
HAL Id: jpa-00248173
https://hal.science/jpa-00248173

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Permeability of a Single Fracture; Validity of the
Reynolds Equation

V. Mourzenko, Jean-François Thovert, P. Adler

To cite this version:
V. Mourzenko, Jean-François Thovert, P. Adler. Permeability of a Single Fracture; Validity of the
Reynolds Equation. Journal de Physique II, 1995, 5 (3), pp.465-482. �10.1051/jp2:1995133�. �jpa-
00248173�

https://hal.science/jpa-00248173
https://hal.archives-ouvertes.fr


J. Phys. II Hance 5 (1995) 465-482 MARCH 1995, PAGE 465

Classification

Physics Abstracts

91.608 47.60 02.70

Permeability of a Single Fracture; Validity of the Reynolds
Equation

V.V. Mourzenko(*), J.-F. Thovert, and P.M. Adler

LPTM/CNRS, Asterama 2, Avenue du Tdldport, 86360 Chasseneuil du Poitou, France

(Received 17 October1994, received in final form 1 December1994, accepted 7 December1994)

Abstract. Single fractures
are

generated by statistical methods and described by
a

proba-
bility density of the profile heights and

a spatial covariance function which is either Gaussian

or
self-afline. The results of numerical simulations bised

on
both 2D Reynolds and 3D Stokes

equations are presented. Total fluxes predicted by these equations for the same fractures are

given and discussed. The difference between predictions of both models is analysed for the range

of correlation lengths and apertures of real fractures, and it is found that the total fluxes for the

same fractures may differ more than two times. When the local distance between the surfaces

is used, the Reynolds equation provides much better results.

Introduction

Fluid flow through systems of interconnected fractures is often the main mechanism of fluid and

solute transport in low-permeable rocks and is a subject of ongoing interest in petroleum en-

gineering and hydrogeology. Real fractures are characterized by very heterogeneous structures

of open space and it is important to correctly describe their hydraulic properties.
Numerical simulations of fluid flow in a single fracture are usually based on lubrication

theory, and use the Reynolds equation for calculating the pressuri distribution with a "cubic

law" for the flux [1-3]

i7
~~~~'~~ 7p)

=
0 (1)

12~

b3 ap
~~ ~Y12~3z ~~~

where b is the fracture aperture, p the fluid pressure, ~ the viscosity and Ly the width of the

fracture.
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The Reynolds equation can be derived from the Navier-Stokes equations for low velocity and

a slowly varying aperture. It is difficult to estimate analytically the validity of the lubrication

approximation and only a few quantitative comparisons are available. Using the results of [4,5],
Ziifimernian et al. [3] have found that the predictions of lubrication theory and of Stokes

equations for the mean flux will not differ by more than 10~ if the wavelength of the aperture

oscillations exceeds sari, where ah is the standard deviation of the profile height distribution.

Another approach was used by Brown [2], with numerical solutions of Reynolds equation; the

local ratio r
of the velocity gradients parallel and perpendicular to the plane of the fracture was

estimated; r should be small for the lubrication theory to be valid; r was found to be smaller

than 0.1 if the wavelength of the aperture oscillations is larger than 50 ah hence, the possible
applications of Reynolds equation to natural fractures would seem to be severely restricted.

The major purpose of this work is to provide systematic results of numerical simulations

based on the 2D Reynolds and 3D Stokes equations solved for the same fractures and to compare

them. To the best of our knowledge, this has never been done. Fractures are described by a

probability density of the profile height and by a correlation function. In this framework, two

major classes of fractures are analysed, namely fractures with Gaussian or self-affine correlation

functions; for sake of brevity, such fractures will be called Gaussian or self-affine. Two tentative

definitions of the aperture used in the Reynolds equation (1) are given; in the first case, b

is simply the vertical separation between the upper and lower surfaces; in the second case,

the aperture b is replaced by an estimate of the actual distance between the two surfaces

Permeabilities derived by the full Stokes equations and by the Reynolds equation based on b

and bd are systematically given as functions of the geometrical parameters.
It is emphasized that substantial differences between predictions of the exact Stokes equations

and of the Reynolds equation based on b, are obtained for the range of correlation lengths and

apertures of real fractures, for Gaussian and self-affine surfaces. However, when the aperture

bd is used in the Reynolds equation, the comparison is significantly improved.
This comparison is important for a precise determination of permeability. However, it may

have also important consequences in other domains such as dispersion of solutes in fractures;
the local distribution of the fluid velocity may substantially influence the determination of the

dispersion tensor [6, 7].

Generation of Fractures

The two surfaces of a fracture are described by the heights
z =

h*(z, y) above an arbitrary
reference plane z =

0 (Fig 1). Usually, h*
are random functions; they can be characterized

by the two probability densities ~g(Z) and ~g(w) of the mean surface Z
=

(h+ + h~)/2 and of

the distance
w =

h+ h~ which are often assumed to be Gaussian

1 (~'_ j~'))2
~~~~ @g~ ~~~ ~g[ i

