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Abstract. The thermodynamics of the L3 (sponge) phase is investigated within the flexible

surface model. The well-established leading-order 4l~ scaling for the free energy density (where
4l is the surfactant volume fraction) requires modification in order to describe the narrow char-

acter of the phase and the observed sequence of phase transitions. We find that higher order

contributions to the free energy density from the local curvature energy provide a straightfor-
ward mechanism to account for these features. The phase equilibria with the dilute solution

on one side of the phase and the lamellar phase
on

the other are
evaluated for

a
model binary

(surfactant-solvent) system, and calculated phase diagrams
are

presented. Experimental evi-

dence in support of the model comes from static light scattering experiments on the pseudo-
binary system AOT-NaN03-water. We calculate the forward scattering intensity along chosen

dilution lines within the phase using the model, and predict that the scattering intensity varies

significantly
as we move from

one
phase boundary to the other at constant 4l. The experimental

results confirm these predictions, and provide strong evidence in support of the proposed model.

1. Introduction

The anomalous isotropic L3 (or sponge) phase iii is a fluid consisting of a disordered, bicon-

tinuous multiply-connected surfactant bilayer structure separating two domains of the same

solvent. This remarkable phase scatters light, shows flow birefringence and is not highly viscous.

A distinguishing feature is the narrow character of the one-phase region, the sponge usually
being observed in equilibrium with dilute solution on one side of the single-phase region, and

a lamellar (L~) phase on the other.

For an isotropic liquid, the narrowness of the L3 phase is a unique feature. In our view, any

model which attempts a thermodynamic description of this phase must successfully predict
this behaviour. Previous theoretical models have proposed various mechanisms leading to the

formation of the disordered bilayer structure. Cates et al. [2] have suggested that the lamellar

to L~ transition is driven entropically and by fluctuations, and that the bending rigidity of
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the bilayer is renormalized on a change of length scale. Porte et al. [3] argue alternatively
that it is the Gaussian curvature of the bilayer membrane which favours the formation of

tubular connections between patches of surfactant, and hence the construction of a sponge-like

structure.

Recently, Wennerstr6m and Olsson [4] have argued that there is a generic scaling form

for the free energy density of sponge phases and their monolayer analogue, bicontinuous mi-

croemulsions, which in principle successfully accounts for the narrow character of these phases.
Originally, Porte et al. [3] showed how a universal first-order scaling law applies to the free

energy density of fluid membrane phases, using scale-invariance considerations. This scaling
law,

g =
aj~/1)~ (l)

where is the length of the surfactant, is not sufficient, however, to describe the observed

equilibria between the competing phases as described above, because of its monotonic nature.

Simply, the phase with the smallest coefficient a is stable at all concentrations. Wennerstr6m

and Olsson [4] therefore proposed that the free energy density has additional terms which

become significant at higher surfactant concentrations, so that to next order

g =
aj~/1)~ + bj~/1)~ j2)

Typically, the sign of the coefficient a is negatme for the sponge phase, for reasons that we shall

discuss later in this paper. The important point is that under this condition, it is apparent that

the sponge phase will have a finite swelling, as it becomes thermodynamically unstable upon
dilution. A positive value for the coefficient b ensures stability at higher concentrations. We

see from the outset that within this picture there is a straightforward mechanism for describing
the narrow character of the phase.

The issue now becomes one of providing a quantitative analysis within the scope of the above

outline that can map a geometrical description of the disordered multiply-connected bilayer
structure to a free energy density of the form given in equation (2). The narrow character of

the phase indicates an internal constraint on the free energy of the system. Anderson and co-

workers [5, 6] have pointed out that this constraint derives naturally from a consideration of the

monolayer curvature energy at the interface with solvent. They derived a relation between the

volume fraction of bilayer and the average mean curvature at the monolayer interface < H >,
this being, in the limit of weakly curved surfaces and low concentrations,

~~
m ql < H > (3)

The value of the coefficient q was found by them to be approximately 2. They then argued
that the bending energy plays a dominating role in determining the stability of the phase. In

this paper, we shall provide a quantitative analysis following these concepts, the goal being to

calculate the phase diagram of a model system which displays the L3 phase.
In the past, the stability of the sponge phase land also balanced microemulsions) has been

explained by invoking a renormalization of the bending rigidity of the surfactant bilayer (or
monolayer). In ACRS (Andelman, Cates, Roux and Safran) theory [7], the "bare" bending
modulus

