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R4sum4. Nous pr6sentons des observations de v6sicules toroidales de sections m6ridiennes

circulaires et non circulaires, axisym6triques et non axisym6triques. Nous d6crivons 6galement
des modifications de forme dues h des changements de temp4rature, qui permettent de faire le

lien
avec une

conjecture math6matique due h Willmore. Nos observations sont analysdes I l'aide

d'une proc6dure num6rique qui permet de d6terminer les parambtres g60m6triques pertinents
des formes des v6sicules. Une comparaison de

nos
observations

avec
des pr6dictions th60riques

r6centes est faite, qui permet de mettre en
6vidence certaines caract6ristiques impr6vues des

formes d'6quilibre observdes.

Abstract. We report observations of toroidal vesicles with circular and noncircular
cross

sections, axisymmetric and nonaxisymmetric. Shape transformations induced by temperature
changes

are
also described, which permit a connection to a

mathematical conjecture due to Will-

more.
Our observations

are
analysed using a

numerical procedure which allows
a

determination

of the relevant geometrical parameters of the shapes. We compare these observations with recent

theoretical predictions and point out some
unexpected properties of the observed equilibrium

shapes.

1. Introduction

I.I. THE PHYSICS OF CLOSED FLUID BILAYERS. Study of the equilibrium shape of ar-

tificial vesicles has been developed both theoretically and experimentally in different groups

during the past 20 years [1-3] (for
an introductory review, see [4]). Vesicles are made of a

closed fluid phospholipid bilayer (the membrane) whose thickness is of the order of twice the

size of a phospholipid molecule (I.e., approximately 5 nm), their typical linear size (radius)
being of the order of some tens of micrometers. They are very easily prepared, for example, by

excess hydration of a dense lamellar phase (see experimental methods). Due to their thinness,
vesicles are observed using phase contrast optical microscopy. They appear as dark closed

lines, which represent approximately the apparent contour of the vesicle shapes perpendicular
to the optical axis of the microscope.

© Les Editions de Physique 1995
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The energetics of these objects is simple, due to the zero elastic shear modulus and incom-

pressibility of the fluid membrane and to the absence of an effective surface tension. For these

reasons, the bending elastic energy is the dominant term, and the approximately 2D surface

has thus a Curvature Elastic Energy (CEE):

Eo
"

~
ll(2H)~dS, 11)

2

where H
=

j (j~ + j~) is the local mean curvature of the surface, Ri, R2 being its radii of
1 2

principal curvature, and
~ m 10 20kBT being the bending modulus of the membrane [5]. The

determination of the possible mechanical equilibrium shapes consists then in a minimization

of ii), under some additional physical constraints.

These constraints come from the physico-chemical characteristics of the membrane. The

amphiphilic nature of the phospholipid molecules leads to a negligible exchange rate between

the aqueous environment and the membrane, as well as between the two monolayers of the

membrane. As a consequence, during a typical experiment, one can assume that the number

of molecules is constant in both monolayers. Being incompressible, the area A of the vesicle is

thus a constant, as well as the area asymmetry AA
=

A°"~ A~" between the inner and outer

monolayers. In addition, at mechanical equilibrium the osmotic pressure difference is zero

between the inside and the ouside of the vesicle, resulting in no net water exchange across the

membrane: the volume V of the vesicle is thus also a constant fixed at the time of equilibration.

1.2 PHENOMENOLOGICAL MODELS To take into account these three different constraints

A, AA and V, one has to introduce three Lagrange parameters, I, p and p. The functional to

be minimized is thus:

FBC
"

Eo + lA + pV + pAA. (2)

This model is known as the Bflayer Coupling model (BC), because it explicitly takes into

account the bilayer nature of the membrane [6, 7].
Another approach has been proposed which describes the possible asymmetry of the bilayer

m terms of a spontaneous curvature. Instead of (I),
one writes:

ESC
"

~ ll(2H Co)~dS, (3)
2

where )Co is the preferred local mean curvature of the membrane, which one can for example
attribute

a postenort to the area asymmetry between the inner and outer monolayers, but also

to different chemical compositions or environments of the inner and outer monolayers [8]. In

this Spontaneous Curvature model (SC), the functional to be minimized is:

FSC
"

ESC + lA + pV. (4)

Finally, some authors have proposed to consider a more general model, which has the two

preceding ones as limiting cases [9-11]. The Area Difference Elasticity model (ADE) sets an

elastic cost on the deviation of the bilayer from its preferred area difference AAO. Explicitly,