~ ~i ~°i ~l (~)

where al denotes the variance ((F- < F >)~). The brackets correspond to the statistical

average.
The spatial correlations of the fields h+ and h~ are described by the covariance functions

Gz(r)and Gw(r), which are defined by

GF(r)
=

(jF(z, y)- < F >jjf(x + /hx, y + /hy)- < F >j)

r =
(/hx~ + /hy~)~/~ (4a)
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G

Fig. 1. Conventions and notation for the fracture geometry. Only
a unit cell is displayed.

For the so called Gaussian fractures, all the quantities h+, h~, Z and
w were described by

the quadratic covariance function

GF(r)
=

al
exP

(- II l~) (4b)

with the same value of the correlation length. Some attention will also be paid to structures

with self-alline correlations Gh+ (r) which are described at the end of this section.

In practice, spatially periodic fractures are built by juxtaposing identical elements of size

L x L, with L > I. The same approach was used for three-dimensional porous media [8].
The aperture b of a fracture is the difference between h+ and h~ when it is non negative

b may be described by its mean aperture < b > and its variance a), which are generally not

equal to the mean separation bm =< w > and to al, respectively. When
w is negative, the

surfaces are considered to be in contact and one has h+
=

h~
=

Z.

When the two surfaces of the fracture are very smooth, b is the natural aperture to choose.

When this is not the case anymore, b has to be replaced by a better estimate of the local

distance between the surfaces, which is inherent in the derivation of the Reynolds equation.
Such an aperture can be defined in various ways. One of them consists of the determination of

the diameter bd of the largest sphere able to fit into the fracture at a given node. This method

is derived from [9j for the topological characterization of porous media. Let ds(x) denote the

distance between the point z
which is located in the void space, to the closest solid surface.

bd(z, y) may be formally defined by

bd(z, y)
=

2 max
ds(x, y, z) (5b)

zE[h-,h+]

Instead of az, the standard deviation ah is used as a characteristic length because it may

be directly estimated from measurements (a[
=

al + a[/4). The correlation between the

two surfaces is characterized by the correlation parameter
=

1- a[/2a[, which is 0 for

uncorrelated surfaces and 1 for fully correlated surfaces All the possible situations can be
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described by the three parameters bm lab, ilah, and
@;

this is equi~,alent to consider ah as the

length unit.

To generate the random fields Z and w, the method of Fourier transforms is used (see [8j
for details). Gaussian spatially correlated periodic fields were generated on a numerical grid
(xi, ym) with /hx

=
/hy

= a and I, m =
1,

...,

N~ where N~ is the number of nodes in each

direction. Some examples of vertical sections oi generated fractures for different values of are

presented in Figure 2. The influence off is clearly seen.

The useful range of parameters can be deduced from an analysis of the experimental data.

