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Abstract, A clear and simple method to derive various intermediate Hamiltonians is pro-

posed. Several intermediate Hamiltonians usable for various purposes are
presented. The

new

intermediate Hamiltonians have the
same

properties as
the traditional effective Hamiltonians

but they should present better convergence properties, and should avoid any intruder state

problem P'

1. Introduction

Until recently, the predominant correlation methods: many-body perturbation theory (MBPT)

11, 2] configuration-interaction (CI) [3] and coupled-cluster theories (CC) [4] were applied

almost exclusively as single-reference based procedures. This is due in part to the increased

computational complexity of the multireference-based procedures. For MBPT and CC one

more reason is the requirement on the reference space to be complete yielding rather large
reference spaces.

Although one-dimensional MBPT or
CC have been shown to provide highly accurate ener-

gies and spectroscopic parameters, they are not universally applicable, particulary when exact

or near degeneracies are encountered. They are usually insufficient for potential surfaces in-

volving the dissociation of multiple bounds, and they are not ordinarily applicable to excited

states other than the lowest ones of each symmetry. A rigourous treatment of such problems

necessitates a multidimensional procedure. Quasidegenerate perturbation theory (QDPT) [5]

has been receiving increasing attention in recent years. It provides the perturbational ana-

logue of multireference configuration-interaction techniques (MRCI or
CIPSI) [6] and it may

be expected to provide faster convergence and more general applicability than single reference

perturbation expansions. The earliest applications of QDPT ii, 8] (and its CC analogues) were

all based on complete active spaces or complete model reference spaces. Such a reference space

(*)U.R-A. 505 du C.N-R-S.
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is a space where all configurations that can be generated by distributing the valence electrons

among the valence orbitals are included. In many cases such a model space may be unneces-

sarily large and leads to computational difficulties. To face these difficulties incomplete model

spaces have been advocated [9-13], where only the most strongly interacting configurations

are included and the remaining ones are treated by perturbation. Such a reference space has

a lower computational requirement and could reduce the intruder-state problem, when states

originating from the model space interfere strongly with states of the complementary space.

The QDPT methods face a dilemma: very often a large model space is required to represent
correctly the zeroth-order functions and at the same time a small model space is needed to

avoid the intruder-state problem and save computational time Although the incomplete model

space approach is obtaining several successes it leads to a reformulation of the theory and still

requires a large computational effort.

A method which should solve the above problems has been proposed by Malrieu et al. [14]
They claimed that the major difficulties with QDPT (and CC analogues) do not come from

the size of the model space but from the condition imposed to the methods, ma the effective

Hamiltonian, to give exact results for all the states of the model space. A much more reasonable

approach is to pursue only a subset of true solutions, the other ones being approximated or

neglected. This also leads to a new wave-operator, the sc-called intermediate wave operator.
Because some conditions on the effective Hamiltonian are relaxed the intermediate Hamiltonian

is not uniquely defined and several different forms can be formulated.

One particular form has been used several times by our group with very promising results

in difficult cases [15-17]. Another application with another intermediate Hamiltonian has been

published [18]. Intermediate Hamiltonian schemes in Fock-space, based on the open-shell
coupled-cluster formalism, have been proposed by Mukherjee [19] and Koch [20]. However, no

exhaustive theoretical presentation of the intermediate Hamiltonian concept has been presented

up to now. This is thus the aim of this article: to give a better theoretical foundation to the

intermediate Hamiltonians and to present different forms ~vhich can be adapted for different

problems. An effort is made to generalize the traditional QDPT to the concept, keeping as

much as possible of the structure of the standard approach. Obviously, the problem is very
complicated in its full generality, but it is found that new equations can be derived, which

show great similarity with the standard equations. Only the formal aspects of the method will

be discussed here. We expect to discuss their many-body realization in terms of diagrammatic
expansions in future contributions.

