Earlier estimates of X are
criticized, and a new

form is proposed: at large N(N > Nj),
we are

led to a
"Stokes" regime, X

=

N~/~, while at smaller N (N < Nj),
we

find
a "Rouse" regiuie,

X
=

N/Ne (where Ne is the number of
monomers per entanglement).

1. Introduction

The motion of a long, tethered chain (N monomers) inside a polymer melt IF) is special: the

N chain cannot reptate inside the (P) matrix ill. This occurs in star polymers, and also in

two recent experimental situations (Fig. I):

a) The N chain is grafted to a colldidal particle (of size smaller than the coil radius RN
of the N chain). The particle can be driven by sedimentation or by optical tweezers

(Fig. la).

b) The N chain is grafted on a flat wall, and the IF) melt flows tangentially to the wall

(Fig. lb ). (In the following, we assume that the grafting density is very small: no coupling
between different N chains).

Problem b)
was first considered theoretically (for the low V limit) in reference [2]. The starting

point is that a certain number X(V) of P chains are entangled with the N chain. The resulting
friction is estimated as follows [3]:

Assume that the N chain has moved by a distance D* equal to the diameter of an Edwards

tube [4] D*
=

Nj/~a, where Ne is the number of monomers per entanglement, and a the

monomer size. (We take Ne < N < P). To allow for this motion of the N chain, each IF)
chain entangled with IN) must move, along its own tube (of length Lt) by something like Lt.
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Fig I. Two examples of a
tethered chain (N) pulled inside

a
polymer melt (P). a) Sedimentation

(at optical tweezer action)
on a

colloid grain. b) Shear flow
near a

weakly grafted surface.

Thus the sliding velocity l~ of this P chain is not the translational velocity V, but is much

larger:

~ ~ ~~~ ~
~e

~~~

The dissipation T( due to the motion of the tethered chain corresponds to X(P) chains moving

at velocity V~ in the ambient melt.

TS=X(iP(~= fV (2)

where (IF is the tube friction coefficient of one (P) chain, and f the drag force. Comparing
the two expressions of TS we get:

f
=

V X(V)aJ~~ (3)

where
J~~ =

(ia~~P~Nj~ is the reptation viscosity of the (P) melt.

The crucial question is thus to find X(V). Even in the simplest (V
~

0) limit, where the

(N) chain is an unperturbed coil, this problem is difficult, and different answers have been

proposed at different times [2, 3]. In Section 2~ we
reanalyse the problem, using what we call

the binary entanglement model. In Section 3~ we compare this with a "collective~~ entanglement
model. Section 4 extends our ideas to higher velocities

2. Binary Entanglements

At low velocities~ the N chain is an unperturbed coil~ of size RN E£ N~/~a and volume R[. It

experiences in average an entanglement every Ne monomers. Each IF) chain intersecting this
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Fig. 2 The tethered chain at low velocities. coil voluIne lot and Edwards tube of volume Q.

volume uses +~

N monomers in this region. Thus the number of (P) chains which overlap with

the IN) coil is R[/Na~
=

N~/~.

In reference [2] we simply assumed that all the P chains are entangled with the IN) chain~
I.e. X(V

~
0)

=

N~/~.

The Edwards tube surrounding the N chain (Fig. 2) is a sequence of N/Ne blobs with

diameter D* and total volume-

Q
=

N/Ne(D*)~ (4)

One of the P chains intersecting the volume R[ has NQ/R[
monomers inside the tube. The

number of blobs visited by the P chain is thus:

b
"

i~/~eii~/~ii
"

i~/~e)~~~ IS)

Inside one blob, Nj/~ chains coexist (including the N chain). In our binary entanglement
model, we assume that a constraint is associated with a paiT of chains inside the blob. The

total number of pairs is 1/2 (Nll~ )~
+~

Ne. Thus, the probability that any given pair of chains

inside the volume do entangle~ is only N)~/~. The number c of constraints between one IF)
chain and the IN) chain is then:

c =

bNj~/~
=

N~/~ /Ne (6)

We are thus led to distinguish two very different regimes:

I) N > Nj. In this case c is larger than unity: all the N~/~ IF) chains which intersect the

coil do entangle with (N). Thus the simple guess of reference [2] is confirmed:

X
=

N~/~ (7)

We call this the Stokes regime~ because the friction force (Eq. (3)) has the scaling form

corresponding to a Stokes sphere (radius N~/~a) inside a liquid of viscosity J~~.
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2) N < Nj. In this case c is smaller than unity~ and we cannot use equation (5). When

c « I, we may say that the probability of entanglement between one (P) chain (inter-
secting the coil) and the (N) chain is c. Thus:

X
=

N~/~c
=

N/Ne (8)

The friction experienced by the tethered chain is then lineaT m N. Although we deal with an

entangled system, the (N) chain is thus described by a Rouse model [6]~ but the Rouse friction

coefficient is proportional to the melt viscosity (as can be seen from Eqs. (3)-(8)).

3. The Collective Entanglement Model

We now wish to describe an opposite limit~ where one entanglement site la blob of diameter

D* is pictured as a very complex knot, involving Nll~ chainsj the knot is such that eliminating

one chain from it removes the constraint. Then the number of constraints released if one P

chain moves out of the volume R[ is b~ and is larger than unity. All the N~/~ "P- chains" are

thus coupled to the N chain.

In this model~ it would be enough to select a subset of (N/Ne)~/~ "P-chains~' and move them

out, to relax the N chain: since (N/Ne)~/~b
=

N/Ne is the total number of constraints to be

removed. This remark leads to the prediction of reference [5]. However~ we do not think that

this approach is realistic. The N chain~ when it moves~ has no way of selecting a subset of

releasing chains: it drags all of them.

Thus we are led to say that in the collective entanglement model, X
=

N~/~~ and the Stokes

model holds for all values of N.

4. High Velocities in the Binary Entanglement Model

Under strong flows, and in the simplest picture [7] the N chains become elongated into a cigar
shape, with diameter D and length L

=

R[ ID. A more sophisticated description has been

constructed [5] but is essentially equivalent in practice. We have to distinguish two regimes:

4.I. PARTIAL STRICTION. RN > D > D*. Here~ a simple repetition of our discussion in

Section 2 gives:

c =
D/(aNe) (9)

If N < Nj~ we always stay in the Rouse regime (X
=

N/Ne).
If N > Nj~ we find a crossover from strong coupling to Rouse upon increasing the velocity

(decreasing D).

4.2. MARGINAL REGIME. Here the cigar diameter D becomes comparable to D*~ and the

number of entanglements realised by the N chain can become smaller than N/Ne. The marginal
value of X(X

=
X* is in fact fixed by the force balance: the stretching force required to reach

D* is [8]: $
=

X*lV)a~/pV (lo)

and thus X* is inversely proportional to the velocity. It may be checked that for V
=

V* (the
onset velocity for the marginal regime) X*

=
N/Ne as expected in the Rouse regime and:

V*
=

kTNj/~ /(NJ~pa~) ill)
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5. Concluding Remarks

I) The results of the binary entanglement model can be summarized as follows (for the low

velocity limit): the number of entangled chains is either N~/~ (the number of ambient chains

intersecting the mushroom)
or

N/Ne (the number of constraints acting on the N chain). Each

of them is an upper bound for X~ and thus X is the smaller of the two.

2) In the collective entanglement model~ we are led to X
=

N~/~. (See also [9]). But we do

not think that the collective model is fully realistic: complex knots may play a role, but may

not dominate the behaviour.

The real situation is probably intermediate between the binary and the collective model, as

suggested by the concentration dependence of the modulus of a melt plastified with moderate

amount of solvent. The binary model predicts Go
~

c~j the collective entanglement approach
predicts Go

+~
c~j and the typical experimental exponent is Go

+~

c~.~~'~ ~ (see, e-g-, Ref. [10]
and Refs. therein ). Thus, for many applications~ one can stick to the binary model, which is

conceptually simpler.
3) It is instructive to discuss the whole distribution function pin) for the number of entan-

glements between one given P chain (intersecting the mushroom) and the N chain. Using
mean-field arguments, one obtains a Poisson distribution:

pin)
= exp (-N~/~/Ne) §~~ (12)

e

~

n.

This gives:
X

=

N~/~J v(°11 ji~j
=

N~/~ ii exp (-N~/~ /Ne)]

Equation (12) is a useful interpolation between equations (7) and (8).
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