one adds a term to (3) and gets for the elastic energy of the membrane:

~~~~ ~ll~~~ ~°~~~~~°~~2/Ro~ ~~~ ~~°~~ ~~~
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The coefficient a is a phenomenological parameter of order i,

Ro
=

fi,
16)

and D is the thickness of the bilayer. For a -
0, one recovers the SC model, and for a - cc,

the BC model.

All these models lead to the same Euler-Lagrange equations and thus, the whole set of

stationary solutions is the same in all three models. However, each model being characterized

by a different curvature elastic energy, a stationary shape can be either a local minimum, a

local maximum or a local saddle point, depending on the model considered. We will call a

stable shape of a model a surface which is the solution of the Euler-Lagrange equations for a

given set of geometrical parameters and is the absolute minimum of the energy (Eo in the BC

model, Esc in the SC model, EADE in the ADE model); all other solutions (local minima of

the energy) will be called metastable shapes.

1.3. RESULTS AND EXPERIMENTS FOR SPHERICAL TOPOLOGY. The equilibrium shapes
of spherical topology (topological genus 0) have been calculated in both BC and SC models,
leading to a phase diagram of the expected vesicles which depends on the imposed geometrical

constraints [8, 12, 13]. At this point, one has to note that the CEE (i being scale invariant, it is

always possible to end up with a shape of the desired area by a simple rescaling. Therefore, only

two geometrical constraints are relevant. For simplicity, one uses the following dimensionless

ones:

.
the reduced volume

u =

6@V/A~/~, (7)

which reaches its maximum value of i for the sphere,

.
the reduced area difference,

ha
=

AA/(2RoD)
=

II HdS/(81rRoD), (8)

.
and/or the reduced spontaneous curvature

co "
CoRo. (9)

In conclusion, one can predict the stable equilibrium shape for any iv, co) in the SC model,

for any iv, ha) in the BC model, and for any iv, co, baa) in the ADE model. For details on

the results obtained in the genus 0 case, we refer the reader to the original articles.

By modeling the effects of a temperature change on the'geometrical parameters of the vesicle,

it is also possible to predict the behaviour of the shape of a vesicle subjected to such a progres-

sive change. Different shape transformations have been observed and numerically calculated,

among which the most famous is the so called "budding transition". The predicted order of the

transition depending in some cases on the model (SC, BC or
ADE), it is in principle possible to

discriminate between them. This comparison between experiments and theories is satisfactory

for equilibrium shapes, but the order of the observed shape transformations is still an open

issue.



266 JOURNAL DE PHYSIQUE II N°2

1.4. TOROIDAL TOP OLOGY. Our purpose is to present new experimental results on vesicles

of toroida~ topology and to compare them with recent predictions. The paper is organized as

follows: a first part (Sect. 2) describes the experimental methods. A summary of the theoretical

predictions is given in Section 3. We describe in Section 4 our observations of toroidal vesicles

with circular cross sections, both axisymmetric and nonaxisymmetric and we report results

on shape transformations induced by temperature changes. In Section 5, we report the first

observation of discoid nonaxisymmetric vesicles. Section 6 describes the first observed toroidal

stomatocyte. Section 7 discusses possible experimental reasons for the nonobservation of sickle-

shaped tori. We conclude this article with a summary of the theoretical implications of our

experiments.

2. Experimental Methods

2. I. PREPARATION oF VESICLES. Vesicles are made of one (or more) closed bilayers. They

are mostly prepared with multicomponent mixtures of natural phospholipids swelled in water

by using various procedures. They can also be prepared with very pure synthetic surfactants.

We used pure synthetic "standard" phospholipids purchased from Avanti Polar Lipids, Inc.

(DMPC, DPPC, DOPC) as well as a polymerizable one, DCB,gPC [14-16].

.
For the first ones (DMPC, DPPC, DOPC), we used crystallized phospholipids (a few

mg) deposited on a Petri dish. A droplet of de-ionized water (at a temperature T > Tm)
swells the lipids which are then spread over the bottom of the box. A further excess

amount of heated de-ionized water (some ml) permits the separation of vesicles from the

bulk lamellar phase (complete swelling occurs after some hours). Vesicles of non spherical
topological genus represent only a very small part of the overall population (much less

than 1%).

.
The last phospholipid (DCB,gPC) can be swelled in a similar way. When cooled below

the melting temperature of the chains (Tm
=

42 °C), vesicles undergo a morphological
transition toward tubules (diameter: I pm, length: some 100 pm) due to the chirality of

the molecules. This transition is reversible, which means that one can form vesicles by
reheating the tubules above Tm. As cooling cannot be avoided between the preparation
stage and the observation, tubules can be considered as a mandatory intermediate step
toward the formation of vesicles.

Another, simpler method to prepare tubules has been proposed [14-16]. A few mg of

DCB,gPC are dissolved in a few ml of ethanol. Adding doubly de-ionized water drop
by drop leads to the formation of a white precipitate. The addition is stopped when

complete precipitation of the tubules has taken place. The ethanol is then eliminated by:
(I) centrifugation (10000 tr.mn~~ during is mn), (it) dissolution of the tubules and the

remaining solvent in the same volume of doubly de-ionized water. Steps (I) and (it) must

be repeated until no traces of ethanol can be found. The tubules can then be heated as

before to obtain vesicles.

In the case of DCB,gPC, a common remark concerning both methods has to be made: the

vesicles, which are observed at a high temperature, go through an intermediate tubule

stage. This means that vesicles made of DCB,gPC do not have to be separated from a

lamellar phase: their membrane is formed by fusion and swelling of the small vesicles

which appear when the tubule unwraps. For this reason, they are not subjected to the

same kind of mechanical strains as in a standard swelling procedure. The result seems to
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be a much higher fraction of vesicles of nontrivial topological genus. This is the reason

why we mostly used this phospholipid in our study.

2.2. OBSERVATION AND ANALYSIS. Observation is made at a constant temperature (+ 0.05 °C)
using a phase contrast microscope coupled to an image analysis system (512 x 512 pixel CCD

camera, image acquisition card, personal computer). Vesicles are best seen when the tangent
plane to their contour in the focal plane of the microscope is perpendicular to the focal plane:
in this case the contrast of the contour with respect to the surrounding medium is maximized,
and it appears as a dark line. Since vesicles are free to rotate under Brownian motion, pictures

can be taken from different view points, thus leading to enough 2D contours to reconstruct the

3D surface of the vesicle.

It is, indeed, possible to digitize the experimental pictures and to build a triangulated ge-
ometrical model of the observed surface [17]. Using a computer program written by Brakke,

the surface evolver [18], it is then possible to get the geometrical parameters (V, A and AA)
of this triangulated surface, and to check by a direct minimization of the CEE whether it is or

is not a stable or a metastable solution of one of the curvature models described previously.
Finally, in order to test the theoretical predictions concerning the various branches of so-

lutions, we performed temperature-change experiments. This allows us to vary the reduced

volume v of the vesicles, the volume being almost constant while the area changes as:

$
=

~tA, (lo)

where ~t m 4 x
10~~ K~~. A decrease of T thus corresponds to an increase of u.

3. Theoretical Predictions

Toroidal vesicles were first observed in the case of partially polymerized membranes [19, 20].
The observations we will report have been performed on nonpolymertzed, I.e., fluid vesicles. In

this case, the same theoretical analysis as for the spherical genus can be used, and predictions
have been made within the framework of all preceding models (SC, BC and ADE).

Ou-Yang first noticed that the only circular toroidal solution of the SC model is characterized

by a ratio of its generating circles, j~f
=

vi (see Fig. 14), a torus known in the mathematical
i

literature as the Clifford torus [21]. The stability analysis performed by Fourcade showed that

it is a stable solution for any negative Co, but that a positive Co makes it unstable to an

axisymmetry-breaking deformation [22].
Seifert made the first systematic numerical calculations of axisymmetric toroidal shapes in

the SC model for Co
"