If the quadratic covariance function (4) is used for h, the value ilah may be found from

~$~
(r

=
0)

=

-~~ (6)

This derivative is equal to -m2, which is the second moment of the power spectrum of

heights. Estimations of m2 were presented in [10j for quartzite and granite; m2 varied from

0.1 to 0.3 for fractures of different origins. Gentier [11] presented data for ((dh/dx)~), which

is a statistical estimation of -G[(0), and found that it lies between o.044 and 0.073. It is easy

to find from (6) that ilah varies between 2 and 7.

It is difficult to obtain direct estimates of bmlah, because bm is a parameter of the model,
while in practice < b > is measured. But for a Gaussian distribution (3) of w, the value of

bmlah may be estimated if < b >, ah or ab are given. Gentier ill] presented measured values

of < b >, ah and ab. Using these data, bmlah was found to vary between 0.2 and 0.8. Brown
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Fig. 2. Simulated fracture profiles. llah
#

2 and bmla~
=

I. Data are for: o
=

o-o (al, o.5 (b) and

o.9 (cl.
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et al. [12j measured < >= 0.06 0A mm, ah "
0,23 mm and ab "

0.078 mm; this implies
0 < bmlah < 2.6.

To encompass all of these values, ilah was varied from to 7, bmlah from 0.5 to 5 and

from 0 to 1. Values of bm lab less than 0.5 were not analysed because the fracture space is close

to the percolation threshold, and the results of modelling require a refined finite-scale analysis.
Let us now address self-affine fractures since there exist many experimental observations

where the self-afline character of rock surfaces is demonstrated [13j. Self-affine surfaces have

features of a broad range of characteristic length scales and can be described by the covariance

~
IT

2(jCh(T) G3 O~ 1- (~) (7)

where I is a characteristic length and ( is the roughness exponent [14j. For various materials,
the exponent ( was found to be 0.87 ~ 0.07 [15j.

The spectral density G(k) is the Fourier transform of this covariance Ch(r)

s =
2( + 2 (9)

s was found to vary between 3 and 4 for various rock surfaces [13j; this is in agreement with

the previous estimation of [15j.

o

c) d)

10 20 30 40 50 lo 20 30 40 50

Fig. 3. Distribution of contacts (white) between two generated surfaces with bm
=

0. Data are for

Lla~
=

66 (a-b), II (c-d), (a) and (c) correspond to Gaussian fractures with lla~
=

2; (b) and (d)

correspond to self-afline fractures with (
=

0 8.
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Since the method of Fourier transforms directly uses the Fourier transform of the covariance

function (4a), the spectral density G(k) can be used for the generation of fracture surfaces.

Figure 3 shows distributions of contacts between two random surfaces which are generated
by using the Gaussian covariance (4b) and the self-affine spectral density (8). The difference

between the visual aspects of these two examples is striking.
It should be noticed that there are two cut-offs in the generation of self-alline fractures. The

lower cut-off corresponds to the size of the elementary square a; the larger cut-off corresponds

to the half-size of the unit cell itself. As for Gaussian fractures, spatially periodic conditions

were used at the boundaries of the unit cell.

Stokes Equations

It is assumed in this paper that the velocities and characteristic dimensions are so small that

inertial effects are negligible. Under these conditions which can be summarized by saying that

the Reynolds number is vanishingly small, the Navier-Stokes equations can be replaced by the

Stokes equations; this assumption is also valid when step-wise variations in aperture arise (cf.
Fig. 2).

The analysis of Stokes flow is very similar to that made for three-dimensional porous media

(cf. [8j). Consider an infinite fracture made of identical unit cells of size L x L in the ix, y)-
plane. The low Reynolds number flow of an incompressible Newtonian fluid through a fracture

is governed by the usual 3D Stokes equations

i7p
=

~i7~v, i7 v =
0 (10)

where v, p and ~ are the velocity, pressure and viscosity of the fluid, respectively. In general,

v satisfies the conditions

v =
0, on the total surface S

of the fracture (11a)

and

v is spatially periodic with

period L in the plane

of the fracture (11b)

This system of equations and conditions applies locally at each point R of the interstitial

fluid. In addition, it is assumed that the macroscopic pressure gradient 0 is specified,