~co is "softened" on a change of length scale, so that the bending modulus of the "base

surface" is given by

~ = ~o ii ~injj/i)j (4)
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(and similarly for the saddle-splay constant k), where ( oc
1/~ is the characteristic length of

the sponge structure, and
T =

kBT/47r~co. This in turn leads to a correction to the first-order

scaling of the free energy density of the form

g =
~~(a + bln ~) (5)

Whilst accounting for the stability of the sponge phase, this model fails to describe its

narrow character. Recently, Pieruschka et al. [8] have shown from a rigorous variational theory
calculation that for a lamellar system the logarithmic renormalization of the bending constants

is exactly cancelled by a concomitant change in the area of the sc-called "base surface", and

hence no logarithmic term appears in the free energy of that system. This has also been argued
to apply qualitatively to all fluid bilayer and monolayer phases by Wennerstr6m and Olsson

(4]. In this paper we avoid defining a base surface in the sense of ACRS theory, and thus

renormalization of the bending constants is not invoked.

One experimental method previously used to test theoretical models of the L~ phase is

static light scattering. This is because the predicted osmotic compressibility of the system

can be related directly to the forward scattering intensity obtained from these experiments.
Previously, Porte and cc-workers [9, lo] and Roux et al. [11] have used results from such

experiments to confirm predictions deriving from ACRS theory and equation (5). We too have

sought experimental confirmation of the model proposed in this paper using this method. As

we shall detail in Section 5, the results of these measurements give strong support to the model

which we propose.

2. Free Energy of the Sponge Phase

Within the flexible surface model, the surfactant bilayer membrane is considered as an ideal

connected geometrical surface composed of two oppositely oriented monolayers, and to a good
approximation it is free of edges and bifurcations. The local curvature free energy, expanded

to second order, is given by [12, 13]

g~ =
2~c(H Ho )~ + RK (6)

where H is the mean curvature, Ho is the spontaneous mean curvature, K is the Gaussian

curvature, and ~c and k are the bending modulus and the saddle splay constant respectively. In

the model that we shall employ, these quantities will refer to the monolayers which constitute

the bilayer membrane. The total curvature free energy of the bilayer (of total area A) G~ is

given by a surface integration over the constituent monolayers, so that

Gc/A
=

2~llH Ho)~) + klK) (7)

The mean curvature term may be decomposed into two contributions,

2~c((H Ho)~)
"

2~c [((H) Ho)~ + ((H (H))~)] (8)

the first term corresponding to the bending free energy of the average mean curvature, and the

second to the bending energy of fluctuations.

The second term in equation (7) is the Gaussian curvature contribution to the free energy,

which can be related directly to the topology of the surface ma the Gauss-Bonnet theorem [14]

AjK)
=

27rxE (9)

where the Euler characteristic xE is a purely topological quantity.
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Fig. 1. Schematic representation of
a

bilayer cross-section, with bilayer Irdd-surface at the centre

and two displaced parallel surfaces at the interface with solvent.

Now, given a particular configuration of the membrane, the surface over which the integration
is performed must be specified. One would prefer to be able to do so at the surfactant-solvent

interface. However, the precise identification of this surface remains problematic, and hence

we apply the parallel surfaces model, where following the assumptions given irt reference [5] we

consider the bilayer mid-surface as a minimal surface, and perform the integration over two

parallel surfaces displaced from the mid-surface by a distance I, the monolayer thickness. This

is illustrated in Figure I.

The average properties of the displaced parallel surfaces (subscript I) can be related to those

of the mid-surfacq (m) by [15]

ijK)~
i~

' =

+ 12 jK)~
(i°)

and

jK)j
=

jK)~ (ii)

Now, if the spontaneous curvature is towards the solvent, then Ho < o. (We will show later

that this is a requirement for the stability of the sponge phase over almost the entire range of

concentrations where it appears.) Given this, certain conclusions can be drawn immediately
from the preceding equations. Minimizing the curvature energy means that (H)i

cs Ho, and in

the limit of weakly curved surfaces (l~(K)( < I, so that equation (lo) implies that (K) < o.

The Gauss-Bonnet theorem given in equation (9) then requires that xE is also negative, so that

the surface is connected. This confirms our picture of a sponge-like structure for the bilayer
membrane.