0 [23]. He predicted the possible existence of three distinct families

of shapes, characterized by different kinds of cross sections: the almost circular tori (Ci) [24],
the toroidal discocytes (called discoid tori in the following or

Di), and the sickle-shaped tori

(Si). The domain of existence of these shapes is limited to a finite interval on the reduced

volume axis: for example, the circular tori are predicted to be unstable with respect to an

axisymmetry-breaking deformation for
u > uciiT, where uciiT "

3/(2~~@)
m 0.71 is the

reduced volume of the Clifford torus.

In other words, one expects nonaxisymmetric shapes to occur for u > uciiT. This predic-
tion is related to the Willmore conjecture, first recalled by Duplantier [25]. The Willmore

conjecture states that the Clifford torus is the absolute minimum of the CEE among surfaces

of topological genus I. But the CEE is invariant under 3D conformal transformations. These

transformations (which preserve angles) contain not only rotations, translations and rescalings,
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but also inversions. In contrast with the genus 0 case
(all conformal transforms of the sphere

are spheres), inversions are useful in the genus I case, because they generate a non-trivial

one-parameter family of conformal transforms of the Clifford torus. These shapes known as

Dupin cyclides are nonaxisymmetric and are also absolute minima of the CEE (see Appendix
8.4). As their reduced volume u > uciiT, they are the nonaxisymmetric shapes expected for

u > uciiT [23, 26].
In the case Co # 0, the existence of nonaxisymmetric shapes has been confirmed by Fourcade,

who used a variational approach to study the stability of axisymmetric and non-axisymmetric
shapes of the circular family for reduced volumes larger than uciiT [22].

A thorough analysis of the phase diagram for all three models has recently been done nu-

merically by Jiilicher, Seifert and Lipowsky (JSL) [27]. Systematically using special conformal

transformations to test the stability of axisymmetric stable shapes, they have shown that non-

axisymmetric shapes should be observed for sufficiently high reduced volumes. The phase
diagram of all models can be described using the three preceding families of characteristic

shapes (Ci, Di and Si) plus a fourth one, the toroidal stomatocyte or stomatoid tori (St).
Depending on the model and the region of the phase diagram, only one family (that of low-

est energy) appears in the phase diagram, the other ones being metastable shapes [28]. The

stomatoid tori do not appear as global minima (st,able shapes) in the SC phase diagram. The

ADE model (for Co
"

0) slightly deforms the phase diagram of the BC model, depending on

the value of the phenomenological parameter a, but remains qualitatively the same.

Four important results of this study (hereafter referred to as JSL) must be emphasized, with

respect to the observations we will report:

.
circular tori and sickle-shaped tori, both axisymmetric and nonaxisymmetric, are pre-

dicted in all three models (as stable or metastable shapes);

.
stomatoid and nonaxisymmetric discoid tori are not predicted in the analysis of the SC

model;

.
nonaxisymmetric stomatoid tori are not predicted in the analysis of any model;

.
finally, all the models predict a continuous transition from axisymmetric to nonaxisym-

metric shapes by an increase of the reduced volume.

In the following, we present our observations for each family (almost circular, discoid, stoma-

toid and sickle-shaped) and discuss the compatibility of each model (described in detail in [27]
with our observations.

4. Circular Tori

4.I. AXISYMMETRIC CIRCULAR TORI. In the simplest model (SC with Co
=

0), circular

tori are expected to exist for any reduced volume smaller than uciiT "
0.71. Their cross section

is expected to depart from
a

perfect circle by only a few percent, but we did not try to analyse
this departure [22, 29].

We observed circular tori of reduced volume 0.3 < u < uciiT (see Fig. I). Because of the

Brownian rotation oi the vesicles, we could take pictures of the vesicles at different orientations

with respect to the optical axis of the microscope. We performed the geometrical mesurements

(diameter of the hole, and diameter of the cross
section) on the pictures when the symmetry

axis of vesicle was either parallel or perpendicular to the optical axis [17]. Uncertainties in

the reduced volume come mainly from the deviation from parallelism or
perpendicularity of
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Fig. I. Almost circular tori. Bar indicates 10 pm

the torus axis with respect to the optical axis of the microscope, but also from the thermal

fluctuations, which slightly deform the shape (the relative uncertainty increases with the aspect
ratio R2/Ri and never exceeded 5%). We estimated the reduced area difference ha assuming
that they were perfect circular tori, for which there exists an exact relation between u and ha

(see below).

4.I.I. Spontaneous Curvature Model. Axisymmetric circular tori also exist for Co # 0 in the

SC model. According to JSL, the maximum reduced volume u+(co) above which axisymmetry
breaking is expected depends slightly on the reduced spontaneous curvature for -I < co < I,
and is close to uci;T. For this reason, we can say that the observed axisymmetric tori are

compatible with a large range of spontaneous curvature and, as we do not know the spontaneous

curvature of the phospholipids we use, we have no reason to assume a zero value.

According to JSL, for small reduced volume, sickle-shaped tori (Si) have a lower energy than

circular tori (Ci). The frontier u~ (co ), below which Si tori are absolute minima of the energy,
decreases with increasing co (u~(0)

=
0.58, u~(2)

=
0.3). Our observations of circular tori

with small reduced volume thus favor a large value for co (co > 2).
It is, however, worth recalling that metastable Ci tori exist for any reduced volume smaller

than u+. The frontier u~ between circular tori and sickle-shaped tori may thus not reflect an

observable transition. Since the energy barrier between the two shapes (Ci and Si) exceeds

kBT (it is of order O(~)), this transition is unlikely to be driven by thermal fluctuations only.

4.1.2. Bilayer Coupling Model. Almost circular tori are also predicted as global minima in

this model. Using the parametrization of [21, 30] (see Fig. 14) for exactly circular tori, one

gets-

~ 2~~ ~~~' ~~~~

~
~

v~~l/2 j~~)
2 '

r =
R2/Ri being the ratio of the radii of the generating circles. As a result, exactly circular

tori are represented by a curve
Aaci(u) in the iv, ha) plane whose equation is:

Aaci(u)
=

~
(13)

In the phase diagram of the BC model calculated by JSL, shapes of a given ha are predicted

to be nonaxisymmetric if
u > uci, and to look more like discoid tori when u < UC;.
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The abundance of the observed circular tori as compared to the other classes (see below

the corresponding Sects.) would thus imply that, for an unknown reason, a particular, narrow

region of the phase diagram (around the line Aaci(u)) is favored. Unless we find a plausible
physical reason for this selection, we may conclude that the BC model looks more restrictive

than the SC model, as far as our observations of circular tori are concerned.

Let us consider a possible explanation of this selection: the BC model assumes a strict

conservation of the monolayer area difference, which is a reasonable hypothesis only on short

time scales (shorter than the typical flip-flop time constant [31]). If one observes the vesicles a

sufficiently long time after their formation (which is the case when vesicles are observed after

a
week), exchange of lipids between the two monolayers is likely to have occurred in order to

reach a value of ha which minimizes Eo, Equation (i) (at fixed reduced volume, the exchange

rate with the bulk solution being negligible). We are thus led to consider two different physical
problems:

.
A short-time-scale problem: given the geometrical characteristics of a vesicle, u and ha,

determine the stable equilibrium shape of the vesicle. The answer
to'this problem is

given by the phase diagram as calculated by JSL in [27]. One must also consider the

formation process, which might favor specific solutions.

.
A long-time-scale problem: given the geometrical constraint u

(plus the total area of

both monolayers), determine the stable equilibrium shape of the vesicle, allowing for a

redistribution of phospholipids between the two monolayers. In this case, consideration

of the starting shape is essential, a vesicle evolving towards the nearest accessible local

minimum.

Let us try to peiform the second analysis using a curve calculated by JSL in reference [27].
They give a detailed description of the metastable equilibrium axisymmetric shapes and their

energy as a function of ha for the particular value
u =

0.55 (Fig. I of [27], simplified in Fig.
2).

For
