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Abstract. We demonstrate that an exact analytical solution can be constructed for an

intracellular directed transport model ofintegrin developed by Schmidt et al. (1994) The model

attempts to mimick the experimental observation that integrin is transported intermittently,
by a

combination of two-dimensional diffusion and cytoskeleton-mediated convective transport,
towards the cell edge In particular, the model assumes stochastic coupling and uncoupling of

integrin molecules (described by first-order rate coefficients kc and ku) to a
cytoskeletal element

moving at a
fixed velocity Vo Uncoupled integrins are assumed to undergo isotropic two-

dimensional diffusion with
a

diffusion coefficient Do We demonstrate for this model that, in

the asymptotic limit of transport over large distances and long times, transport is
described by

parallel diffusion and convection processes with effective diffusivity D
=

DOKD/(1+ KD) and

effective velocity V
=

Vo/(1+KD), where KD
"

ku/kc is an equilibrium constant for decoupling.
At shorter times~ the mean-squared displacement cannot be described by superposing diffusion

and convection; rather complicated transport arises from dynamical correlations associated with

the coupled reaction, diffusion~ and convection processes.

1. Introduction

There has recently been considerable interest in the biophysics underlying cell locomotion [1-4].
Adhesive contacts with external surfaces are facilitated by transmembrane adhesion receptors,

such as integrins, which allow contractile forces generated by the cytoskeleton motors to be

translated into cell motion [5-10]. Little is known, however, about the mechanism by which

these adhesion receptors are supplied to the advancing edges of a cell.

Schmidt et at. [11] recently used video microscopy and image analysis techniques to demon-

strate that PI integrins are transported towards the leading edge of mouse fibroblasts by an

intermittent process that apparently involves both diffusive and convective (directed) motions.

By means of related experiments on mutant integrins lacking a cytoplasmic domain, these

authors were able to establish that the directed component of the motion arises from an in-

teraction of integrin with a moving cytoskeletal component. Although Schmidt et al. [11]

were not able to unambigously identify this cytoskeletal component and the precise nature
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of the interaction that temporarily binds integrin, in a subsequent paper [12] they were able

to quantitatively reproduce experimental integrin trajectories by means of computer simu-

lations of a simple transport model. The model assumes that integrin is transported by a

twc-dimensional diffusion process when uncoupled from the cytoskeleton, but that convective

transport takes place when the coupling is active. The cytoskeletal component was taken to be

moving unidirectionally at a constant velocity Finally~ stochastic coupling and uncoupling of

the integrin-cytoskeleton complex was assumed to be described by two first-order kinetic rate

coefficients, k~ and ku.
Schmidt et al. [12] used computer simulations of the above model to reproduce trajectories

of migrating integrin and by fitting the simulation data to experiment, were able to deduce

values of the coupling and uncoupling rate coefficients: k~ =
0.26 s~~, ku

=
2.5 s~~. These

values may prove useful in identifying the specific integrin-cytoskeletal linkage responsible for

directed transport, but may also be incorporated into more ambitious models of integrin-
mediated adhesion and cell locomotion.

The model for integrin transport proposed by Schmidt et at. [12] may have more general
applicability beyond the specific system considered (see, e-g- Ref. [13]), so motivation exists

for a more detailed study of its properties. In the present paper, we show that the model

actually admits an analytical solution, rendering computer simulation studies unnecessary.

2. Model and Solution

We employ the same model devised by Schmidt et al. [12] with minor notational modifications.

Adhesion receptors, e-g- integrins, are assumed to execute two-dimensional diffusion (in the

x y plane of the cell substrate and characterized by a diffusivity Do) when the receptor-
cytoskeleton coupling is not active. When the coupling is active, the receptor is assumed to be

transported at a constant velocity l§ along the x-axis by a moving cytoskeletal component. A

convenient way of representing these alternative channels of transport is through the following
convected-diffusion (Fokker-Planck) equation:

(P(r, t)
=

Doll H(t)ji7~P(r, t) VOH(t)
)Fir, t) (I)

where i7~ is the twc-dimensional Laplacian operator. The fundamental quantity with which

we work is P(r, t), the probability density that
an

adhesion receptor is at a point r =
ix, y)

in the cell substrate plane at a time t. The quantity H(t) appearing on the right hand side of

equation II) is a discrete stochastic variable that assumes the value 0 at time t if the receptor-
cytoskeleton coupling is inactive, and the value +I at time t if the coupling is active. Equation