Very recently we received a preprint by Meissner et al. [21] whose purpose is also to generalize
the approach of Malrieu. Their method is based on effective Hamiltonians whereas ours is

based on wave operators but the results are very similar. However, to avoid the intruder

state problem Meissner et al. use a new iterative procedure which is not considered in this

work. Our opinion is that this new scheme should give excellent convergence properties to the

intermediate Hamiltonian perturbation theories.

2. Basic Formalism

2.i. THE MODEL SPACE. The concept of model space plays a central role in the theory of

effective Hamiltonians. It is a finite d-dimensional subspace Sm of the entire Hilbert space. Its

orthogonal complement is the outer space
S(. The orthogonal projection operators associated

with Sm and S(
are Pm and Qm, respectively:

dPr~=~lm)(ml Qn~=Lla)lal Pn~+Qn~=I 11)
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2.2. THE WAVE OPERATOR AND THE EFFECTIVE HAMILTONIAN. A wave operator fi is
defined by

~§~ = Q~§( (a
=

1, 2...d) (2)

where ~§~ are exact solutions of the Schr0dinger equation

and ~§( are the corresponding zeroth-order functions, confined to the model space. The latter

functions are eigenfunctions of an effective Hamiltonian

HeR@~I "
E~~§I, (4)

the eigenvalues being the corresponding exact energies. By combining equations (2), (3) and

(4), the basic equation relating H~~ and Q can be derived

Ha
=

QH~I is)

Many effective Hamiltonians can be derived from equation is). The simplest way is obtained

by multiplying equation is) by Pm on the left and on the right

H~i
=

(PmQPm)~~PmHQPm (6)

If, as usually done, the intermediate normalization is adopted,

PmQPm
=

Pm, (7)

equation (6) yields the usual Bloch effective Hamiltonian [22]

H~i
=

Pr~HQPr~ (8)

The intermediate normalization has the disadvantage, among many others [22, 23], that the

effective Hamiltonian (8) is non-Hermitian and the corresponding zeroth-order wavefunctions

~§a p ~§a (~)
0 n1

are non-orthogonal.
This can be avoided by using other normalizations of the zeroth-order functions. However,

the connection between different normalizations is rather well-documented [24, 25] and we shall

only consider the intermediate normalization, thus working in Bloch's scheme.

With this normalization it can be shown that the wave-operator satisfies the generalized
Bloch equation [26]

in, Ho)Pr~
=

(VQ QPr~VQ)Pr~ (io)

where the Hamiltonian has been partitioned into a zeroth-order Hamiltonian Ho and a pertur-

bation V.

This equation can be conveniently used to generate a perturbative expansion of the operator
Q. Expansion of both Q and H~i can be found in Lindgren [27].
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3. Intermediate Hamiltonians and Intermediate Wave-Operators

To the previous model space Sr~ considered in Section 2, we now add a second subspace, the so

called intermediate space noted S,, containing all the configurations strongly interacting with

Sr~but which are of no direct interest. The sum of Sr~ and S, defines our new model space of

dimension D. We shall not pursue all the D states emerging from the model space but only a

restricted number d < D states corresponding to the main model space Sr~. We thus have two

new projectors
P

=
Pr~ + Pi and

=
i P (ii)

is the projector on the new outer space. In order to keep the presentation clear, we shall

follow the same scheme as in the preceding paragraph. An intermediate wave operator R, is

defined such that

~§~ =

Rja (a
=

1, 2...d) (12)

where the ~§~ are d exact solutions of the Schr0dinger equation and ja the corresponding
zeroth-order functions belonging to the model space These functions are eigenfunctions of an

intermediate Hamiltonian:
HintP

"

E~p
a #

1, 2...d (13)

It should be noted that Hint acts in a space of dimension D > d.

