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Abstract. We present the first quantitative measurements of diffuse scattering in the vicin-

ity of the Bragg (100) peaks of
a

hexagonal discotic liquid crystal. The scattering takes the

form of a
toroid lying in the HKO plane. The cross-section of the diffuse scattering in the HOL

plane is an
ellipse elongated along the L direction, in reasonable agreement with calculations for

the thermal diffuse scattering. The cross section in the HKO plane has
an

unexpectedly smooth

six-fold sinusoidal modulation.

1. Introduction

Discotic liquid crystals are typically composed of molecules with a disk-like core and 6-8

aliphatic tails [ii. Depending on the temperature and molecular geometry, discogenic molecules

can form either discotic nematic phases (ND or discotic columnar phases ID) with long-range
ordering of the columns in a two-dimensional lattice and only short-range intracolumnar or-

der [2, 3]. The commonly observed hexagonal discotic (Dh) Phase consists of a hexagonal array

of columns with only fluid-like intracolumnar order and consequently no long-range column-

column correlation of the molecular heights. A rectangular discotic (Dr phase and other phases
with lower symmetry have also been observed [4, 5].

Since columnar phases appear as two-dimensional assemblies of one-dimensional liquids,
they are structurally intermediate between smectic phases lone-dimensional stacks of two-

dimensional liquids) and true crystals. The X-ray scattering by smectic phases has been ex-

tensively studied. Detailed analysis of peak lineshapes has shown that these phases do not

possess true long-range positional order [6]. Furthermore, an analysis of diffuse scattering in

a smectic phase can give information on its defects and elastic properties. For example, in the
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case of the smectic-A phase of a side-chain polymer [7], the observation of diffuse scattering in

the shape of "butterfly wings" was interpreted as arising from edge dislocations. Comparison
of the scattering to the Fourier transformation of the elastic deformation field suggested that

the compression modulus of this polymeric phase was unusually large.

In contrast, columnar phases do possess true long range two-dimensional positional order,
which gives rise to a set of true Bragg peaks lying on a hexagonal net in a single plane of

reciprocal space. (In this paper we will refer to these as the (HKO) Bragg peaks and the

plane in which they lie as the basal plane, spanned by the vector Qb
"

Qxk + Qyi). The

short-range ordering of the cores within the columns results in a diffuse feature centered on

the Qz axis, which may be referred to as the 001 "peak" although it is much broader than

a Bragg peak. In addition, intracolumnar correlations of the highly disordered aliphatic tails

can give rise to a shell-like diffuse scattering feature, roughly centered on the Qz axis but at

a different magnitude of (Q( [3,8]. Since there are no intercolumnar correlations, no
(HKL)

peaks are seen.

Previous structural measurements of discotic liquid crystals have focussed on the nature and

symmetry of the two-dimensional ordering of the columns, as evinced by the intensities and

positions of the (HKO) Bragg peaks, and the nature of the intracolumnar disorder, as evinced

by the shape of the 001 peak and tail-tail scattering. However, thermal fluctuations of the

columns and defects in the periodic columnar order can result in additional diffuse scattering
at a characteristic momentum transfer (Q(

r-
21r/(intercolumnar distance), similar to that seen

in smectics [7]. To our knowledge, the existence of diffuse scattering in a Dh phase has been

reported only once: the diffraction pattern of hexapentyloxytriphenylene displays diffuse sheets

parallel to the axes of the columns and the (HKO) rows [9]. These diffuse sheets were presumed

to arise from low frequency bending modes of the columns.

In this paper we present the first quantitative measurements of the low-angle diffuse X-ray
scattering from highly oriented, freely suspended strands of

a discotic liquid crystal. We find

that the diffuse scattering is confined to a toroid in the basal plane of the Bragg (HKO) points,

as shown schematically in Figure i.

The diffuse scattering intensity is at its maximum near the Bragg (100) points. The cross-

section in the HOL plane of this diffuse scattering toroid is elliptical, confirming the expected
anisotropy between the momentum transfers in the plane of the two-dimensional lattice and

along the direction of the column axis. The cross section in the HKO plane is a circular ring
with a simple sinusoidal modulation which reflects the six-fold symmetry of the two-dimensional

lattice of the cores.