u =

0.55, three distinct shapes have a locally minimal elastic energy ED a sickle-shaped
torus (Aasi *

0.5), a discoid torus (AaDi * I.I) and a circular torus (AaC> * lA). The

elastic energy barriers separating these three minima are of the order of 0.6 -1.2~ (where

~ m 10 20kBT), so that we expect these minima to be well separated attractors for the

shapes with neighbouring ha and identical u. ha will evolve (increase
or decrease) to the

nearest local minimum, hence all tori with u =
0.55 and Aa(t

=
0) > 1.25 will evolve to the

circular torus. This picture probably qualitatively holds for all
u < uci>T.

In summary, our observations of a majority of circular axisymmetric tori are compatible with

the predictions of the BC model, taking into account the possible redistribution of phospholipids
between the two monolayers on a long time scale.

4.1.3. Area Diiference Elasticity Model. In principle, as the ADE model interpolates between

the two preceding models, we might hope that it has their advantages without having their

drawbacks. In fact, because it depends on a phenomenological parameter o that we cannot

measure (see for example [9]), and is expected to vary from vesicle to vesicle depending on their

composition or lamellarity [I ii, there are as many phase diagrams as there are vesicles. In the

following, we discuss the case treated in [27], a =
i, Co

"
0. The geometrical parameters are

u and baa, the equilibrium reduced area difference.

As stated before, we did not try to measure ha (which should be close to baa) In fact, w

this model predicts that circular tori are stable for a rather broad range of Aao (at least for

o =
i), for a given reduced volume, this model is less restrictive than the BC model considered

previously, as far as axisymmetric circular tori are concerned.
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Fig. 2. Curvature elastic energy ED of equilibrium shapes of reduced volume
v =

0.55. Three

families
are present- the sickle shaped tori (Si), the stomatoid tori (St, dashed curves) and the discoid

tori (Di). The curves end at points where the inner radius of the hole shrinks to zero. There
are

three

local minima That indicated by
a star corresponds to an

almost circular tori, which is the limiting
axisymmetric shape: shapes with greater Aa are nonaxisymmetric, but have higher energy. Adapted

from reference [27].

An interesting fact about the ADE model is that axisymmetric circular tori of reduced

volume slightly larger than uci>T (up to u+
=

0.77 for a =
i) are expected. Taking this

prediction into account, we cannot explain why we observed no axisymmetric circular tori of

reduced volume
u > vat?, unless the phenomenological parameter o is large, which makes it

only slightly different from the BC model.

4.2. THE CLIFFORD TORUS. In the case of the Clifford torus (uciiT
"

0.71,AaciiT
"

2~~M1r~/~
m 1.05),

we sometimes observed marked thermal fluctuations. Figure 3 shows dif-

ferent views some seconds apart of the same torus: the axisymmetry is slightly broken by fluc-

tuations, as well as the circular shape of the hole, the mean shape being a Clifford torus [32].
These marked fluctuations, which do not exist for most of the Clifford tori we observed, may

be related to the near degeneracy of the ground state of the SC model for Co
=

0 and
u = ucji~,

as described by Fourcade [22].
Let us recall these results: following a conjecture due to Willmore, the Clifford torus is the

genus i shape which absolutely minimizes the CEE. By conformal invariance of the CEE, shapes
obtained by an inversion of the Clifford torus have also the same energy, and thus minimize

the CEE. This conformal degeneracy is, however, broken by the reduced volume constraint.

Nevertheless, it is possible to couple two other kinds of deformations to this conformal mode,
in order to satisfy the reduced volume constraint to leading order. This leads to the remarkable

result that the energy of such a deformed Clifford torus is constant up to fourth order in the

relative amplitude of the deformation a*.

This result does not hold for Co # 0. For a positive spontaneous curvature, the corresponding
equilibrium shape is non-axisymmetric [22, 23]. For -i < co < 0, the Clifford torus is the

equilibrium shape, but the conformal mode has now an energy quadratic in a*, like any other

deformation mode.
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Fig 3. Fluctuating Clilford torus. Bar indicates lo pm.

In Figure 3, we can estimate a* ma the eccentricity of the hole (see Appendix 8.4). From our

observations, we mesure a relatively large amplitude a*
=

flj
m 0.22, where Ri is the inner

i
radius of the unperturbated Clifford torus. For ~ m 20kBT, the energy of this deformation (if

Co
"

0) is:

AEO
"

81r~~ (a*)~ m 3 + ikBT, (14)

which is compatible with a thermal excitation of this mode.

Its energy in the case of a negative reduced spontaneous curvature co < 0 would be:

AEsc
"

-2~/~1r~/~co~(a*)~ m -25cokBT. (is)

One has thus to assume a small value of the reduced spontaneous curvature ((co( < I) in order

to explain the thermally excited fluctuations observed.

The particular value, Co
=

0, necessary for such a conformal near degeneracy could explain
the rare occurrence of this phenomenon.

In the BC model, there exists another constraint, AA, which plays the role of a spontaneous

curvature. Extending the analysis of Fourcade, it can be shown that one cannot satisfy this
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second constraint by coupling to another deformation mode [33]. The observation of one case

of marked conformal fluctuations of the Clifford torus might, thus, be an argument against the

BC model.

4.3. NONAXISYMMETRIC CIRCULAR TORI. Nonaxisymmetric circular tori are the only

genus I vesicles we observed having a reduced volume u > ucii~ up to u =
0.92 (see Fig.

4). To determine their reduced volume, we used the same procedure (described above) as for

the axisymmetric tori: geometrical characteristics (diameter of the hole, external diameter of

the vesicle, distance of the hole center from the external contour center) were measured when

the symmetry plane of the vesicle was either parallel or perpendicular to the focal plane. We

assumed that their shapes were close to those of Dupin cyclides (see Fig. 14), which yields
the reduced volume ma formula (A.4). This approximation is justified by the circularity of

the cross sections of the tori, a characteristic of Dupin cydides. Uncertainty on the reduced

volume is likewise smaller than 5%.

A more easily calculated geometrical parameter, in the case of non-Dupin cydides, is the

eccentricity given by formula (A.2), which tells how excentric the hole is.

These observations of Dupin cyclides with reduced volumes ranging 0.71 to 0.92 can be

discussed within the framework of each model.

4.3.I. Spontaneous Curvature Model. For co > -I, all vesicles of a reduced volume larger
than u+(co)

are expected to be nonaxisymmetric. According to JSL, u+(0)
= ucij~, u+(1)

=
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0.68 and u+(2)
=

o.63. As we have not seen quasi Dupin cyclides of reduced volume smaller

than uoi~, we infer that the reduced spontaneous curvature was small.

4.3.2. Bilayer Coupling Model. In the framework of the BC model, each vesicle is char-

acterized by a second geometrical parameter, its reduced area difference ha. According to

JSL, for ha > AaciiT
"

1.054, the line of axisymmetric circular tori builds up the frontier

between axisymmetric and nonaxisymmetric tori. Dupin cyclides continue this line inside the

nonaxisymmetric region, for smaller reduced area difference. As
we have not been able to

quantify the difference of the observed vesicles with exact Dupin cydides, our observations

would likewise imply that, for some reasons, only vesicles around this particular line have been

observed. Using the calculations of JSL, a possible explanation of this fact might involve a

redistribution of phospholipids between both monolayers (flip-flop)
on a sufficiently long time

scale, as argued in Section 4.1.2.

The analysis of Section 4.2.2 can be reproduced using the results of JSL: for u =
0.73 > uciiT,

the shape with the smallest CEE is the Dupin cydide of reduced volume u
(there is a single

minimum in contrast to the cases u < uciiT). On a sufficiently long time scale, one can, thus,

expect a redistribution of the molecules between the two monolayers which drives any shape of

reduced volume u > uci>T toward this minimum. This would explain the exclusive observation

of quasi-Dupin cyclides for reduced volume u > uci>T.

4.3.3. Area Diiference Elasticity Model. The phase diagram published in reference [27]
corresponds to the particular values a =

I, Co
"

0. For these values, the line of Dupin cyclides
occurring in the phase diagram of the BC model might be enlarged (similarly to the Clifford

torus, which appears to be the stable equilibrium shape for 0.8 < Aao < 1.054). In this case,