The id's
are defined, as in the normal QDPT, as the projections of the exact functions ~§~

onto the model space.
ja

=
P~§~ a =

1, 2...d (14)

We are now looking for a relation similar to the relation (7) which was necessary for the

derivation of H~i (8) and the equation for Q (io). Unfortunately such a relation cannot be

obtained directly because the id's span a space of dimension D and we have only d relations

to define them. By combining equations (12) and (14) we obtain the new general relation

RP~§~
= ~§~ a =

1, 2...d, (is)

By using equation (2), the above equation can be transformed into the basic equation

RPQPm
=

QPm. (16)

This operator equation is true when it acts on the right in the main model space with projector
Pm. This relation can be rewritten as

RPr~ + RPzQPr~
=

QPr~ (ii)

RPr~
=

(i RP,)QPr~ (18)

This relation is the fundamental relation that will be used in this paper for deriving interme-

diate Hamiltonians. The relation does not give all the possible intermediate Hamiltonians but,

as we shall show, gives a large class of Hint closely related to the normal QDPT. In equation
(ii), the right hand side QPr~ is completely defined and thus if we give a priori a particular
form to RPz, RPr~ is completely defined by equation (ii). We shall continue to define R by

projecting equation (16) on the left onto the various parts of P and then on Q. The projection

on Pr~ gives
Pr~RPr~ + Pr~RPzQPr~

=
Pr~ (19)

and it seems convenient to choose Pr~RPz
=

o m
order to have

Pr~RPr~
=

Pr~ (20)
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multiplying equation (16) on the left by Pi gives

P,RPr~ + P,RP,QPr~
=

P,QPr~ (21)

As in the previous case, it seems convenient to choose PzRPr~
=

o yielding

PzRP~
= P~ (22)

These two conditions can be gathered into the normalization condition

PRP
=

P (23)

In the normal QDPT, this relation is a direct consequence of relation (9) whereas in our case

it is not compulsory. Multiplying both sides of equation (ii)
on the left by the projector on

the outer space gives
QRPr~ + QRPzQPr~

=
QQPr~ (24)

where tiRPz has to be defined in some way.
The choice of QRP~ can be based on several arguments such as:

.
computational difficulties;

.
Hermiticity of the resulting Hint

.
inclusion of some correlation to accelerate the convergence of Hintl

.
inclusion of some correlation in order to have the non-exact intermediate energies E~ and

intermediate functions R~§i not too far from the exact ones...

There are also other arguments such as the size-consistency of Hint but they are much more

difficult to specify In the next paragraph we shall analyze and present different possible choices

for R and the resulting H]~~s.

In the conventional QDPT the effective Hamiltonian is derived from the Bloch equation (5)
which is a natural result of equations (2-4). Such an equation cannot be obtained in our case,

at least if we want to keep equations defined on a projector P built from the unperturbed
projectors Pr~ and Pi.

Of course, an equation similar to equation (5) can be stated with the help of the perturbed
projector

PM
"

~ @11@~

HRiM
=

RH,ntPM

a =
1, 2, ...d Pi

=
P PM (25)

The j~~'s
are the biorthogonal of the j[s. But the use of the unknown projectors PM and Pi

leads to a quite different formulation [20, 28]. We shall postulate the existence of a pseudo-
Bloch effective Hamiltonian

Hint
=

PHRP. (26)

It is easy to see that this operator gives d exact eigenvalues and d eigenvectors which are the

projections upon the model space of the exact vectors. On the other hand, nothing can be said

about the other solutions. This effective Hamiltonian cannot be derived from the equation

HRli'
=

RHintP (27)

which is satisfied only when both its sides act on the d projected exact states.
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4. Different Choices of R

We have seen that with various choices of QRPz the pseudowave operator R is solution of

equations (16, 17). We shall look at different choices for tiRPz.

4.I. THE MINIMAL CHOICE. The most obvious and simplest choice for QRP~ in equation
(24) is QRP~

=
o giving

QRP
=

QQPr~ (28)

and thus since PRP
=

P

R
=

P + QQPr~. (29)

Multiplying equation (28) on the left then the same equation on the right by Ho and then

subtracting both equations and using equation (io) leads to

Q[R, Ho)Pm
=

Q[Q, Ho)Pm
=

Q(VQ QVQ)Pm (30)

and

Hint
=

PHP + PVQQPm (31)

This Hamiltonian is strongly non-Hermitian because the perturbation acts only, on the right,
in the main model space.