A number of different factors can give rise to diffuse scattering, in liquid crystals as well

as in crystals. Our measurements are in qualitative agreement with calculations [10,11] of

the diffuse scattering from "phonons" (collective thermal displacive excitations) in the liquid
crystal. A similar form for the diffuse scattering can also arise from static defects in the

columnar structure [13-15]. In future work [16] we will address the extent to which aliphatic
tail disorder contributes to the diffuse scattering in the (HKO) plane.

The remainder of this paper will proceed as follows. In Section 2 we discuss the experimental
techniques used. In Section 3 we present the results of our X-ray measurements. Section 4

discusses our analysis of the shape of the diffuse scattering in reciprocal space. In Section 5

we derive the characteristic form of scattering from phonons in a discotic liquid crystal. We

provide a critical comparison between our data and the phonon scattering model in Section 6.
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Fig. I. Schematic representation of reciprocal space depicting the toroid and the Bragg (100) points
in the basal plane. The broad "001" scattering region due to intracolumnar

core-core
correlations is

found on the Qz axis. A shell of larger angle diffuse scattering is due to the intercolumnar tail-tail

scattering. Qb is the projection of the scattering vector Q on to the basal plane.

2. Experimental

The material studied was
hexa(hexylthio)triphenylene (HHTT) (Fig. 2). This compound has

the phase sequence:

62 °C 70 °C
~

93 °C ~~~

SR

R=C~H~~

RS SR

Fig. 2 Structure of hexa(hexylthio)triphenylene (HHTT).
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where K is a monoclinic crystal, H is a helical crystalline phase, Dh is a hexagonal discotic liquid
crystal phase, and I is the isotropic phase [17-20]. Pure HHTT was synthesized and purified

as previously described [21-23]. Freely suspended strands [24, 25] of HHTT were grown [26] in

a temperature-controlled environment.

Preliminary, qualitative measurements were made using a simplified strand apparatus, with

X-ray detection using photographic film [27]. For these measurements, the temperature chosen

was 90 °C, within the Dh phase. More quantitative X-ray measurements (at 75 °C, also

in the Dh phase)
were performed using an Elliott GX-13 rotating anode generator with an

apparent source diameter of100 pm. A vertically focussed LiF(200) monochromator selected

the Cu hoi line, producing an incident flux of roughly 10~ photons/s in a 400 pm diameter

spot at the sample position. The direction of the outgoing beam was determined using a LiF

analyzing crystal and the scattered intensity measured with a NaI scintillation detector. This

configuration resulted in an in-plane longitudinal resolution (I.e., resolution along the direction

of Q in the scattering plane) of AQL
"

0.005 i~~ full-width at half-maximum (FWHM). The

instrumental resolution in the scattering plane and perpendicular to Q was AQI
"

0.0005 i~~

FWHM, and the instrumental resolution out of the scattering plane was Aovert
"

0.042 i~~

FWHM. For the measurements described in this paper, which were generally made in the

vicinity of an
(HKO) peak, AQL determines the radial resolution in the hexagonal basal

plane, AQI determines the angular uncertainty corresponding to a rotation about the Qz

axis, and Aov~rt determines the resolution normal to the (HKO) plane. Note that we use

units (Q(
=

41r sin(b) Ii
=

21r Id.
The oven containing the strand was mounted in a standard 4-circle diffractometer. The

geometry was such that the strand was approximately aligned along the axis of the # circle.

We define our angles such that #
=

0 and x "
0 when the Bragg (100) peak is brought into

the diffraction condition, as shown schematically in Figure I. Thus, when x =
0, a b 2b scan

is equivalent to a radial scan with Q in the basal plane, and a scan in which # alone varies

results in Q tracing out a circle in the hexagonal basal plane. At a fixed value of 2b and #,
varying x from 0 to 90° brings Q from the basal plane to the Qz, or (00L), axis.