(1) is clearly consistent with two-dimensional diffusion or convection, depending on the value

of Hit)
Next, we specify the dynamics of the stochastic variable Hit) by assuming that the coupling-

uncoupling dynamics are governed by first-order kinetic processes with rate coefficients k~ and

ku, respectively For this purpose~ it proves convenient to define a two-element column vector

pit) with elements

Pit)
-

hill 12)

Here, po It) is the probability that the variable assumes the value 0 at time t and pi (t)
=

I po(t) is the probability that is in the other state (+I) at time t. The dynamics of the

vector p(t) are described by a master equation [14])

(P(t)
=

W P(t) (3)
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where W is a 2 x 2 matrix that defines the probability per unit time of making transitions

between the decoupled and coupled states. W can be expressed in terms of the rate coefficients

k~ and ku by
~ ~

~
k~

~ -k( ~~~

At equilibrium, equation (3) is satisfied by the column vector p~
=

lpi, pi where the equi-
librium probabilities of the uncoupled and coupled states are, respectively

p[
=

KD/(I + KD) IS)

pi
=

I/(I + KD) (6)

and KD + ku/k~ is an equilibrium constant. For an arbitrary initial state p(0), equation (3)
is formally solved as

Pit)
=

Glt) P1°) 17)

where G(t) is a propagator that describes the conditional probabilities of state changes during

a time interval t:

Glt)
=

exPlwt) 18)

In the present paper, we shall be concerned with solving equation (1) subject to the coupling-
decoupling dynamics governed by equation (7). Since the solution of equation (I) for an

arbitrary initial condition can be obtained by superposition from the Green's function solution,

we restrict consideration to the particular initial condition that corresponds to the adhesion

receptor placed at the origin at time zero:

Fir> °)
=

dir)
=

blx)blv) 19)

The functions b(r) and b(x) appearing in equation (9) are two-dimensional and one-dimensional

Dirac delta functions, respectively. Our next step is to spatially Fourier transform equation
(1) according to

~ ~

R(q, t)
=

/
dx

/
dy exp(iq r)P(r, t) (10)

-~J -~J

where i =
I. The solution of the transformed equation II), consistent with equation (9),

can be easily written in the form

R(q, t)
=

exp(-Doo~t) exp fl ds H(s) Ill)
~

where q~ e q q =
q( + q( and fl is defined by

fl + iq~vo + Doq~ l12)

The object of primary theoretical interest is not R(q,t), but rather its average over
all

possible realizations of the stochastic variable His) during the time interval 0 < s < t. We

denote this average (actually
a path integral) by angular brackets; hence

(R(q> t))
=

exP(-Doq~t)(exP
fl

/~ d3
(8)j

l13)

The averaged quantity on the left hand side of this equation provides complete information

about receptor transport at arbitrary times and for arbitrary distance scales. In practice,
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we use it as a generating function to derive physical quantities of interest. For example, the

mean-squared displacements along x and y follow from the definition of the Fourier transform:

~2
(x~(tll

=
-q(R(q> tlllq=o (141

~2
(v~(t)I

= q(R(q,t)llq=o (IS)

Our next task is to evaluate the averaged quantity appearing on the right hand side of

equation (13), making use of the stochastic dynamics defined in equation (7). For this purpose

it proves convenient to temporarily discretize the time interval 0 < s < t by dividing it up into

n equally spaced time intervals of length A. We shall subsequently take the limits n - cc and

A
-

0, constrained by t
=

An, so this temporary representation will have no permanent effect.

The object of interest on the right hand side of equation (13), denoted by Q for convenience,

thus reduces to
~

Q + lexP
fl /

ds
lslj

S-
lfl exP(fl/lHj II l161

o ~=i

with errors that are first order in A. In the present form, the average implicit in the angular
brackets can be made explicit:

Q m
~ exp(flAHn Go~,o~ exp(fl/lH2 )Go~,o~ exp(fl/lHi )p~(Hi (17)

@1> >on

where p~ (Hi for
=

0 or +1 denote the two elements of the column vector p~ defined above. The

quantities Go~~o, appearing in this expression are matrix elements of the propagator defined in

equation (8), G(/l), and connect states separated in time by a small interval /l. Equation (17)

can be written more compactly in matrix notation if we introduce a new
(2-element) column

vector eR, a new
(2-element)

row vector eL, and a new 2 x 2 matrix M. The elements of these

vectors and matrices are defined by (H =
0, +1)

eR(H)
=

exp(p~hH/2)pj (18)

eLiH)
=

expjp~hH/2) j19)