Anderson et al. [5] showed for periodic minimal surfaces of known area that the volume

fraction of surfactant is related to the average mean curvature of the displaced surfaces ma
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~
(3 21jH) )2 j12)~

"
?~l~~

9ji ijH))3

where q is in the range -2.25 to -1.7. (We now drop the subscripts on the average curvatures

as they will from this point on always refer to the displaced parallel surfaces.) For weakly
curved surfaces, equation (12) reduces to'equation (3). We shall employ this approximation
throughout this paper, and for simplicity take the value of q to be -2. We shall also assume

that, to a good approximation, equations (3) and (12) hold for the aperiodic minimal surfaces

that are suitable models for the bilayer mid-surface of the L3 Phase [5].
To obtain the total free energy of the system, we must add the entropy of the disordered

bilayer structure to the curvature free energy. The nature of the system is such that finding

an exact expression for this quantity is a prohibitively difficult task. Previously Cates et al.

(2] have developed a random mixing entropy expression in a cell model, leading to the entropy
density scaling as s r~

~~. The same scaling argument developed by Porte et al. [3] to obtain

the leading-order scaling of the total free energy density (Eq. (I)), also applies to the entropy
density. The argument of Porte et al. is based on a truncation of the local curvature energy

expansion at second order, as in equation (6). Then, dual configurations of the system, that

is those differing only by a change of length scale, will have the same statistical weight when

evaluating the Boltzmann average for the thermodynamic system. This leads to equation (I),
and also applies equally well to the entropy density, so again s r~

~~.

As argued by Porte et al. [3], the sponge structure is formed due to a positive value of

the saddle splay constant, resulting from
a negative value of the spontaneous mean curvature

of the constituent monolayers. A similar argument was made independently by Anderson

et al. [5], who proposed that the sponge structure is then basically formed to match the

monolayer spontaneous curvature. Entropic and fluctuation effects are secondary in comparison

to this contribution. This should be compared to the lamellar phase, where they dominate the

thermodynamics.
The suggestion of Porte et al. was that the observed sequence of phase transitions and

narrowness of the sponge phase can be explained by considering the dependence of the Gaussian

modulus (saddle splay constant) on the spontaneous curvature of the constituent monolayers;

however they did not capture the commonly observed feature that the monolayer spontaneous

curvature changes (which will be discussed in section 4) as the sponge is swollen. In this paper,

the sequence of phase transitions, and finite swelling and narrow character of the sponge phase

are successfully modelled, based upon the original suggestion of Anderson et al. [5] that the

monolayer mean curvature energy dominates the free energy of the phase. Importantly, the

monolayer spontaneous curvature is a varying parameter, rather than a
fixed quantity, as the

sponge is swollen.

With this in mind, we evaluate the free energy of the sponge phase, for the present, purely in

terms of the average mean curvature contribution. We shall show that this allows us to capture
all of the essential features of the phase observed experimentally in phase diagram studies, and

further confirm the strength of this assumption through the results that we shall present later

from light scattering. We do, however, bear in mind that contributions are present from

fluctuations, Gaussian curvature and entropy, and these will be discussed in our concluding
analysis.

Taking the first term on the r-h-s- of equation (8), expanding and employing equation (3)
and using A IV

=
~ /l gives for the free energy density of the system

g =
2Jc (~° ~ + ~~ +

~ ~)
(13)

~
41
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The first term, linear in ~, can be absorbed into the standard chemical potential of the

surfactant in the sponge phase. Its effect
on the phase equilibrium between the sponge and the

dilute solution is small compared to that of the difference in standard chemical potential of the

surfactant in the monomeric state and in a free bilayer. Furthermore, we expect the same term

to appear in the free energy expression for the lamellar phase, so the competition between the

sponge and lamellar phases is also unaffected by this term. To an excellent approximation it

can be ignored.
In equation (13), therefore, we have a free energy density expression of the form given in

equation (2). The coefficient of the ~~ term in the free energy density is typically negative,
whilst the coefficient of 4l~ remains positive [16]. It is straightforward to calculate the chemical

potentials of the surfactant (subscript s) and solvent (w):

~ts(L3)/us
=

~t)(L3)/us + 3a3~~ 2a34l~ + 5a54l~ 4a54l~ (14)

and

~tw(L3 )/uw
=

~$ /uw 2a3~~ 4a5~~ (15)

where a3 "
2~cHo/l~, a5 "

~c/(21~), us and uw are the molecular volumes of the surfactant and

solvent respectively, and ~t° indicates a standard chemical potential.