Our strands typically consisted of a number of ordered domains with different orientations,
similar to the "mosaic texture" of imperfect crystals. The mosaic texture of a strand was

characterized by measuring the scattered X-ray intensity as a function of the # and x angles, at

fixed values of 2b corresponding to the Bragg (100) reflections, where (QBragg "
0.337 i~~. In

most strands, several closely spaced domains in the strand could be identified (see for example
Fig. 4a). Typical # mosaic widths were 1-4°, although our best samples had widths that

were less than 0.1°. Measurement of the x mosaic was complicated by our poor instrumental

resolution in this direction in reciprocal space, but our best samples had mosaics < 6°. The

maximum scattering at the peak of the Bragg (100) peaks yielded a typical scattered intensity
of

r-
5 x

10~ counts Is.

3. Results of X-ray Measurements

In reciprocal space, a toroid of diffuse scattering was found which enclosed the Bragg (100)
points (see Fig. i). For the instrumental configuration utilized in these measurements, the

intensity of this diffuse scattering was reduced by
r-

4 orders of magnitude from the elastic

Bragg scattering. initial measurements using photographic film indicated that the cross-section

of the toroid was anisotropic, and extended farther along the Qz direction than in the basal

plane. In the diffraction pattern shown in Figure 5, the sample was aligned so that the 100

Bragg peak satisfied the reflection condition; this peak is shown on one side of the beam trap.
On the other side of the beam trap only diffuse scattering is seen. The # mosaic in this ex-
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was brought into the
cattering ondition.
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Fig. 4. Top j-mosaic structure of a Bragg peak in a
typical strand. The data collected from

this strand correspond to data set 4 in Table I. The Bragg peak exhibits
a

FWHM of less than 4°,
typical of the strands reported in this paper. The intensity variation of the Bragg (100) peaks is due

to a small misorientation of the strand
axis

with respect to the beam. Such
a

misalignment has
a

pronounced effect
on

the Bragg peak intensities, but has a
negligible effect

on measurements of the

diffuse scattering intensity. Bottom: the # dependence of the diffuse scattering in the same strand, at

[Qb(
"

0.300 and L
=

0 00. The maxima of the diffuse scattering
occur at the # angles of the Bragg

(100) peaks. The triangles indicate measured intensities as a function of #, while the solid curve shows

the results of
a

least-squares fit to Equation (4).

observed in a different material [9].
Normally, one expects the intensity of the diffuse scattering associated with phonons or ex-

tended defects to decrease rapidly with increasing separation from a Bragg peak. To establish

the shape of the diffuse scattering within the basal plane, further measurements of the diffuse

scattering were made by fixing the length of Q and varying #. The diffuse scattering in three

different strands was measured by fixing (Qb(
"

0.300 i~~ and Qz
=

0, and varying #. (See,
for example, Fig. 4b).) Note that in this case (Q( < (QBragg "

0.337 i~~. Unlike the expected
rapid decay away from #

=
0 (mod 60°), these scans show a surprising sinusoidal variation in

the intensity of the diffuse scattering around the ring. The peaks of the sinusoid are at the

values of # corresponding to the orientations of the Bragg points, and the minima correspond

to the edges of the Brillouin zone. We emphasize that there is significant diffuse scattering at

the edge of the Brillouin zone, well away from the Bragg peaks, even though the mosaic of the

elastic scattering is only
r-

1-4°. Additional measurements of the # dependence were made on

one of the above strands at (Qb(
"

0.370 and Qz
"

0.100 (I.e., (Q(
"

0.383 > (QBragg (), and a

similar sinusoidal dependence was observed.
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Fig. 5. The strand axis is vertical in this photograph of the diffuse scattering from an aligned
strand of HHTT. The exposure time for the photograph

was
four hours. "A" points to the strongly

overexposed Bragg 100 reflection of the two-dimensional hexagonal lattice which satisfies the Bragg
diffraction condition "B" points to the diffuse scattering in the basal plane away from the 100 Bragg
reflection which is not oriented

so as to satisfy the diffraction condition. "C" points to the 001 diffuse

peak due to intracolumnar correlations (compare with Fig. I). For this strand, the # mosaic was

measured to be A#
~J

0.25° < 6Bragg.
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Fig. 6. a) Triangles show the measured diffuse scattering intensity as a
function of [Qb( with

#
=

15° and Qz
"