Mo~,o~ =
exp(p~hHi/2)Go~,o~ (~h) exp(p~hH2 /2) (20)

With these definitions, our expression for Q becomes

Q G- eL
'(M)~~~

eR (21)

In order to restore the continuum limit, we only require a representation of the matrix M

valid to first-order in /l. It proves convenient to express this as

M
=

I + /lN (22)

where I is the identity matrix and N is explicitly obtained by expanding equation (8) for G(/l)
to first-order in /l:

~ ~
~

~ ~
~

p ~~ ~~~~
C U

The continuum limit of equation (21) can now be easily taken by making use of the matrix

identity
lim M"

=
lim [I + it /n)N]"

=
exp(tN) (24)

n-~ n-~
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Thus, reversing our discretization by taking the simultaneous limits of n - cc and /l
-

0

(with t
=

/ln held fixed), the quantity Q is given exactly by

Q
" e exp(tN) p~ (25)

where e =
II, I) is the /l

-
0 limit of the row vector eL and p~ is recovered as the /l

-
0

limit of the column vector eR.

The exponential matrix in equation (25) is easily evaluated and the final matrix algebra can

be explicitly performed. Since our final result for (R(q, t)) depends on the two eigenvalues of

the matrix N, we provide them in advance:

~+
= [fl ku k~ + /(ku + k~ fl)2 + 4flk~] /2 (26)

In terms of these eigenvalues, the following exact analytical expression for (R(q,t))
can be

written:

(R(q> tit
=

(~]f~j)f)~ iexP(~+tit(ku + kc + ~+i(I + I/KDI Pi

ex)(~-t)jjk~ +
k/+ ~-)(i + i /KD) flii (27)

3. Results and Discussion

Equation (27) provides a basis for analyzing the transport behavior of adhesion receptors within

the context of the model summarized in the above section. In the present section, we explore
the implications of this expression.

We begin by considering the asymptotic transport behavior in the limit of large displacements
and long times. Such asymptotic behavior can be extracted from the q -

0 and t
- cc limiting

form of (R(q, t)). In particular, by replacing the eigenvalues with their fl
-

o limiting forms

~+ m
fl/(i + K~i (28)

~- m
-(ku + k~) + dKD/(I + KD) (29)

and retaining only the leading terms for t
- cc, equation (27) reduces to the simple expression

(Rjq, t)) rz
exp(-Dq~t + iq~vt) j30j

The ejfectme diffusion coejficient and ueiocity appearing in this equation are given by

D + DOKD/(I + KD)
=

DOP[ (31)

V e Vo/(I + KD)
= VOP( (32)

These equations indicate that the asymptotic transport behavior of the model can be de-

scribed by parallel diffusion and convection processes, with characteristic diffusivity D and

streaming velocity V. Moreover, this asymptotic behavior can evidently be reproduced by
simply preaveraging the coefficients on the right hand side of equation (I) with the equilibrium

distribution of H, p~. The mean-squared displacements along
x

and y in this asymptotic regime
follow simply from equations (14) and (IS)

(x2(t))
>

(vt)2 t - cc (33)

j~2(t)i
m 2Dt t - cc

(34)
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Similar expressions were written by Schmidt et al. [12], although no attempt was made to dis-

tin guish the bare diffusivity and velocity of the model (Do and WI from the effective (observed)
diffusivity and velocity (D and Vi.

Outside of this asymptotic regime, I.e. at shorter times and displacements, the receptor

transport is much more complicated because the convection and diffusion processes are dy-
namically correlated. Indeed, the analytic structure of equation (27) is quite complicated due

to the fact that fl is a complex parameter. To clearly illustrate these dynamical correlations,

we focus on the mean-squared displacements, given in terms of (R(q, t)) by equations (14)
and (15). By explicitly performing the indicated operations on equation (27), it is possible to

derive the following exact expressions for the two mean-squared displacements:

~~~~~~l "
~~~ ~ (/)lij2 l~~Pl~~~U + ~Cl~~ ~l +