3. The Competing Phases

As we have discussed previously, the sponge phase is usually observed to coexist with a dilute

solution on one side of the single-phase region, and a lamellar phase on the other. In order to

compute these phase equilibria, we give the free energies of these competing phases. Whilst

equilibria with other phases, such as micellar, cubic and microemulsion phases are sometimes

observed, we do not consider them as their contact with the sponge phase is marginal.

3.I. THE DILUTE PHASE. We assume that only monomer surfactants are present in the

dilute solution. The chemical potentials are readily derived in the dilute limit

~~(Li)
"

l~~(Li) + kBTln
1*)

(16)
Us

and

~w(Li)
"

~$ kBT
~~~

(17)

The standard chemical potential of the surfactant in solution is considerably larger than in

the bilayer. Typical values for this difference A~)
=

~](Li) l~)(L3, L~)
are in the range 10

25 kBT [17]. In comparison, the contribution from the term linear in ~ in equation (13) to

the difference in the standard chemical potentials is, for reasonable values of the spontaneous
curvature, at least two orders of magnitude smaller.

3.2. THE LAMELLAR PHASE. Helfrich [18] first calculated the free energy of the lamellar

phase, which arises from the steric interaction of the undulating lamellar sheets. It is a simple
step to generalize the Helfrich result to the specific case of bilayer sheets, so that the free energy
density of the lamellar phase (excluding standard chemical potential terms) is given by
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Again, the chemical potentials are easily derived,

~~(L~)/u~
=

~j(L~)/u~ + c(3~2 2~3) (19)

and

~tw(L~)/uw
= ~t$ /uw 2c~~ (20)

where c =
37r~(kBT)~ /(1024~cl~ ). The standard chemical potential of the surfactant is assumed

to be the same as that in the sponge phase.

4. Phase Diagram

Having obtained expressions for the free energies of the sponge phase, lamellar phase and dilute

solution, we are now in a position to calculate the phase equilibria. This becomes a matter of

equating the chemical potential of each component i at different compositions in each phase
(phases

m
and n, say)

J~~(~lml)
=

J~~(~Inl) (21)

The nature of the expressions for the chemical potentials given in equations (14) to (17) and

(19) and (20) means that this task requires the use of (uncomplicated) numerical techniques,
and the insertion of some physical parameters into the calculation. Since the system that we

study using light scattering is the pseudc-binary ACT-NaN03-water system, it is useful at this

stage to employ the values relevant to it. We take
=

9.5 1 [19], u~ =
639 l~ [20], uw =

30 l~

and A~t)
=

15~cBT. The value of the bending modulus ~c is less well known. In Figure 2a we

show the calculated phase diagram using a value of ~c =
2kBT, and in Figure 2b demonstrate

the effect of increasing this value to 5kBT.
It is evident that changes in both the spontaneous curvature and surfactant volume fraction

induce phase transitions. In experimental systems, the spontaneous curvature can be tuned in

various ways. For non-ionic surfactants [5, 6, 21] the spontaneous curvature is a strong function

of temperature. In ionic surfactant systems, convenient tuning parameters are the salinity of

the aqueous solvent [22], and in the presence of cosurfactant, the surfactant-tc-cosurfactant

ratio [3]. In both cases, the exact scaling of the spontaneous curvature to the controlling
parameter (be it either temperature or salt concentration) is not known in general, and hence

a qualitative, rather than a quantitative, comparison to experimental phase diagrams should

be made.

We compare with the partial phase diagram which we have obtained for the pseudo-binary
ACT-NaN03-water system, presented in Figure 3. For the ACT-NaN03-water system, the

salt concentration becomes a controlling parameter, and induces phase transitions at fixed

temperature. While we do not know the exact scaling of the spontaneous curvature of the

membrane to the salt concentration, it is clear that increasing the latter quantity will cause

the constituent monolayers to bend more towards the solvent. Hence increasing the salt con-

centration drives the spontaneous curvature to more negative values. As shown in Figure 3,

the L3 Phase appears to terminate at about lo%wt of ACT. The phase behaviour at lower

surfactant concentrations is the subject of a continuing study, and has revealed interesting fea-

tures, such as a small "island" of a single phase isotropic liquid, previously observed in other

systems [23].
The first point to make about the calculated phase diagrams of Figure 2 is that they capture