0.10 ji~~. The FWHM is 0 10 ji~~. The smooth
curve

shows a fit to a Lorentzian

peak together with
an

empirical background, determined by measuring the scattering from an empty

cell and correcting for absorption by the sample. b) Triangles show the measured diffuse scattering

as a
function of Qz with #

=
15° and Qb

"
0.300 ji~~. The FWHM is 0.28 ji~~. The smooth curve

shows
a

Lorentzian fit with
an

empirically determined background as discussed above. Note that the

two data points plotted as squares were
attributed to Bragg contamination and were not included in

the fit.
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4. Analysis of # Dependence of the Diffuse Scattering

The observation of a sinusoidal variation of the diffuse scattering in the basal plane was unex-

pected. To further elucidate the nature of the sinusoidal modulation of the diffuse scattering
and to establish the extent to which higher harmonics are present, the four data sets discussed

above were analyzed ma least squares fits to a sinusoidal function. The simplest model function

would be a constant plus a simple sine wave. For our initial fits we used the following function:

Imj~
=

b + c£j#) + djl + e£j#)) sinj6# + 61) 12)

where

£1#)
=

Sin12# + ~i). 13)

The £(#) term accounts for a slow variation in both the sinusoidal term and the "background"
which we attribute to a small misalignment of the apparatus. If the strand is displaced from

the center of rotation of the goniometer by even r-
30 50p it can "wobble" to a significant

extent in the X-ray beam as # is varied, resulting in a sub-harmonic with period 180° in # and

a phase ~t depending on the direction of misalignment. As can be seen in Fig. 4b, the fit to

the function in Equation (2) is remarkably good. Similarly good fits are found comparing the

simple sinusoidal function to the other four data sets.

Clearly, any function describing the variation of the diffuse scattering in the hexagonal
basal plane should mirror the lattice symmetry, I-e-, 6-fold rotational symmetry plus inversion

symmetry. Any such function can be decomposed into a Fourier series, £~ Cm sin(6n# + 6n).
The convention <Bragg "

0 defines 61
"

0. The inversion symmetry of the hexagonal lattice

then implies that 6n
=

61 "
0 for all n > I, with Cn free to be either positive or negative.

Our initial analysis showed that truncating the series at n =
I already provided a good fit

to the data. The extent to which higher harmonics contribute remained to be determined.

Accordingly, we fitted our data to a function:

I~aj~
=

b + c£ji) + ii + e£j#))
f

Cm sinj6n# + 6n) j4)

n=1

with £(#) defined as m
Equation (3). For most fits we allowed Cl and at most one other Cm to

be nonzero, and fixed 6n
=

61 for n > 1. 61 was determined by the strand orientation. Though
allowing a free phase for the higher harmonics always significantly improves the goodness-of-fit,
there is no physical basis for the development of an arbitrary phase between the fundamental

and a harmonic. (A phase shift of1r can be accounted for by a negative value for Cm). We

used Hamilton's test [28] to establish whether the addition of the n~~ harmonic term improves
the quality of the fit in a statistically significant manner. This is accomplished through a

comparison of the model containing only the fundamental, to the model containing the n~~

harmonic in addition to the fundamental. The former model, found in Equation (2) has one

less fitted parameter than the latter model in Equation (4) with one other Cm allowed to be

nonzero.

Using Hamilton's test at the 90% confidence level to compare the simple model of Equa-
tion (2) to the n~~ harmonic model, for n =

2, 3, and 4, we found that the n =
2 harmonic

is statistically significant in one of the four data sets, while the n =
3 term is significant in

one and the n =
4 term is significant in one

of the four data sets (see Tab. I). If the n =
2

harmonic in Equation (4) is allowed to have a variable phase, the resultant goodness-of-fit
improves greatly. In this case, Hamilton's test at the 90% confidence level would confirm the

existence of the n =
2 harmonic in all four of the data sets. However, as discussed above
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Table I. Parameters found m least-squares fits to a sinusoidal function for the <-dependent
diffuse scattering, as described m text. The second and third columns give the values of (Qb(
and Qz at which the measurement was made. The fourth, fifth, and sixth columns gmes values

of C2/Ci C3/Ci, and C4/Ci from fits to Equation (/ ). Statistically significant parameters are

given with error bars. Parameters that are not statistically significant
are given m parentheses.