§
=

/
pds

= a prescribed constant vector (12)
To ar~

where To is the volume of the fracture; To is bounded by the two solid surfaces S and the

vertical boundary of the unit cell G, so that 3ro
=

S U G (see Fig. 1). The mean flow rate per

unit fracture width $
may be defined as

$= / v.d~r (13)
S*

~~
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where S* is the area of the ix, y)-projection of S. $ is linearly related to the pressure gradient
i7p by the Stokes permeability tensor Bs

$=-~Bs.i7p
(14)

11

B~ is a positive definite symmetric tensor which only depends
on the geometry of the system;

for isotropic fracture surfaces, the average tensor B~ may be simplified as Bs
=

Bs I, where I

is the unit tensor. The value bs
=

(12B~)1/~ is defined as the hydraulic aperture of a fracture

as estimated from the Stokes equations.
Further details on some technical points such as the spatially periodic boundary conditions

can be found in [8j.
The numerical method which is used here is the so-called artificial compressibility method

and is an improved version of that used in [16j. The problem is replaced by an unsteady
compressible one which is assumed to converge towards the steady incompressible situation of

interest. The equations were solved successively along each direction by using an alternating-
direction-implicit scheme.

Convergence was reached when the flow rate was found to be the same within 1Yo across

various sections of the medium. It sometimes took more than 104 iterations to obtain the

solution. This number critically depends upon the geometry of the sample. The time step is

limited by the occurrence of numerical instabilities and could not be increased during a given
calculation to accelerate convergence.

A 50 x 50 mesh in the ix, y)-plane was used for most realizations. The number oi nodes in the

z-direction was varied from 25 to 40 and depended upon the distance bm Bs varied of about 8~

when N~ varied from 40 to 80. The step size a was usually equal to 0.2 ah and was increased

to 0.45 ah for bmlah
"

10. This discretisation is supposed to be small enough ior a good
representation of the vertical variations of the surface profiles. Since the correlation distance

verifies llah > 1, the horizontal surface structures are also well represented (see Fig. 2).
It should be noted that the quadratic covariance function (4b) provides a random field which

has no significant small scale features for lengths much smaller than I (Fig. 3a). The exponen-

tial decrease of correlations between heights at different points implies that the probability of

appearance of large structures with a size z » is also negligible. This is not true for self-affine

surfaces where structures of different length scales can appear with a comparable probability
(Fig. 3b). The numerical method used here can be applied to flow in fractures with self-affine

surfaces, but only if a limited range of characteristic length scales is taken into account, namely
between the lower and upper cut-offs a and L/2 which were mentioned before.

Reynolds Equation

It is usually assumed that for very small Reynolds numbers and for slowly varying fractures,

I.e. in the limit where bmlah and ilah are large; the Navier-Stokes equations can be reduced

locally to the two-dimensional Reynolds equation [3]

i7 (b~i7p)
=

0 (15a)

Both definitions b and bd (5a and b) can be used in this equation. When bd is used, the

resulting quantities are indexed by the subscript d.

Equation (15a) has to be supplemented by the no-flux boundary condition at the solid

boundary L of the contact region (cf. also iii]). Let n be the normal in the xy-plane to the

curve L; this condition reads as
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n.i7p=0 onL (15b)

~'he flow rate per unit fracture width Q is given by

b3
Q

=
--i7p (16)
1211

As previously, an infinite fracture made of identical unit cells of size L x L in the ix, y)-
plane is considered. A complete analogy between the Reynolds equation and a two-dimensional

diffusion problem exists (cf. [8j). It is supposed that Q is spatially periodic and % is the same

constant vector as in (12). In the same way, the mean flux $ is defined as

$
"

) /
Qds (17)

s.