($~~
+ ~~~l~ ~~~~

(9~(t))
"

2Dt (36)

where D and V are the effective diffusivity and velocity given previously
m equations (31)

and (32). We note that equations (35) and (36) can be used directly to fit experimental data

for receptor trajectories, following a procedure similar to that used by Schmidt et al. [12] to

compare experimental and simulated trajectories.
Equations (35) and (36) demonstrate that although transport in they-direction (non-directed

axis) remains purely diffusive at all times, transport along the directed x-axis has associated

memory effects that die off with a characteristic time constant Tm + 1/(ku + k~). We also note

that in the asymptotic limit of long times, equation (35) is clearly consistent with dominant

convective transport, reproducing equation (33). To discuss the behavior of equation (35) at

short and intermediate times it is useful to introduce a second characteristic time constant,

Tc %
D/V~, Which IS the timescale at Whlch Convection and dlifUsion are Competitive. With

these definitions, two types of behavior are possible for (x~ (t)), depending on the relative values

of Tm and T~.

If Tm < T~, a situation in which the adhesion receptor coupling-uncoupling dynamics is

very fast relative to the timescale set by the combination of convection and diffusion (T~), then

equation (35) predicts that (x~(t)) m 2Dt for the entire time interval 0 < t < T~. Thus, diffusive

transport is expected up to a mean-squared displacement that is characteristically of order

2DT~
r-

(D/V)2 For t W T~, equation (35) predicts convective transport, (x2(t))
m

(Vt)2,
consistent with equation (33) Overall, for Tm < T~~ the model predicts a smooth crossover

from diffusive transport at short times to convective transport at long times, the crossover

occuring for t m T~. The adiabatic approximation of preaveraging the H-dependent coefficients

in equation (1) is quantitative in this situation of fast reaction kinetics.

In contrast, if the coupling-uncoupling reaction kinetics are slow compared with the trans-

port timescale, T~ « Tm, the situation is more interesting For t < T~, equation (35) again
predicts simple diffusion, (x~(t))

m 2Dt. Moreover, for t > Tm, equation (35) reproduces the

convective behavior summarized in equation (33), namely (x~(t))
m

(Vt)~. However, in the

intermediate time regime of T~ < t < Tm, equation (35) predicts an anomalous conuection that

displaces receptors faster than equation (33), namely (x2(t))
m (1 + KD)(Vt)2. The crossover

between diffusion and anomalous convection occurs at a mean-squared displacement that is

characteristically of order (D/V)2, while the anomalous to normal convection crossover occurs

at a mean-squared displacement of order (I + KD)(VTm)~.
For the experimental system studied by Schmidt et al. ill], where integrin transport was

monitored within mouse fibroblasts, the following estimates were made of the coupling and

uncoupling rate coefficients [12]: k~ m 0.26 s~~, ku m 2.5 s~~, KD G- 9.5. In addition~ as
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described by Schmidt et al. [12], the parameters Do and Vo were independently estimated to

be Do G- 3.5 x
10~1° cm~ Is and Vo " 37 ~tm/mn. Thus, we are able to make estimates of the

relevant timescales for their system: Tm m 0.36 s, and T~ =
D/V~

=
DOKD II +KD)/V/

m 9.2 s.

Since Tm < T~, we anticipate for this particular experimental system the single crossover

behavior between diffusion and convection summarized above. Indeed, Schmidt et al. were

able to fit their mean-squared displacement data to (x~(t))
=

2Dt + (Vt)~, which can be

deduced from equation (35) for Tm < T~. We should point out, however, that other adhesion

receptors in different types of cells may fall into the second class of systems that possess an

intermediate regime of anomalous convection.

In summary, our exact solution of the model proposed by Schmidt et al. (12] is useful for

several reasons. First of all, equations (35) and (36) provide a direct means of using ex-

perimentally determined adhesion receptor trajectories to extract kinetic information about

the coupling-uncoupling reactions with the cytoskeleton. The simulation method employed by
Schmidt et al. (12], while in principle capable of reproducing the properties of the model, is less

straightforward to apply and requires significant computational effort. Secondly, our analytic
solution has clarified the difference between the intrinsic transport parameters of the model, Do

and lfi, and the effective parameters D and V that apply when coupling-uncoupling reactions,

convective transport, and diffusive transport processes act in concert. Finally, we have been

able to classify the general transport behavior of adhesion receptors that conform to the model

into two groups The first group, to which the integrin model system studied by Schmidt et

al, ill] belongs, corresponds to fast cytoskeletal coupling-uncoupling reaction kinetics and dif-

fusion limited transport. The second group, for which there may or may not exist experimental
realizations, possesses a regime of "anomalous" convection arising from correlated transport

on the timescale for the reaction kinetics to equilibrate. We hope that future applications of

the model will unearth such biological systems and lead to an improved understanding of the

underlying mechanisms of cell motility.
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