4.1.1. Perturbational 7Featment If this Intermediate Hamiltonian is built by perturbation

care must be taken in the choice of the intermediate space. If we assume that a complete set

of unperturbed orthonormal eigenfunctions (#~) and corresponding eigenvalues are available

jf ja j~a ja ja jb) § j~~)
0 a,b,

then the first and second-order expressions for the R operator are

tiR(~~Pm
= ~

~
VPm (33a)

o
Ho

tiR(~~Pm= ~ ~~~
+

~~~~ ~ PmVj
Pm (33b)

Eo Ho Eo Ho Eo Ho Eo Ho

In the two above expressions it has been assumed that Ho is degenerate in the main model

space with all its eigenvalues equal to Eo. For the first-order term no special problem can

occur but at the second-order some dangerous terms appear. The second term in the right
hand side of equation (33b) gives large contributions if the intermediate configurations are

strongly coupled to those of the main model space. This will make the perturbation expansion
quite unreliable and thus this intermediate Hamiltonian should be used only to second-order.

4.1.2. Alternative ~eatment. In order to avoid the problem of the coupling between the

main and the intermediate space, one should isolate the PzQPr~ part of Q. Let us rewrite

a
=

p,+p~ap,+x

=
Pap, + X (34)

With this notation equation (30) can be written as

Q(R, Ho)Pr~
=

Q[Q, Ho)Pr~
=

Q(i X)V(i + X)PQPr~. (35)
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The second term P Q Pm, which could be divergent with a perturbational treatment, can

be obtained by diagonalizing the intermediate Harniltonian. With the d exact zeroth-order
eigenfunctions and their biorthogonals

we can obtain PzQPm as

d

PzaPm
=

~j Pi il~)(ill~ Pm (36)
a=i

In this way the most dangerous terms are treated to infinite order whereas the normal terms

are included by usual perturbational methods and thus can be approximated at a certain order.

Consider, for instance, a model space of single and double configuration interaction (SDCI)
type where the fundamental state defines the main model space and all single and double

excitations define the intermediate space. In such a case equation (30) gives

R°
=

P H)/~~ =
PVP

=
AESDCI

Rl~~
=

o H)j/
=

o

R(~)
= ~

~

~
V~

~

~
VPm H)11

=
PV~ ~

V
~

VPr~ (37)
o o o o o

Ho Eo Ho

where the projector ti is generated by triple and quadruple excitations and Pi by single and

double excitations. The fact that R(~) is zero shows that the SDCI energy is correct to third-

order. The term R(2) shows that the SDCI wave function should be corrected at second order,
the effective Hamiltonian at third order and hence the energy (diagonalized) at fourth order.

By using equation (35) instead of equation (30)
some higher orders can easily be included.

4.2. AN EXTENDED TREATMENT. The previous choice of QRPz provided a very simple
intermediate Hamiltonian but it could be more useful, in view of building more Hermitian

H]~~s or having transferable effective interactions, to include some interactions between the

intermediate states and the outer states, hence choosing QRPz # o. Equation (24) can be

recast in commutator form. This is very convenient since it ensures the invariance of the

wave-operator upon a translation in energy of the diagonal energies of Ho-

Q[R, Ho)Pr~
=

Q[Q, Ho)Pr~ Q[RPzQ, Ho)Pr~ (38)

Once QRPz has been chosen, QRPm is determined in a unique way by equation (38). We shall

present two ways of chosing the QRPz part. The first one will yield a new original intermediate

Hamiltonian, the second one will generalize the approach proposed by Malrieu et al. in their

first presentation of the intermediate Hamiltonian approach.

a) In the same spirit, as in the previous paragraph, we shall isolate the terms containing
PzQPm. For this purpose, by using equation (io), equation (38) can be written in the form

Q[R, Ho)Pm
=

Q(V0 0Pr~V0)Pm + Q(VPzQ QPmVPzQ)Pm

-QRP~ in, Ho)Pr~ Q(RPz, Ho)QPr~
=

A + B + C + D (39)