our observation of Dupin cyclides would be less surprising. two apparently identical vesicles

could correspond to two different Aao (the actual reduced area difference ha being identical).
In summary, our observations of Dupin cyclides are compatible with the three models. In

the case of the BC model, one has, however, to look for specific reasons
(flip-flop

on long time

scale or selection ma the formation process) to explain the selection of a single line in the phase
diagram.

4.4. TEMPERATURE VARIATIONS AND AXISYMMETRY BREAKING. The preceding obser-

vations were done at constant temperature. In order to get more information on the validity
of all the models, we performed temperature variation experiments.

As recalled by Berndl et al. [13], one of the effects of a temperature variation is a modification

of the reduced volume:
~

u(T)
= VITO) e~2~~~~~~, (16)

where To is the initial temperature and ~t the thermal area expansivity of the bilayer (of the

order of 4 x 10~~ K~~ for most phospholipids).
In the framework of the BC model, the other effect of a temperature variation is a modifica-

tion of the reduced area. If one assumes that the volume of the bilayer remains constant, the

reduced area difference behaves in the opposite way, so that:

UIT) AaiT)
=

UiTo) AaiTo). i17)

Another simple hypothesis is that the distance between the two monolayers remains constant.

In this case, (17) changes into:

ujT) AajT)~
=

ujTo) AajTo)~. i18)
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Fig. 5. Observed equilibrium shapes during
a temperature~variation experiment. The temperature

is stabilized during each observation.

Finally, it has been proposed that the two monolayers may have slightly different thermal

expansivities. Assuming that the volume of the bilayer remains constant, one has:

u(T)Aa(T)
=

u(To) Aa(To) + b
(jj ~~

)
,

(19)
~

where b is of the order of10~ for common vesicles, and
f is the relative asymmetry of the

thermal expansivities:

7>n "'tout II + f). (20)

In the framework of the SC model, the dependence of Co on the temperature is not known.

The simplest hypothesis is that it is temperature independent.
The main interest of temperature variation experiments is to test the connection between

the axisymmetric branch of the circular tori and its nonaxisymmetric branch. As the Clifford

torus stays on the frontier between axisymmetric and nonaxisymmetric shapes in all phase
diagrams, we focused

our attention on this particular shape. Figure 5 shows the corresponding
typical experiment.

Our observations show that a decrease of the temperature induces an increase of the reduced

volume, as measured ma the parameters of the Dupin cyclides. The shape transformations

are reversible. Formula (16) leads to a thermal expansivity ~t =
ii-S + 0.5) x

10~~ K~~ for

DCB,gPC.
These observations call for some comments with respect to the theoretical models.

4.4.I. Spontaneous Curvature Model. In the SC model and for a small reduced spontaneous

curvature, the Clifford torus is expected to lie on or near the frontier between axisymmetric and

nonaxisymmetric shapes, depending on its spontaneous curvature: an increase of its reduced

volume leads anyway to an axisymmetry breaking, as is, indeed, observed. Measurement of

the spontaneous curvature should be in principle possible in this kind of experiment: once in

the nonaxisymmetric region, a decrease of the reduced volume leads back to the axisymmetric

region through a limiting shape whose reduced volume is related to the spontaneous curvature.
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In all the experiments we performed on different vesicles, the last axisymmetric shape was

a Clifford torus (with an uncertainty on the measured reduced volume smaller than 5%,
as

discussed before, which implies (co( < 1).

4.4.2. Bilayer Coupling Model. In the BC model, a decrease of the reduced volume of the

Clifford torus let it follow
a trajectory in the Iv, ha) plane which depends on the corresponding

ha variation. Figure 6 shows the Dupin cyclide curve and three trajectories corresponding to

Equations (17, 18 and 19) with
f =

I-S x
10~~. However, due to the small thermal expansivity

of the phospholipids, the maximum reduced volume attained in the experiment of Figure 5

is u =
0.74. For this value, the three distinct shapes corresponding to the three theoretical

trajectories and the Dupin cyclide are experimentally indistinguishable. For this reason, our

observations are not in contradiction with the BC model.

4.4.3. Area Diiberence Elasticity Model. As discussed beiore, the ADE model in prindiple
permits the constraints of the first two models to be softened. It should also allow observations

in which a temperature decrease does not necessarily lead to the axisynlmetry breaking of the

Clifford torus (at least over a reasonable range of temperatures). Up to now, we have not

observed such a phenomenon.



N°2 EXPERIMENTS ON TOROIDAL VESICLES 277

~m~@

( ~_,
-.-)#~~#

.'?)j@~i~
$' '( ~j$.

'i~ 't / £<fj"-. ~fi~l'
< ~,_~«

'i'

.~

'~' .~/Ai,
~ -',@ ~_ 'uf

~~ <

~'
lb

?,
" i~j

~,~
,~ " fi

~,'~ '~ ~$i/- j
J

i£

-,

~
'#ii~. ,'£.S~'~'

?

~~j£lJ=_ ~) '

~mr
~~ ---

la) 16)

Fig. 7. Axisymmetric discoid torus. Bar indicates 10 pm.

5. Discoid Tori

Discoid tori occupy a broad region in the phase diagrams of both BC and ADE models. They
exist as metastable states in the SC model.

5.I. AXISYMMETRIC DISCOID TORI. We observed some axisymmetric discoid tori, an

example of which is shown in Figure 7. Using the procedure described in Section 2, we get
the following parameters of the vesicle: Iv, ha)

=
(0.51,1.37). The stability of this shape

can be tested numerically, using the surface evolver program. With a constraint on u, and

no constraint on ha, one ends up with an almost circular torus with ha
=

1.46 and energy/~
=

2.31 (see Fig. 8a), in agreement with previous calculations of Seifert [23].
With a constraint on ha, one ends up with the shape shown in Figure 8b. Its energy/~

=
2.35 is slightly higher than the calculations of Seifert for the discoid family [23, 34].

The result of the equilibration process gives the Lagrange parameters corresponding to the

three constraints (A, V, AA). This permits us to get the equivalent reduced spontaneous cur-

vature, co "
-0.04, within the BC model. The shape of Figure 8 is thus also a solution of the

SC model for (u, co =
(0.51, -0.04). However, as shown by JSL, for these values, the stable

shape belongs to the sickle-shaped family: the observed vesicle is a metastable state of the SC

model.

5.2. NONAXISYMMETRIC DISCOID TORI. We also observed a few nonaxisymmetric tori,

although this kind of shape did not appear in the predictions of JSL. An example of such a

vesicle is shown in Figure 9.

The same procedure as before yields (u, ha)
=

(0.52,1.19). In this case, equilibration of the

surface with a single constraint on u leads to a nonaxisymmetric shape, shown in Figure 10a.

It is very close to, but different from, the observed vesicle (ha
=

1.07, )
=

2.16). Taking
into account the constraint on ha, one gets the non-axisymmetric shape ~i~own in Figure 10b

(/~
=

2,21), which is very similar to the observed vesicle.

5.3. DISCUSSION. Within the BC model, the expected shape for this set of parameters is

an axisymmetric discoid torus. But, the existence of a nonaxisymmetric discoid torus is not
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(a) (b)

Fig. 8. Numerical model of the vesicle of Figure 7 after equilibration. la) With constraint on v

only: v =
0 51, Aa

=
141, /~

=
2.31.(b) With constraint

on v
and Aa: v =

0.51, Aa
=

1.37,

)
=

2.35.

(a) (b) (c)

Fig. 9. Nonaxisymmetric discoid torus. la) top view 16) side view (c) front view. Bar indicates

10 pm.

surprising, if one considers the calculations made by Seifert [23]. He showed that there exists

a branch of axisymmetric discoid tori which is unstable with respect to axisymmetry breaking
for v < 0.58: the observed vesicle could thus be the resulting stable nonaxisymmetric shape.
Its energy is perfectly compatible with this hypothesis.

As in the previous example, the same result can be obtained within the SC model with

the appropriate spontaneous curvature, instead of the ha constraint. One gets co "
-0.82.

According to JSL, one expects a nonaxisymnletric equilibrium shape for these values, although
they predict that it should belong to the sickle-shaped family. The observed vesicle might thus

be a metastable shape of the SC model.

Within the ADE model (o
=

I and co =
0), almost all shapes with v =

0.52 are expected to

be axisymmetric. For Aao close to ha
=

1.19, the stable shape belongs to the discoid family.
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(a) (b)

Fig. 10. Two numerical models of the vesicle of Figure 9, equilibrated la) with
a

reduced volume

constraint only:
v =

0.52, Aa
=

1.07, )
=

2.16 16) With both reduced volume and reduced area