The Reynolds permeability tensor BR is readily defined by

$=-~BR.%
(18)

11

The hydraulic aperture is calculated from bR
=

(12BR)~/~, where BR is found after the av-

eraging of BR over a large number of statistical realizations; again for statistically isotropic
fractures, BR

"
BR I. The analogous quantities BRd and bRd will be often used in the

following.
To solve the elliptic equation (15) together with the spatially periodic boundary conditions,

the numerical"box integration method" is used (see [8,18,19]). The method was originally
developed to solve usual diffusion equation with variable coefficients. The medium can be

considered as the union of a set of elementary squares, over which b~ is constant. The pressure
field is defined at nodes, which are the corners of these elementary squares.

The elliptic equation (15a) is integrated over cells centered around each node. Truncated

Taylor series are used for this integration. The discretized linear equation for the pressure field

is obtained and is completed by overall boundary conditions. The set of equations for p was

replaced by a time dependent one which is assumed to converge towards the steady solution.

A time explicit scheme was used and in most cases an accurate solution is obtained in less than

one thousand iterations.

Results and Discussion

The purpose of this study was to calculate solutions of the 2D Reynolds equation and of the

3D Stokes equations for the same fracture geometry and to compare them. The major portion
of this section will address Gaussian fractures. Figure 4 shows generated aperture distribution

and calculated flux fields for fractures with non-correlated surfaces if
=

0) for three of the

four possibilities corresponding to the two values 1 and 3 of the ratios llah and bmlah. The

simulations were run on a 50 x 50 x 35 mesh with a step size a =
0.22 ah- The unit for the

aperture fields b and bd is chosen to be ah, in agreement with the previous conventions. The

unit for the flow rate per unit fracture width Q is chosen to be a(%/p. Due to large differences

between the maximal values of b and Q for various geometrical parameters of the generated
fractures, different levels of shading are used; the choice of b$ i7p/~. would certainly reduce

these differences.

It is interesting to compare the first two rows. The overall shape of the aperture distributions

is conserved, but with large quantitative differences.
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Column (I) Column (2) Column (3)

lla~
=

I, b,,, la~= I flay,
=

I,
b~~,

la~
=

3 1/ ah "
3, b,,, la~= 3

Ab= 12, Abd" 0 6, Ab= 1 2, Abd" 0 6, 6b= 1 2, Ab~= 0 6,

AQ~ s" 0 2, AQR "
0,I, AQ~ s" 0 2, AQR "

I, AQI s" 0 2, AQR "
I,

AQRd *
0 01 AQRd= 0 2 6QRd= 0 2
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~"
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Fig. 4. Simulated aperture and computed flux distributions over the fracture plane for non-

correlated Gaussian fractures lo
=

o). Six levels of shadings are distinguished from zero
(white)

to the largest value (dark). The shading steps for iperture are equal to Ab; for fluxes, they are
equal

to AQ. The three columns correspond to three combinations of the geometrical parameters ila~ and

bmla~. The first two rows correspond to b and bd with steps Ab
=

1.2 and Abd
=

0.6. The last three

rows
correspond to the three fluxes Qi~s (Stokes equations), QR (Reynolds equation with aperture b)

and QRd (Reynolds equation with aperture bd)
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It is easy to find that with decreasing bm, the flo~v becomes more heterogeneous and fluid

passes through several preferential flow paths (Figs. 4.c.1 and 2). This is the so-called chan-

neling effect of fluid flow in fractures, which was observed experimentally [20j and described

in numerical simulations [2,21]. Flow channeling appears for both Stokes and Reynolds flows

(Figs. 4.1.c, d and e). For large values of the correlation length ilah, flow channels become

larger (Figs. 4.c.2 and 3) because the aperture b varies less with the distance than for low

(Figs. 4.a.2 and 3).
The general features of the flow distributions obtained by the Reynolds model with b and

bd are roughly the same, especially for small bmlah (Figs. 4 d.1 and e-I). This is due to the

fact that the distribution of bd approximately follows the distribution of b (Figs. 4a and b).
The preferential flow paths are expected to be almost the same, because they are determined

by the channels with the largest aperture.
In order to quantitatively compare the flow distributions between the Stokes and Reynolds

models, the two cross-covariances were calculated

1/~

c~
=

/
(Q Q) (Qi,s S)ds/ /

(Q Q)~ds /
(Qi,s S)~dsj (19)

s. s. s.