the essential features of the narrowness and finite swelling of the L3 Phase, and the correct
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Fig. 2. a) Phase diagram calculated from the model with
~ =

2kBT. The bold line indicates the

three phase coexistence Li /L3/L«. b) Calculated phase diagram for ~ =
5kBT.

sequence of phase transitions in its vicinity, as experimentally observed (Fig. 3). Evidently,
increasing the value of the bending modulus narrows the phase further, and broadens the

twc-phase coexistence region with lamellae. This is readily understood from the free energy
densities of the two phases, equations (13) and (18). Increasing ~c decreases the free energy of

the lamellar phase at a given surfactant volume fraction, while making the free energy of the

sponge more concentration-dependent, so that the lamellar phase is able to coexist with the

sponge phase at lower surfactant volume fractions.

There is another parameter which may be altered. Although we do not show its effect here,
the limits of maximum swelling, that is, the points at which the single-phase bilayer regions

terminate at the dilute end, are sensitive to the value of A~t). Decreasing this value causes the

sponge and lamellar phases to terminate at a higher surfactant concentration. It is difficult,
however, to give a definitive value for this difference in the standard chemical potential of the

surfactant in the dilute and bilayer phases. It is important to note, though, that the limits of

maximum swelling seem to be controlled by this parameter.

Looking more closely at the calculated phase diagrams, the broad line adjacent to the dilute

end of the single-phase L3 region corresponds to a three-phase coexistence line of dilute solution,

sponge and lamellae. Below the three-phase line, there is a small twc-phase region of dilute

solution and lamellar phase. At the dilute end, the twc-phase coexistence between the sponge

and lamellar phases is becoming narrow. In fact, the limits of maximum swelling for the sponge

and lamellar phases are at almost identically the same point. There is also an extremely narrow
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Fig. 3. Partial phase diagram for the AOT-NaN03-water system at 23 °C. The line within the

phase is the third dilution line used for the light scattering experiments.

(from ~
=

o to about lo~~) single-phase Li region not shown on the phase diagrams due to

its size.

Another point to be made is that at the dilute end, the sponge phase is stable even for

positive spontaneous curvatures, over a very small range of values. This can be understood

again from the free energy density expressions (13) and (18). For very small and positive values

of the spontaneous curvature, and at high dilution where the quintic term in the sponge free

energy density is not significant, the sponge phase will still be able to successfully compete with

lamellae due to its smaller free energy. Under dilution, one expects the spontaneous curvature

of the sponge membrane to become less negative as it swells, and within the assumptions of

our model, at a certain point it undergoes a change of sign, and the constituent monolayers
bend away from the solvent for a small range of surfactant volume fractions.

So, we have seen that the calculated phase diagrams from the proposed model successfully
reproduce the important experimentally observed features of the sponge phase and its nearby
phases. We have demonstrated, for the first time, a mechanism which readily accounts for

the narrowness and finite swelling of the phase, with the monolayer spontaneous curvature

as a controlling parameter, rather than a fixed constant, as the sponge is swollen. The orig-
inal hypothesis [5, 6] that the bending energy of the average mean curvature dominates the

thermodynamics of phases such as the sponge seems a sound one indeed.

5. Light Scattering

Having tested the model in terms of phase behaviour, we seek further evidence for its validity
from static light scattering experiments. This is an excellent technique for doing so, as we can

relate a calculated quantity, the osmotic pressure fl, to an experimentally determined quantity,
the absolute forward scattering intensity, I-e- the excess Rayleigh ratio AR(q) extrapolated to

q =
o [24, 25]

AR(o)
=

~~~l~
~~ ~

kBT~ (~~) (22)
~o d~ d~

where no is the refractive index of the solvent,
n is the refractive index of the solution, and lo

is the wavelength of the incident light in vacuum [26]. The osmotic pressure can be obtained
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Fig. 4. Plot of [AR(0)4l]~~
vs.