where

a
=

(p, + Q)a (40)

A
=

Q(Vfl 0Pr~Vfl)Pr~

B
=

Q(VPzQ fIPmVPzQ)Pm

C
=

-QRPz[Q,Ho)Pm

D
=

-Q[RP~,Ho]QPr~
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One particular solution is to put

Q[R, Ho)Pr~
=

A + C (41)

which implies that the condition B + D
=

o must also be satisfied. By this way, equation (39)
is transformed into a system of two equations that will allow a unique definition of QRPr~ and

QRP~.

Q[R, Ho)Pr~
=

Q(Vfl fIPr~VQ)Pr~ tiRP~[Q, Ho)Pr~

Q[R,Ho)P~QPr~
=

Q(V-fIPr~V)P~QPr~ (42)

The second equation (42) does not define QRP~ in a unique way. This can be done by trans-

forming (42) into:

Q[R, Ho)Pr~
=

Q(V0 OPr~VOPr~ QRPz[Q, Ho)Pr~

Q[R,Ho)Pz
=

Q(V-fIPr~V)P~ (43)

It can immediately be checked that (43) implies (42) by multiplying both sides of the second

equation (42) on the right by QPr~.Up to first order R(~) is equivalent to the wave operator

given by the standard QDPT on the whole model space. This means that the second-order

Hamiltonians are also equivalent and that information on the intermediate states begins to be

lost at the third-order only.
Unfortunately, in the case of intruder states, these equations have only a formal interest because

the second equation (43) will diverge in the same way as the QDPT would do. However, it is

possible to define a new
zeroth-order Hamiltonian such as

ho
=

Ho + Pi WPz

=
(Pn~ + Q)Ho +

~j ii i) fi (44)

where W is a diagonal operator changing the energies of the intermediate space.

Q[R, Ho)Pr~
=

Q(V0 flPmvfl)Pm QRP~[Q, fro]Pm

Q(R,fro)P~
=

Q(V-flPmV)P~ (45)

V in equation (45) has not been modified by equation (44). It should be noted that W does

not act as a shifting operator because it does not change the partitionning of H into Ho
and V in the main model space. No particular care is required in the choice of W and thus

any W avoiding the intruder states would be convenient. However, the final results for the

intermediate states and only for them would depend strongly on this choice. Before looking at

some particular cases we would like to summarize our approach.

I) we have defined a pseudo wave operator R acting in a model space containing the main

and intermediate states [Eq. (12)];

it) a wave operator Q has been introduced to discriminate between the main and intermediate

states [Eq. (16)];

iii) The RP~ part of R which is a priori arbitrary in the theory of intermediate Hamiltonians

is chosen in such a way that it cancels the dangerous terms of equation (39) associated with

the interaction between the intermediate states and the model state;

iv) a special shift on the intermediate states is introduced in order to avoid the intruder

state problem in equations (44, 45).
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Further simplifications are obtained if the main model space is degenerate to the value Eo.
In this case we have:

QRPm
=

~
((Vfl flPmV0)Pm ~j(Eo fz)R i)(i QPm)

Eo Ho
~

Q[R, ko)P~
=

Q(V fIPr~V)Pz (46)

If W is chosen in such a way that all intermediate energies Ez are moved to the energy Eo of

the main model space, expression (46) reduces to

QRPr~
=

~ (V0 0Pr~V0)Pr~
Eo Ho

QRPz
=

~
(V fIPr~V)P~ (47)

Eo Ho

The intermediate Hamiltonian obtained from this wave operator is Hermitian up to the second-

order and should give much better results than the previous H,nt. Furthermore, if one is

concerned with the construction of transferable effective Hamiltonians, such an intermediate

Hamiltonian is well-suited because it ensures a continuity of the effective operators around

avoided crossings.

If we take again the example of an SDCI model space with only the ground state in the main

model space, the expansions of R and H,nt are the following:

R(°)
=

P H)11
=

PVP

R~~)Pr~
=

o; R(~)P~
= ~

~

~
VPz H)j/

=
PV

~

~

~
VPz

o o o.- o

R~~)
=

o H)11 =
o (48)

Already at second-order H,nt contains corrections but the next corrections appear only at the