1
~~

" ) ~i~3

The local flux Qi,s in the Stokes approximation can be defined as

~+

Qi,s
=

/
v(x)dz (20)

-h

The subscript I was added in order to avoid any confusion. The local flux Q in the Reynolds
approximation is given by (16) where either b or bd is used.

Gfl and Gfld are given in Table I for various values of lab and bm lab These data correspond
to a single fracture for each value of lab and @. Note that for high bm lab, the flow distributions

between the Stokes and Reynolds models are more different than they are for low bm lab. This

trend can be observed for both Reynolds models and various values of ilah and
@; this is not

true anymore for small bm lab (see Tab I). This is surprising because the influence of surface

roughness should decrease and because the flow distribution should approach the Poiseuille

parabolic distribution, when bm increases. For most realizations Gfld is found to be larger than

Cfl Cfld is about 0.9 when bm > I, whereas it drops rapidly when the mean separation bm
becomes smaller than the correlation length I; the same statement holds for highly correlated

surfaces (@ =
0.9).

Figure 5 shows the same fields for highly-correlated surfaces
(@ =

0.9). It is obvious from the

figures that a small value bm of favours flow channeling in both models (Fig. S-c-d, 1 and 2),
but here flow is distributed over a larger number of flow paths than for

=
0. The difference

in flow patterns obtained with Reynolds and Stokes equations increases when bm increases for

=
0.9 as can be seen in Table I.

The overall permeabilities were analysed by means of the ratios

~~
=

~~ ~~
=

~~

,

h
=

S R, Rd (21)
Bpi <b>

~

Bp2 bm

~

where Bp~ =< b >~ /12 and Bp~
=

b$ /12 are the effective permeabilities of a plane channel

of heights < > and bm, respectively.
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Fig. 5. Simulated aperture and computed flux distributions over the fracture plane for correlated

Gaussian fractures (o
=

o.9). Six levels of shadings are distinguished from zero
(white) to the largest

value (dark) The shading steps for aperture are'equal to Ab~ for fluxes, they
are equal to AQ. The

three columns correspond to three combinations of the geometrical parameters llah and bmla~. The

first two rows correspond to b and bd. The three last
rows correspond to the three fluxes Qi,s (Stokes

equations), QR (Reynolds equation with aperture b) and QRd (Reynolds equation with aperture bd).
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Table I. The cross-couariances Cfl and Cfld of local fl~zes. Gawsian fractures.

b~ la~ c~

e=o, lla~ =1

0.57 o.84

6.o o.68 o.91

3.o o.81 o.92

2.5 o.82 o.91

2.o o.83 o.92

1.5 o.84 o.89

1.o o.83 o.73

o.5 o.79

8
=

o, I/ ah
=

3

6.o o.91 o.94

3.o o.95 o.95

2.5 o.96 o.95

2.o o.96 o.50

1.5 o.96 0.83

1.0 o.84 o.34

e
=

o.9, lla~
=

1

10.0 0.21 0.84

6.o o.13 0.86

3.0 0.43 o.88

2.5 0.43 0.88

2.o 0.47 o.87

1.5 o.52 o.87

1.0 o.56 0.78

0.5 0.24

For the same values of bm, and @, several realizations of Z and w were used to obtain

statistically representative results. All simulations were performed on a 50 x 50 x Nz mesh,
where Nz was varied from 25 for bmlah < 2 to 35 for bmlah

=
5. Comparison between

simulations performed on this 50 x 50 x Nz mesh and simulations performed on a 80 x 80 x 50

mesh, for bm lab
#

I, lab
=

I, showed that b( and b( varied by only 8%. This is much smaller

than the difference between Reynolds and Stokes models.

Each realization of pair of fracture surfaces has been combined for various values oi bmlah.
Eight values of bmlah ranging from 0.5 to 10 were used, while llah varied from 1 to 3. Ratios

Bh/Bp~ averaged over 5 realizations of pairs of fracture surfaces are presented in Figure 6.