4l calculated from the model for
~ =

2kBT and
~ =

5kBT. The

curves correspond to the following predictions: a, along L3/L« phase boundary, ~ =
5kBT; b, along

L3/Li phase boundary, ~ =
5kBT; c, along L3/L« phase boundary,

~ =
2kBT; d, along L3/Li phase

boundary, ~ =
2kBT.

directly from equation (15) ma

n
=

-~1~(L~)/v~ (23)

Now, it is of the utmost importance to specify the dilution line within the phase along which

a prediction is made for the forward scattering intensity, as this quantity is dependent on

both the salt concentration and the volume fraction of surfactant in a system such as AOT-

NaNO3-water. The same dilution line must then be followed experimentally if confirmation of

this prediction is sought. In our view, previous light scattering studies of sponge phases have

suffered from not specifying dilution lines.

If we were to calculate the expected scattering intensity from the first-order scaling law of

equation (I), then we would expect the scaling form

AR(0)
r~

~~~ (24)

Previous studies [9-11] have indicated a deviation away from this first-order scaling, and

the interpretation has been a logarithmic correction due to renormalization of the bending
constants, deriving from the ACRS free energy density form of equation (5), so that

JAR(0)j~~
~

~(ri + r2 In ~) (25)

Clearly, our model will make a different prediction for the scattering intensity scaling.
In Figure 4 we show the (numerically) calculated scattering intensities from the model for

~c =
2kBT and 5kBT. These are plotted as

[AR(o)f~~
vs. ~. Curves a and c represent

the predictions along the L3/L~ phase boundary, and b and d that along the L3/Li Phase
boundary. All of these curves are excellently approximated by quadratics, so that

[AR(o)]~~ cs d3~~ + d2~~ + di~ (26)

over the range of volume fractions indicated on the graphs. Values of the coefficients dj for

the curves appearing in Figure 4 are given in Table I. Importantly, we predict
a

significant
change m the scattering intensity m moving from one phase boundary to the other at constant

surfactant volume fraction. This can be understood from thermodynamic considerations, as the

narrow character of the phase means that the free energy density is a rapidly changing function
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Table I. Values for the coefficients dj of equation (26). The first six rows correspond to

values calculated from the model along the L3/L~ and L3/Li phase boundary dilution lines, with

~c =
2kBT, ~c =

5kBT and ~c =
1.8kBT, the latter gimng good agreement mth the experimental

results which are presented in the last two rows. Note that the value of the coefficient d2 is less

well-determined than the other two, as the quadratic term in equation (26) is less significant
than either the cubic or linear terms over the range of surfactant volume fractions considered.

Dilution line (m) j~~

boundary, 494 24.9 3.04

K#

phase boundary, 392 -12.2 2.87

K#

L3/Lu phase boundary, 1214 30A 1.00

K#

L,3/L1 Phase boundary, 970 -19.2 4.47

K"

L3/Lu phase boundary, 449 22.6 3.53

K=

L3/L1 Phase boundary, 353 -11.3 2 65

L3/Lu phase boundary, 465 -28.2 18.0

L3/L1 Phase 333 -31.1 13.3

results

of both the concentration and spontaneous curvature; hence there will be a large variation in

the compressibility in moving across the phase. The measurements taken in order to test this

prediction were therefore made along three dilution lines: two as near as possible to the phase
boundaries, and another well within the phase as indicated in the phase diagram of Figure 3.

The latter was done to further test the prediction of the salt concentration dependency of the

forward scattering intensity.

S-I. MATERIALS AND METHODS. The surfactant, sodium bis(2-ethylhexyl) Sulfosuccinate

(ACT) was obtained from Sigma and used without further purification. Sodium nitrate (99%)

was obtained from Merck, and millipore water was used.

Samples were prepared in sealed tubes, vortex-mixed, and allowed to equilibrate over
(at

least) one day. Phase diagram determination was done by visual inspection, between cross-

polarisers when necessary. Static light scattering experiments were performed with a com-

mercially available Malvem 4700 PS /MW spectrometer equipped with a
computer-controlled,

stepping-motor-driven goniometer, a digital correlator (Malvem, Model 7032-ES/136c), and

an argon laser (Coherent, Innova 200-lo, lo
"

488 nm). The measurements were performed

at 23.o + o.I °C. Approximately I ml of solution was transferred into the cylindrical scattering

cell. The cell was then sealed and centrifuged for 45-120 min at approximately 6000g and 23 ° C
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Fig. 5. A plot of the q-dependence of AR(q). This one is for a sample of volume fraction 4l
=

0.1354.

The line of best fit is shown.

in order to remove dust particles from the scattering volume.

The static light scattering experiments were performed at 13 different angles (30° < <

150°) and 60 individual measurements were taken and averaged for each angle, thus yielding