difference constraints:
v =

0.52, Aa
=

1.19, /~
=

2.21.

For Aao > ha, it belongs to the circular family; and for Aao < ha, to the stomatoid family.
The observed vesicle might thus be a metastable shape of this ADE model (we did not make

any calculations).
These observations show that the discoid tori can be produced by the formation processes

we used, although at a lower rate compared to the circular tori. The existence of nonaxisym-
metric discoid tori, which are not predicted by JSL [35], also shows that their axisymmetry-
breaking stability test might not be sufficient to explore the nonaxisymmetric region of the

phase diagrams. Indeed, the shapes of Figure 10 cannot be made axisymmetric by conformal

transformations.

This could also suggest that the use of infinitesimal conformation modes to determine the

stability of axisymmetric shapes with respect to axisymmetry-breaking modes is not sufficient.

As a consequence, the phase boundaries between axisymmetric and nonaxisymmetric regions
could be shifted towards smaller reduced volume.

6. Stomatoid Tori

Figure ii shows a nonaxisymmetric stomatoid torus.

We digitized this shape, as previously explained, in order to build a triangulated approxi-
mation. The surface evolver program yieldi the following parameters: (u, ha)

=
(0.70,1.05).

With a single constraint on u, the surface relaxes to an almost circular torus of the same

reduced volume. With a second constraint on ha, the surface remains stable, see Figure 12.

6.I. DISCUSSION. For this set of parameters, JSL predict within the BC model an axisym-

metric torus lying on the frontier between discoid and stomatoid tori, and not far from the

region of nonaxisymmetric shapes. Our observation is thus partially in agreement with this

prediction (the vesicle seems to be close to both families and is only slightly nonaxisymmetric).
Once again, it is possible to get the same metastable shape within the SC model by mini-

mization of (3) with a constraint on u and a reduced spontaneous curvature co "
1.55, obtained
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la) (b) (C)

Fig. II. Nonaxisymmetric stomatoid vesicle. la) Top view 16) side view (c) front view Bar

indicates 10 ~m.

(al) (a2) (c2)

(bi) (b2)

Fig. 12. Numerical models of the vesicle of Figure ii equilibrated with the surface evolver program

Left, under reduced volume constraint only.
v =

0.70, Aa
=

1.06, /~
=

1.59. Right, under both

reduced volume and reduced
area

difference constraints. Aa
=

105, )
=

1.60. (a) Top view, 16)
front view, (c) side view.

ma
the Lagrange parameters of the preceding calculation. For this set of parameters, the stable

shape within the SC model is expected to be nonaxisymmetric and not far from the circular

family.
Within the ADE model discussed in JSL, stable shapes with u =

0.70 and Aao close to

ha
=

1.05 should be very close to the Clifford torus, which is not the case. For Aao > ha,

one expects nonaxisymmetric shapes but with no up/down symmetry breaking (I.e., non-

stomatoid). For Aao < ha, there is only a very narrow region of stable stomatoid tori, which
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(a) (b) (c)

Fig. 13. Schematic representation of
a

sickle-shaped torus la) Perspective of
a

partially open
shape (b) top view (c) side view.

are, moreover, axisymmetric. The observed vesicle might thus be a metastable shape of this

model.

These observations show that the stomatoid tori can be produced by the formation pro-

cesses we used, although, again, at a lower rate compared to the circular tori. The observa-

tion of a nonaxisymmetric stomatoid torus, which is not predicted by JSL, confirms that the

axisymmetry-breaking stability test is not sufficient to explore the nonaxisymmetric region of

the phase diagrams.

7. Comment on the Predicted Sickle-Shaped Tori

Sickle-shaped tori (axisymmetric
or non-axisymmetric) are predicted to be stable shapes in

all three models. In fact, we observed no such vesicle. However, we reported elsewhere the

observation of genus 2 vesicles (topologically equivalent to 2-hole tori) of the sickle-shaped
kind [36]: they look like two concentric spheres connected by three tube-like passages. This

is similar to the expected appearance of the sickle-shaped tori (two spheres connected by two

tube-like passages). Thermal fluctuations of these passages, as described in reference [36], are,

however, expected to destroy the axisymmetry of genus i sickle-shaped vesicles.

These thermal fluctuations have a crucial experimental consequence. Sickle-shaped tori have

two characteristic aspects when observed with a phase contrast microscope (see Fig. 13). The

first one corresponds to an observation parallel to the symmetry axis of the vesicle: one should

see two concentric nearby circles plus a smaller one in the center (the inner contour of the two

holes viewed one above the other). The second one corresponds to an observation perpendicular
to the symmetry axis: one should see again two concentric nearby circles, connected by two

tube-like passages. However, the probability of these two configurations is very low, due to the

Brownian rotation of the vesicles and to the thermal fluctuations of the passages.

For these reasons, we believe that sickle-shaped tori probably exist, but they will be fairly
difficult to observe.

8. Summary

The preceding observations have shown the existence of three (circular, discoid and stomatoid

tori) of the four expected families of toroidal vesicles. The fourth one
(sickle-shaped tori) has

not been observed, but related observations of vesicles of higher genus lead to the conclusion

that it probably exists, but might be difficult to observe for experimental reasons.

A systematic analysis of the observed vesicles in terms of triangulated surfaces allows one

to determine their geometrical parameters and to test the stability of these shapes within the
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SC and BC models. These values were used to compare our observations with the theoretical

predictions.
The main results of this study are the following.

8.I. CIRCULAR TORI. Within the BC model, the relatively high frequency of circular tori

calls for a explanation in terms of phospholipid redistrtbution between the two monolayers of
the membrane on

long time scales.

Within the SC model, the same observation favors either a broad range of spontaneous

curvature or the observability of metastable shapes.

8.2. NONAXISYMMETRIC DISCOID AND STOMATOID TORI. Observations of nonaxisym-

metric discoid and stomatoid tori, which were not predicted, show that the symmetry-breaking
modes of discoid tori and of stomatoid tori cannot be approximated by infinitesimal confonnal
transformations. Since the phase boundaries of axisymmetry breaking in the work of JSL are

lower bounds on the regions of stable nonaxisymmetric shapes, this region of the phase diagram

may be shifted toward smaller reduced volumes (see Ref. [27] ).

8.3. AXISYMMETRY BREAKING. The temperature-variation experiments performed on the

Clifford torus, which lead to the axisymmetry breaking, show that the curvature elastic energy

is, indeed, conformally invariant. This property might also explain strong fluctuations of some

Clifford tori observed at constant temperature.

8.4. COMPARISONS BETWEEN MODELS. We cannot exclude any of the three models. The

SC model is compatible with our observations, provided one takes into account that metastable

shapes can be observed. The BC model predicts a much richer zoology than the observed one,

a fact which might be due to the redistribution of phospholipids between monolayers on a

long-time scale. Finally, the ADE model, which smoothly interpolates between them is, of

course, compatible with our observations.
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Appendix A

Geometrical Results

A-I- PARAMETRIZATION OF THE AXISYMMETRIC TORI AND DUPIN CYCLIDES. The

parametrization of the Dupin cyclides can be obtained by different means (see for example
[37, 38]. Here we follow Ou-Yang [30]:

x
=

(r (c a cos b cos ~fi
+ b~ cos b) ID,

v =
sin #ja

r CDs qfi) ID,
j~ ~~

z =
b sin ~fi(c cos b r) ID,

D
= a cos b cos ~fi
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where b E [0, 21r], ~fi E [0, 21r] and c =
Wfi.

The meaning of the other parameters can be read from Figure 14.

The eccentricity is defined by:

e =

~ (A.2)
a

and can easily be deduced from the top and side views of the cyclide (see Fig. 14).
The observable Dupin cyclides are conformal transforms of the Clifford torus, which lead to

the relation:

Starting
from ormula

vie)
=

~
ii e~)~~/~

~ ~~
Gi (e) +

~~ 2(e)j (llGi e)j ~~~

(A 4)
2@ 2 2 2 '

where:

Gi (x)
=

F (~, ~, i;
~)

+
~x~F (~, ~, 2; x~l, (A.5)

2 2 2 2 2

G2(x)
=

F (~, ~, 2;
~)

+
~x~F (~, ~, 3;

~)
(A.6)

2 2 2 2 2
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Similarly, the reduced area difference reads:

hale)
=

/j ~
(2F

,

~, l;
~)

F
, ,

l e~ IA.7)
2 1+e