One may conclude that if b is used as the local aperture in the Reynolds equation (15), the

resulting mean flow rate is significantly larger than the one derived irom the Stokes equation.

The simulation with bd yields a better approximation of Bs, at least for bmlah > 2. Within

the interval 2 < bmlah < 10, the trends of Bs and BRd are similar.

For bmlah < 2, BRd undergoes large fluctuations with bmlah. This may be due to the fact

that bmlah becomes comparable to the mesh size; hence, numerical results are not reliable

anymore.

The calculated values of the ratios BR/Bp~ are in a good qualitative agreement with the
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numerical results of Brown [2] who used the Reynolds equation (15) with the aperture defined

by (5a). He found that BR/B~~ is unsensitive to the slope of the power spectrum of surface

profiles, which defines the spatial correlation of surface roughness. The results of the present

simulations also show that BR/B~~ does not depend upon ilah for bmlah > 6 (Fig. 6). This

is not true for Bs and BRd, which decrease with decreasing ilah.

Figure 7 shows (Bh/B~~) for five realizations of fractures with correlated (@ =
0.9) and

uncorrelated (@ =
0) surfaces. It is clear that only slightly influences Bs and BRd (for

bmlah > 2), but largely influences BR.

Hydraulic apertures are compared to the mean separation bm of fracture surfaces in Figure 8.

All the curves show the same trend; Bh/B~~ is an increasing function of bmlah, for bm lab >

1
+~

2; for bmlah < 1
+~

2, the ratio Bh/B~~ decreases with bmlah. It should be noted that the

calculated values of the ratios BR/B~~ are also in agreement with the numerical results of [2].
As expected, for large fracture apertures, bR, < b > and bm become equivalent, whereas bRd

is significantly smaller. This is due to the fact that the distance bd is very sensitive to all the

asperities of the fracture surfaces. As a general rule, bs lies between bRd and bR.

Finally, the variations of < BR/Bs > and < BRd/Bs > with the two parameters flab
and bm lab

are shown in Figures 9 and lo, and in Table II. Clearly, the best comparisons are

observed for large values of bmlah and ilah, I-e- for wide and smooth fractures. It was found

that for ilah < 3, bmlah < 3, the ratio (BR/Bs) is always larger than 2 and depends slightly

upon @. This means that for the range of values ilah and bmlah under consideration, the

Reynolds equation with a locally distributed aperture (which is the difference between upper

and lower surfaces) gives a total flow rate per unit fracture width more than 2 times larger
than the Stokes equations. The difference is maximal for llah

#
I, bra lab

=
0.5, where the

ratio reaches 9.2

BR
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Fig. 8 -Dimensionless permeabilities (BRd/Bp~) (solid lines), (Bs/Bp~) (dashed lines), and

(BR/Bp~) (dotted lines)
as

functions of the mean separation bmla~ for 6
=

o and various lla~ (I
and 2) Gaussian fractures.
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as a function of lla~

=
I and bmla~

=
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non-correlated surfaces lo
=

o), b
is used in

the Reynolds equation. The block basis corresponds to

(BR/Bs)
"

o.
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~
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Fig. lo The ratio (BRd/Bs)
as a

function of lla~ and bmla~ for Gaussian fractures with non-

correlated surfaces; bd is used in the Reynolds equation The block basis corresponds to (BRd /Bs)
"

o.

was not found to influence the ratio < BR/Bs > significantly, but simulations gave unex-

pected results. For highly correlated surfaces, the ratio BR/Bs is greater than for uncorrelated

surfaces if
=

0). This is surprising because for m I, the surfaces have almost the same form;

the fracture aperture varies very slowly and one may expect that under these conditions, flow

is close to a Poiseuille flow. Table II shows that the difference between the cases =
0.9 and

=
0 is smaller than 60% for ilah

"
I, bmlah > I and that this difference decreases with I.
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Table II. The ratio (BR/Bs)
as a f~nction of ilah, bmlah and @. Gawsian fract~res.