Note that the statistically significant parameters have uncertainty ranges which come close to

including zero /12j.

Data Set (Qb( ~~) Qz ~~) C2/Ci C3/Ci C4/Cj
0.300 0.00 -0.154 + 0.152 (0.029) (-0.013)

2 0 300 0.00 (0.007) (0 013) (-0.004)
3 0.300 0.00 (0.023) 0.i13 + 0.i12 0.060 + 0.047

4 0.370 0.10 (-0.013) (0.011) (-0.021)

we believe that the inclusion of additional free phases is unphysical. Thus, we attribute the

appearance of an "offset" n =
2 harmonic to astatistical noise in our measurement, perhaps

arising from small misaligned domains in the strand.

As a final application of Hamilton's test, the uncertainties in the amplitudes of the n =

2 harmonic are explored. The same Hamilton's test comparison is made using the fitted

parameters in the model with one higher harmonic. By fixing the amplitude of the higher
harmonic at values successively farther from the ideal fitted value, we can determine what

higher harmonic amplitude causes the R of Hamilton's test to cross the one-standard-deviation

level, where R
=

Ri/Ro and Ro and Ri are respectively the generalized weighted R factors

for a structure resulting from an unrestrained least-squares refinement and a refinement with

restraints on some of the parameters [28]. In this manner, the uncertainty in the amplitude
of the higher harmonic can be determined by our fits to the data. The results of

our
analysis

using Hamilton's test are summarized in Table I.

In summary, we were able to obtain excellent fits to the basal plane intensity variation of

the diffuse scattering, by using only a simple sinusoidal model. In most of our measurements,

we found that the
n =

2,3, and 4 harmonics are statistically insignificant. Even in data sets

where such harmonics could be statistically justified, the uncertainty in the amplitude of the

harmonic brings the amplitude very close to null.

5. X-ray Diffuse Scattering by Elastic Waves in the Hexagonal Phase

The anisotropy of the X-ray diffuse scattering in the vicinity of a Bragg reflection can be related

to the elastic properties of the columnar phase. In the following discussion, we will consider the

role played by phonons and we calculate their contribution to the diffuse scattering. However,

there are other explanations which a prtort apply as well as the model of phonons presented

here. For instance, the diffuse scattering may arise from static defects: either dislocations as

proposed by Bouligand [13] or from point defects and lock-in faults as proposed by Prost [14].
The scattering by such defects is then related to the displacement field around their cores [7].

This field is governed by the elastic energy of the medium in the same way that the phonon

energy and dispersion are. In both cases, the shape of the diffuse scattering appears to be

driven mainly by the values of the different elastic constants. Therefore, one can predict

that comparable diffuse scattering shapes should be observed in the case of phonons and of
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static defects, at least as far as the anisotropy in the HOL plane is concerned [29]. A possible

way to discriminate between these two models would be to perform an energy analysis of the

scattering, for example via neutron scattering. The small monodomain size achieved to date

seriously restricts the feasibility of such an experiment.
The elastic energy density of a hexagonal columnar phase has been derived by several authors

[10,14,30]. This energy contains two contributions: that of a two-dimensional hexagonal solid

medium, and a Frank liquid-crystalline energy, containing the three usual terms: the splay
(elastic constant ki), twist (elastic constant k2), and bend (elastic constant k3) contributions