the average scattering intensity ([(@)). The data were then converted to excess Rayleigh ratios

using [27]

fiR~
(Is(q))

~ n
~

~ ~ il~~fjq)) ~~ ~ q (27)

where R~ef(q)
=

3.96 x
10~~m~~ is the Rayleigh ratio and nref =

1.499 the refractive index

of the reference solvent toluene. The other parameters relevant to equations (22) and (27)

are no "
1.34 and dn/d~

=
0.14, the latter quantity obtained in the approximation that the

refractive index of the solution has a linear ~-dependence over the chosen range of surfactant

volume fractions. We have taken the refractive index of ACT to be 1.48 [28].
We have examined the q-dependence of the scattering intensity for the most dilute sample

in more detail, as shown in Figure 5. As is seen, it can be described by a simple Ornstein-

Zernike form AR(q)
=

A/(I + Bq~). Deviations away from this form could have possibly
been expected for the more dilute samples as here the correlation length is longest, however

as Figure 5 shows, we did not observe any such deviations. This facilitates, and minimizes the

error in, the extrapolation for the evaluation of AR(0).

5.2. RESULTS. The measurements obtained from the static light scattering experiments are

presented in Figure 6. The solid curves are polynomials of best fit to the data for the L3/L~
phase boundary dilution line (upper curve) and the L3/Li ihase boundary dilution line (lower
curve). The results for the dilution line well within the phase are represented by open triangles.
Also shown by dashed curves are the predictions from the model using ~c =

1.8kBT, the value

of the monolayer bending modulus which gives good agreement with the experimental results.

The data for the dilution lines along the phase boundaries are excellently fitted by quadratics
(the coefficients given in Table I), suggesting that the functional form for the forward scattering
intensity is that which we predicted from the model in equation (26). The only parameter which

we have adjusted to compare the predictions of the model with the experimental results is ~c,

and on an absolute scale we see very good agreement. The minor discrepancies between the

predicted and observed results could be explained by the missing contributions of fluctuations,
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Fig. 6. The results of the static fight scattering experiments. The squares correspond to the results

along the L3/L« phase boundary dilution line, the circles to those along the L3/Li phase boundary,
and the triangles to the dilution line well within the phase (see Fig. 3). Both solid

curves are quadratics
of best fit Dashed

curves
correspond to the predictions from the model for

~ =
1.8kBT.

entropy and Gaussian curvature. In any case, it is clear that including only the average

mean curvature contribution to the free energy allows us to successfully make a quantitative
prediction for the forward scattering intensity as a function of surfactant volume fraction.

Having only one free parameter in the model also allows us to make a prediction for the

bending modulus of the ACT bilayer

~cbiiaye~ "
2~c cs 3.6kBT (28)

So, what we have shown is that the model predicts the scattering intensity along the phase
boundaries of the sponge phase. It also correctly predicts a significant increase in the scatter-

ing intensity at constant surfactant volume fraction when the salt concentration is increased,
reinforcing the notion that a clear specification of the dilution line when using light scattering
experiments to test models of the sponge phase is crucial. The results strongly support the

argument that it is the average mean curvature which dominates the thermodynamics of the

phase.
Finally, no logarithmic correction to the scattering intensity scaling of the form given in

equation (25) is seen in these results. To confirm this, in Figure 7 we have plotted [AR(0)~]~~

vs, ln ~. On such a plot, equation (25) would predict a linear relationship, and this is clearly

not the observed result.

6. Discussion

The conclusion that we drew in the previous section, that we find no evidence for a logarithmic

correction to the scaling law for AR(o), is in clear disagreement with previous studies [9-11].
What are the possible reasons for this disagreement? In some cases, the previous experiments

have been performed on quaternary systems (surfactant, brine, oil and cosurfactant). These

systems have been the subject of related discussions regarding the possibility of critical points

appearing in the phase, such as the mooted symmetric to asymmetric sponge second-order

phase transition [29, 30]. These issues remain the subject of strong debate [31]. Clearly, the

presence of such critical points will have a strong effect on scattering data. Avoiding this
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Fig. 7. The results of Figure 6 plotted
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vs.

ln4l. Clearly, the relationship is not

linear along any dilution line.

complication is a good motivation for using a pseudc-binary system, where no such critical