b~lah lla~ =I lla~ =3

8
=

o 8
=

o.9 8
=

0 8
=

o.9

lo-o 1.46 1.44

6.0 3.84 3.90 1.67 1.59

3.0 6.44 7.18 2.20 1.93

2.5 7.20 8.45 2.32 2.02

2.o 8.oo 9.96 2Al 2.15

1.5 8.83 12.03 2.53 2.34

1.0 9.66 16.14 2.69 2.89

o.5 9.20 2.76 7.lo
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Fig. Il. Dimensionless permeabilities (BRd/Bp~) (solid lines), (Bs/Bp~) (dashed lines), and

(BR/Bp~) (dotted lines)
as functions of the mean separation bmla~ for self-afline fractures. Data

are
for- o

=
o and (

=
o 8.

The ratio < BRd /Bs > is closer to I than < BR/Bs >. The analysis of all the numerical data

showed that bRd is a good approximation for bs when bmlah is larger than 2 for uncorrelated

surfaces
(@ =

0) and when bmlah is larger than I for highly correlated surfaces (@ =
0.9).

It is found that if bmlah and llah become large enough (bmlah > 7, ilah > 5), the ratio

BR/Bs tends toward I and the solution of the Reynolds equation with b defined in (5a) is

a good approximation to the Stokes solution. If one of these parameters, bmlah
or llah, is

smaller than these limit values, the ratio BR/Bs becomes larger than I.

These results are relative to Gaussian fractures which are characterized by the correlation

length I; it is seen from Figure 7 that the fracture permeability is only slightly influenced by

the correlation parameter @.

~fhese computations were extended to self-affine surfaces since they are representative of real
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Fig. 12. Dimensionless permeabilities Bs/Bp~
as

functions of the
mean separation bmlah for self-

afline fractures with different (. Data are for: o
=

0.

surfaces. Figure II shows mean permeabilities calculated for 5 realizations of uncorrelated self-

affine surfaces with a roughness exponent (
=

0.8. It is useful to compare Figure 11 with Figure
8; the general shape of the curves is the same for Gaussian and self-afline surfaces. However,
the permeability for self-affine surfaces is always larger than that of Gaussian surfaces; this may

be related to the fact that the characteristic roughness length I is smaller for Gaussian surfaces

than for self-afline surfaces where it is of the order of the total size oi the sample because of the

upper cut-off. The Reynolds equation does not provide a better approximation to permeability
than before. However, the use of bRd instead of b yields a considerable improvement of the

Reynolds approximation.

The influence of the roughness exponent ( was analysed for the same realization of fracture

surfaces (Fig. 12). It was found that Bs and BRd are decreasing functions of (, while BR is

insensitive to it; this finding is in good agreement with the numerical results of [2].

Conclusions

Fluid flow within fractures with randomly generated surfaces with Gaussian correlations was

numerically studied using Stokes and Reynolds equations. Taking the solution of the Stokes

equation as the reference, it was found that the Reynolds equation based on the aperture b (5a)
overestimates the permeability by a factor larger than 2 in the range, llah < 3 and bm lab < 3.

The ratio BR /Bs varies slowly with I in an intermediate range, but grows sharply as llah tends

to 1. This behavior is unaffected by a correlation between the fracture surfaces. The use of

the aperture bd in the Reynolds equation provides a much better approximation to Bs, which

underestimates it.

This analysis was extended to fractures with self-afline correlations; the conclusions are

basically the same for the validity of the approximation of the permeability by the Reynolds
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equation. However, the use of the aperture bd Provides a better improvement than in the

previous case.

This paper may be concluded by noting that real fractures may be much more complex
than the idealization presented here. Most real fractures are found to contain fracture filling
materials, etc., intersections and other perturbations that cause the proposed model to be

generally incomplete. Moreover, the stationarity of the random fields is questionable. However,
all these additional difficulties are better addressed by a local analysis of the velocity field by

means of the Stokes equations
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