~~~

2 2 2 2

The axisymmetric tori are a subset of this family, characterized by a zero eccentricity (e
=

0).
One defines the two radii of the generating circles by Ri

" r
and R2

" a.

A.2. SPECIAL CONFORMAL TRANSFORMATIONS. Special conformal transformations build

a subgroup of the conformal transformations, defined by i o ta o i, where i is the unit sphere
inversion:

r'= ~ (A.8)
r. r

and ta the translation of vector a.

A.3. FLUCTUATIONS oF THE CLIFFORD ToRus. To study the fluctuations of the Clifford

torus, we use the toroidal coordinates introduced by Fourcade [22]. An axisymmetric torus is

defined by a real parameter J~: sinh
J~ cos #

~
cosh

J~ cos b '

~

~~l)~ ~~~
b '

~~'~~

sin b
~

cosh
J~

cosb'

where cosh
J~ =

v5 for the Clifford torus (see Fig. 16 for the definition of b and #).
As shown in reference [22], the almost conformal mode has the following effect on each point

M- M' of the Clifford torus:

~~'~ co~~~~~~sb~' ~~'~~~

where
n

is the exterior normal of the Clifford torus, and

6J~(b, #)
= a cos #. (A.ll)
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Figure 17 shows the effect of the conformal mode on the Clifford torus. From this, the

relative amplitude of the mode reads:

RI vi Dmax + Dmm
~~'~~~

JOURNAL DE PHYSIQUE II T 5, N° 2, FEBRUARY 1995



286 JOURNAL DE PHYSIQUE II N°2

References

[Ii Canham P B, J Theor Biol. 26 (1970) 61.

[2] Helfrich W., Z. Naturforsch. 28c (1973) 693

[3] Evans E-A-, Biophys. J. 14 (1974) 923

[4] Lipowsky R., Nature 349 (1991) 475.

[5] It can be shown that, to the same order, the curvature elastic energy contains a Gaussian curvature

term. EG
"

k f dS GiG2, where k is the Gaussian bending modulus of the membrane However,

due to the Gauss-Bonnet theorem, the preceding integral depends only
on

the topological genus

g of the surface: EG
"

k(I g), and thus is of no use in the study of equilibrium shapes of
a

given genus. For toroidal vesicles, this term simply vanishes

[6] Sheetz M-P- and Singer S-J
,

Proc Nat Acad. Sm. U-S-A. 71 (1974) 4457

[7] Helfrich W., Z. Naturforsch 29c (1974) 510.