points have been observed, to test the model. In fact, the scattering data of Figure 6 indicates

an absence of critical points of any kind in the region of our investigation.

Whilst not wishing to belabour the point, if the dilution line within the phase is not specified,
then in principle one could deduce a myriad of functional forms for the scattering intensity,
simply by altering the dilution line. This is clear from our experimental results, particularly if

one considers the data obtained from the line well within the phase. It is only with a careful

specification of the dilution line that any conclusions can be drawn about the scaling of the

fqrward scattering intensity.

Finally on this issue, we note, as outlined throughout this paper, that we have strong reason

to believe that the logarithmic term does not appear in the free energy of the sponge phase,
based upon the theoretical arguments presented originally in reference [4]. The experimental
data that we have obtained in support of that notion extends over the region ~

=
o.13 o.38.

This is a constraint imposed by the particular system chosen for the study. A future aim is to

further test the notion in the more dilute regime with another system, with the same criterion of

careful dilution-line specification. One definitive point can be made at this stage, however: we

have given strong proof from the light scattering experiments for the existence of the quintic
correction to the free energy density originally proposed in reference [4] over the range of

surfactant volume fractions considered. Moreover, the model remains successful in describing
the nature of the phase diagram well into the very dilute regime, in fact (referring to Fig. 2)
to surfactant volume fractions of about o.05. That is, we have shown that the logarithmic

correction to the free energy is unnecessary in describing any of the observed features of the

phase diagram, and that a free energy density of the generic form given in equation (2) is

sujJicient over all concentration regimes for doing so.

l&~e turn now to the promised discussion on the effects of fluctuations, Gaussian curvature

and entropy. Taking the last of these first, we have already argued that the entropy density
has a cubic scaling with ~. We may also apply those arguments to the scaling of the fluc-

tuation contribution to the free energy density, giving the same leading-order scaling form.

As Pieruschka et al. [8] have shown for the case of lamellae, there is also a
~~ correction to

this contribution in an expansion to higher orders. More can also be said about the Gaussian

curvature. There is a correction from ideal scaling for average Gaussian curvature density con-
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tribution to the free energy. This comes from the finite thickness of the monolayers composing
the bilayer. The average Gaussian curvature per unit cell of a bilayer structure modelled by

a periodic minimal surface is (K)u la~, where is the "lattice parameter" of the structure. The

lattice parameter can be related to the volume fraction of surfactant ma [32]

~
=

~~ l
+ ~~/~

j
(29)

° a

where ~l is a
(positive) dimensionless area-scaling constant given by the particular structure

of the sponge. Again, we assume that this applies approximately to the aperiodic minimal

surfaces appropriate to the L3 Phase. Inverting this equation in the limit of small volume

fractions gives

herefore we have a
quintic correction to ideal aling.

Hence we see nothing that will

the
qualitative

behaviour of the free energy density if we were to include Gaussian

curvature and entropy.
The scaling law

would
still be of the form

given
in equation (2), and

none of the major conclusions that we
have drawn so far would be altered. The

so any of the
observed experimental features of the

phase diagram and scattering data

captured by including only the
average

mean curvature ontribution to the sponge free energy

dicates that these other ffects are indeed secondary, and that the

7. Conclusion

In this paper, we have developed a model which we believe successfully accounts for the exper-

imentally observed features of the L3 (sponge) phase: its finite swelling and narrowness, the

observed sequence of phase transitions in its vicinity, and its light scattering behaviour. We

have predicted and shown experimentally with regards to the latter how the forward scatter-

ing intensity varies with salt concentration for the pseudc-binary system ACT-NaN03-water,

and emphasized the importance of specifying a dilution line within the phase when using light
scattering to test the model. The hypothesis that average mean curvature is the quantity that

controls the behaviour of the phase appears to be correct. Finally, the experimental results

indicate, over the range of surfactant volume fractions considered (~
=

o.13 o.38), that there

is no evidence for the appearance of the logarithmic correction to the free energy, previously
suggested by others to arise from renormalisation of the bending constants.
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