[31]. Following [30], the elastic energy density, f, is given by

~~
~ ~~~

~~~~~
~

~~~
~l~ ~~~

~
~ ~~

~~
~

~~~

i fi2~ 2 fi2~ 2 ~

~2~~ 3z2
~

3z2 ~~~

where u
and u are the components of the displacement vector u, which is perpendicular to the

director n of the hexagonal phase. We assume that n varies slightly from the fixed I direction:

u(x,y,z)
=

u(x,y,z)k + u(x,y, z)f (6)

nix, v, z)
=

I +
~

17)

1 and p are the Lamd elastic constants of a two-dimensional hexagonal solid. (The sixfold

symmetry induces isotropic two-dimensional elastic properties). Only the bend contribution

(elastic constant k3) is included in f. As shown in [32], the two other terms are forbidden in a

so-called developable domain of a columnar medium. In [10], a complete derivation including
the splay (elastic constant ki) and twist (elastic constant k2) terms is presented, and we will

compare our results with this derivation.

From Equation (5), one derives the two propagation equations for an elastic wave of dis-

placement u, which can be collected in a single vectorial equation:

i~ + P)vi (vi U) + PviU k3
()

=

P(tl 18)

Equation (8) is solved in Fourier space, writing u =
uoe~(~ ~~"~), where q = qb + qzi is the

wave vector of one phonon mode. Let us choose the k direction along qb and call b the angle
between qb and uoi qb "

qbk and uo = no cos(b)k + ~o sin(b)y. Projections on the & and y

axes read:
cos(b) ((1+ 2p)q) + k3q) PuJ2) =

0

sin(b) (pq( + k3q) Pu~2) =
0

~~~

This system has two solutions, for b
=

0 and b
=

1r/2:

mode i b
= ~ U01 1 qb and P~°I "

P~l + ~3~~ jio)
mode 2 b

=
0 ~ uo2 II qb and PkJ(

"
II + 2P)q) + k3q)

Let us calculate the contribution of these two modes to the diffuse scattering around a Bragg
reflection of reciprocal vector QBragg. We call I(Q) the scattered intensity at the vector

Q
=

QBragg + q, where q is the phonon wave vector. We define another coordinate system, I,
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A

~Bragg

Fig. 7. Conventions used in the analysis of Section 4. The phonon
wave vector is referred to as q

in this paper, and has its origin at a
Bragg point, QBragg. Only the basal plane is shown in the Figure:

qb refers to the projection of the phonon
wave vector on to the basal plane. A first set of axes, k, §

is defined at a
Bragg point with k along the qb direction and g perpendicular to k. A second set of

axes,
I, if, is also defined at the Bragg point with I along the QBragg direction and if perpendicular

to I.

if (origin at the vector QBragg and I along the QBragg direction)
as shown in Figure 7. For

small displacement amplitudes [33], 1(Q) is proportional to:

~(Q)
°C (U01 Q)~ ~ (U02 Q)~ (~~)

The equipartition theorem gives (uoi
(~ oc

kBT/uJ], and, remembering the polarization direc-

tions of the two modes given above, one has:

I(Q)
oc

~ ~

~~~~)~~~
+ (QBraggqx + q( + q()~) (12)

~X ~ ~y ~Jl Ld2

Ld~ °C /~(~~ ~ ~~) ~ ~3~Z~ (l~)

uJ( oc
Ii + 2p)(q( + q( + k3qz~ (14)

We introduce the length A
=

k3 Ill + 2p) and the ratio a =
(1+ 2p) /p (with 2 < a < +cc),

I(Q) finally reads

I(Q)
OC I(QBragg + q) (IS)

c~ iq~
~~

l
iq~

~~
iq~

~~

itiii~iil~
iqz ~4

+ ~liii~i iliil I trill ~

11 6)

As expected, Equation (16) is equivalent to the comparable expression of [10] with ki and k2

set to zero. In [10], the exponential Debye-Waller term is taken into account, but one can

neglect its influence in our range of interest, that is, in the vicinity of a single Bragg reflection.

6. Discussion

To compare our measurements with Equation (16), we need to determine the two parameters

A and a. This is accomplished in two successive steps: first, we adjust A to agree with the

data in the HOL plane, since only A governs the scattered intensity in this plane. To reproduce
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Fig. 8. Isointensity contours for calculated diffuse scattering I(Q) from phonons (from Eq. (16)),
drawn in the reciprocal space

it and iif planes about the (100) reflection (see Fig. 7). We show 10

contours equally spaced
in

intensity between 0 and 500 (arbitrary units). Axis units are
normalized

to [QBragg(
"

0.334 ji~~. Only the contribution arising from
one

Bragg peak
is

shown. For the plots
shown we chose A

=
I-S ji and

a =
10.

the observed anisotropy of the scattering, we found that it was necessary to choose A in the

range 1.5 I < A < 4 I. Then, A being fixed in this range, we adjust a to optimize agreement
with the data in the HKO plane. A typical result is shown in Figure 8. Such a value for

A
=

k3/(1+ 2p) should be compared with previous mechanical measurements reported in

the literature. Although there are very few precise measurements of the elastic constants of

discotics, from measurement in discotic nematics [34, 35] and Dh phases [36] we can estimate

k3 * 1- 4 x
10~~2 N and B

r-

10~ m2 IN [37, 38]. This then gives A
=

(k3/B)~/~
m 1 3 I, in

good agreement with our fitted value. This rather small value of A implies that the columns

bend more easily than they compress, which is demonstrated by an analogy with the smectic

A phase, following de Gennes [31]. We can relate A to a penetration length L, which has more

physical significance. A small undulation of the cylinders at some interface induces a distorted

region of thickness L. Assuming a wavelength of 21r/k for the undulation gives L
=

1/k2A.
Taking A

=
2 I and 21r /k

=
10 pm, one finds L

=
13 mm.

(By contrast, in smectic phases, one

typically finds L
=

i mm [31]). This indicates that, in a 50-200 pm diameter strand, surface

effects may play an important role. Thus, the phonon model describes the HOL scattering
well, although, as discussed above, models for topological or other static defects might also be

expected to provide a good description of the data.

The phonon model provides a less satisfactory agreement with the # dependence of the

diffuse scattering, I.e. the lineshape in the HKO plane. As discussed in Sections 3 and 4,

scans in which # was varied, at different values of H and L and fixed (QBragg(, indicated a

smooth sixfold sinusoidal dependence of the scattering, with little or no contribution from

higher harmonics. The analysis presented in Section 5 predicts a divergence as Q
- QBragg,

which of course would imply an infinite set of harmonics, but also does not agree with the

measured # dependence at other values of (Q(. To use the phonon model in the HKO plane,
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the value of a has to be large enough to reproduce the slow decay away from the Bragg
reflection of the diffuse scattering versus # (see Fig. 4). However, for such large values of o,

Equation (16) actually predicts two poorly resolved maxima in the scattered intensity at +A#,
while the measured intensity shows a single maximum at #

=
0. This rather strange effect is

due to the detailed shape of the scattering in the HKO plane predicted by the model (see the

right-hand side of Fig. 8) and is only predicted for scans made at Q # QBragg. Since this effect

is not experimentally observed, we have to restrict the value of o to the range 2 < a < 10.

In summary, the phonon model does not provide satisfactory quantitative agreement with the

observed diffuse scattering in the HKO plane.
Indeed, the # dependent sinusoidal variation in the intensity of the diffuse scattering is not

predicted by any published theory that we are aware of. It should be noted that a calculation

of the scattering from phonons or static defects, such as that presented in Section 5, generally
relies on a small AQ approximation. Thus, most of the scattering that we have measured is

outside the regime of validity of such theories. Indeed, the observation of substantial diffuse

scattering all the way out to the zone boundary is surprising in itself. Qualitatively speaking
in terms of phonons, this observation implies that transverse phonons (2D shear deformations

involving only the constant p) of all wavelengths cost little energy compared to that of longitu-
dinal phonons and also to kBT. If the scattering is considered to arise from static defects rather

than dynamic fluctuations, this observation implies that the defects must be highly localized.

Also, the relatively small radial extension of the scattering about the Bragg reflections in the

HKO plane indicates that the defects do not involve strong density fluctuations.

The question still remains open as to why the diffuse scattering of hexapentyloxytripheny-
lene [9] consists of diffuse sheets whereas that of HHTT has a toroidal shape. Preliminary qual-
itative experiments (using photographic plates) on phasmidic compounds [39] and on lyotropic

hexagonal phases [i ii have also shown a similar toroidal shape. In the case of hexapentyloxy
triphenylene [9], the diffuse scattering may arise from the existence of screw dislocation lines

oriented along the (100) directions [iii.
Further calculations are clearly required in order to elucidate the source of the sinusoidal

intensity modulation around the toroid of diffuse scattering in HHTT and related materials.
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