[8] Deuling H J. and Helfrich W., J. Phys. France 37 (1976) 1335

[9] Bozic B., Svetina S., Zeks B. and Waugh R., Biophys J 61 (1992) 963

[10] Waugh R-E-, Song J., Svetina S. and Zeks B., Biophys. J. 61 (1992) 974.

[iii Miac L., Seifert U., Wortis M. and D6bereiner H G., Phys. Rev. E 49 (1994) 5389.

[12] Miao L., Fourcade B
,

Rao M
,

Wortis M. and Zia R-K-P-, Phys. Rev. A 43 (1991) 6843.

[13] Seifert U, Berndl K and Lipowsky R., Phys. Rev. A 44 (1991) l182.

[14] Yager P. and Schoen P-E-, Mol. Gryst. Liq. Gryst 106 (1984) 371.

[15] Schnur J-M-, Price R-R-, Schoen P-E-, Yager P, Calvert J M., Georger J. and Singh A., Thin

Solid Films 152 (1987) 181.

[16] Yager P., Price R.R., Schnur J.M., Schoen P.E., Singh A. and Rhodes D.G., Ghem and Phys. of

Lipids 46 (1988) 171.

[17] For axisymmetric vesicles, it is relatively easy to get a
"mean" contour of the meridian cross

section, by averaging over a few snapshots, in order to get rid of the thermal fluctuations. For

almost circular cross sections, an equivalent method
is to extract a mean

radius averaged
over a

few snapshots;
we

used this method. The uncertainty in the calculated reduced volume is related

to the uncertainties in the measured radii, and
is

always less than 5%. For non-circular cross

sections,
we

used a cruder method: among the different snapshots,
we

retained the one which

looked like showing the "average"
cross section. The approximation is justified because there

was

no critical theoretical prediction to test in these cases
(such as a precise critical reduced volume).

The contour is then modelled by a discrete set of points and approximated by
a set of B-spline

curves. It is then easy to generate a
triangulated model of the whole surface. For nonaxisymmetric

vesicles,
we again distinguished between almost circular and noncircular cross sections. For almost

circular
cross

sections ii-e-, almost Dupin cyclides),
we

measured the relevant "mean" geometrical

parameters as
shown in Figure 14 of Appendix 8.4. The uncertainty in the calculated reduced

volume is also less than 5%. For non-circular cross sections, we again used
a

cruder approximation.
Starting from

a cross section, which
we

visually estimated
as

being
a

good approximation of the

"average" side view cross section, we
digitized the two corresponding closed curves in the same way

as
explained above. The triangulated surface approximating the nonaxisymmetric vesicle is then

generated using an algorithm, which, applied to the corresponding contour of
a

Dupin cyclide,
leads to this Dupin cychde This heuristic algorithm is intended to give only an approximation of

the observed vesicle. Using the surface evolver program, it is possible to calculate the geometrical

parameters iv, Aa) of the triangulated surface, and reach the nearest stationary solution of the

curvature elastic energy model. Refinement of the triangulation is also possible, in order to get

more accurate values of the energy and Lagrange parameters. We checked that the numericallly

equilibrated surfaces were stable using a
perturbation test available in the program

[18] Brakke K-A-, Experimental Mathematics 1 (1992) 141.

[19] Mutz M. and Bensimon D., Phys. Rev. A 43 (1991) 4525.



N°2 EXPERIMENTS ON TOROIDAL VESICLES 287

[20] Fourcade B., Mutz M. and Bensimon D., Phys. Rev. Lent. 68, 2251 (1992).

[21] Ou-Yang Z.-C., Phys. Rev. A 41 (1990) 4517.

[22] Fourcade B., J. Phys. France 2 (1992) 1705.

[23] Seifert U., Phys Rev Lett. 66 (1991) 2406.

[24] almost circular tori will be called circular tori in the following.

[25] Duplantier B., Physica A 168 (1990) 179.

[26] Seifert U., J. Phys. A: Math. Gen. 24 (1991) L573.

[27] Jfilicher F., Seifert U and Lipowsky R., J. Phys. II France 3 (1993) 1681

[28] Strictly speaking and according to JSL, there
are

only three sheets of stationary shapes: two

containing surfaces with up/down symmetry (Di and Si), one containing surfaces with
no

up/down
symmetry (St). The family of almost circular tori (Ci) belongs tithe Di sheet.

[29] Such
an

analysis would have required the precise knowledge of the averaged cross section of the

vesicles in the corresponding symmetry planes. Due to the Brownian motion, this was not possible
(see below).

[30] Ou-Yang Y.C., Phys. Rev. E47 (1993) 747.

[31] The frequency of the flip-flop phenomenon (a phospholipid molecule suddenly changes its ori-

entation and joins the opposite monolayer)
can

be measured by spectroscopic means which are

sensitive to the headgroup environment These studies have, however, been made only for rather

uncontrolled mixtures of phospholipids, mostly for biological membranes which also contain pro-

teins, and the resulting values depend notably
on

the experimental setup. A typical value for this

frequency would be of the order of some
hours to some days.

[32] We point out that the observation of such a great relative amplitude of the fluctuations is unique
at the moment

[33] Droulfe J.-M. and Fourcade B., private communication. The calculation made by Fourcade in [22]

assumes that the meridian and azimutal deformation modes of the Clilford torus are eigenmodes
and build

a
complete set. This second assertion appears to be false: coupled meridian and azimutal

modes must be taken into account. However, this change does not give rise to a new zero energy

mode: there remains only two zero energy modes to satisfy the geometrical constraints (volume,

area and area
difference).

[34] Our result is, however, in agreement with the value obtained by Seifert for the unstable branch

of the discoid faintly. This branch corresponds to shapes which
are

unstable with respect to

infinitesimal axisymmetry breaking. If one takes into account the Aa constraint (this
was not

done in Ref. [23]), the shapes might be stable with respect to the subset of axisymmetry-breaking
perturbations which keep Aa constant.

[35] The nonprediction of these shapes by JSL is puzzling and might be due to different reasons. First,

they performed the stability test with respect to infinitesimal special conformal transformations

only, which might be unsuflicient to look for very nonaxisymmetric shapes such as the one we

observed Secondly, their analysis was
limited to the stable shapes of the models, thus skipping

all the possible metastable shapes.

[36] Michalet X., Bensimon D. and Fourcade B., Phys. Rev Lett. 72 (1994) 168.

[37] K16man M., J. Phys. France 38 (1977) 1sll.

[38] Mosseri R, Sadoc J.F. and Charvolin J., in R. Lipowsky, D. Richter, and K. Kremer Eds., The

structure and conformation of amphiphilic membranes (Springer-Verlag, 1992) p. 97.