fourth-order. One can see in this example that this H,nt is totally different from the previous

one. Though in both cases one includes corrections from the tri- and quadri-excitations, their

numbers are quite different; D in the previous case, D(D i) in this case. However, at first

order, Hint is in both cases a very sparse matrix where most of the terms are zero. The

corrections towards the second order will fill up the whole matrix representing Hint which

could be inconvenient.

b) In both schemes presented above, a major defect was that the convergence rate of R was

solely determined by Q. Knowing that standard QDPT has a very low (if any) convergence

rate, this is a bad feature which should be avoided as much as possible. For this purpose we

return to equation (38) and use equation (30).

Q[R, Ho)Pr~
=

Q(V Q QPr~VQ)Pr~ Q(RPzQ, Ho)Pr~ (49)

In the first term on the right-hand side of equation (49) some terms QPr~ can be replaced by

RPr~ + RP~QPr~ (see Eq. (17)). By this means two results can be obtained

.
equation (49) becomes approximately an equation giving R as a function of R; this should

accelerate the convergence;

.
the terms PzQPr~ will be pushed to the next order.
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We shall apply this method to the first and third QPr~ in equation (49) and the other cases

will be discussed later on.

This transformation yields

Q[R, Ho]Pr~
=

Q(VR QPr~VR)Pr~ + Q(VRPz QPr~VRPz)QPr~

-QRPz[Q, Ho)Pr~ ti(RPz, HOI QPr~. (So)

We can see that this equation, made up of four terms, has the same structure as equation (39)
of the previous paragraph. We shall adopt the same method as previously by adding the first

and third terms and by cancelling the second and fourth ones.

Q(R,Ho)Pr~
=

Q(VR-QPr~VR)Pr~-QRPz[Q,Ho)Pr~

Q[R,Ho]P~
=

Q(VR-QPr~VR)Pz (51)

We have again a system of two equations giving QRPr~ and QRPz as a function of R. However

the left-hand sides of these equations are still suffering from the intruder-state problem in the

second equation (37) and hence the same shift method used in the previous paragraph has

to be applied. The introduction of the transformed zero-order Hamiltonian of equation (44)
allows us to pass from equation (51) to

Q[R, ko)Pr~
=

Q(VR QPr~VR)Pr~ RPz in, ko)Pr~

Q[R,ko)P~
=

Q(VR-QPr~VR)P~ (52)

This system represents the most direct generalization of the intermediate Hamiltonian scheme

presented by Malrieu et al. which assumed degeneracy within the main model space. It is

valid for any model space, degenerate or not, in the main or intermediate model space. In

the simplest case, when the main model space is degenerate, one can always choose the shift

operator W in such a way that all the intermediate states become degenerate with the main

model space. In such a case RP~[Q, ko)Pm
=

o and the two equations (52) can be merged into

the following equation

QRP
=

~
(VR QPmVR)P (53)

Eo Ho

where Eo is the energy in the main model space. This is the relation proposed in the original
formulation of the theory by Malrieu et al. It was derived in a very different way and Eo was

presented as a
free paramete~ whereas in our formulation Eo is the energy of the main model

space.

If we return to our SDCI example we have with this system of equations the following
expansion

R~°)
=

P H~~)
=

PVP
=

AESDCI

R~~)= ~
VPz H~$~=PV ~

VPz
Eo Ho ~~' Eo Ho

R~~)= ~
V

~
VP~ H~$~=PV ~

V
~

VPz (54)
Eo Ho Eo Ho '~' Eo Ho Eo Ho

Comparison with equation (48) shows that this scheme gives a correction at third-order on the

intermediate subspace of the intermediate Hamiltonian.

Let us return to the most general case, in which the transformation of QPm in equation (49)

can be applied to any QPr~. This leads to several systems of equations for QRPr~ and QRPz
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looking like equations (51) or (53). All are equivalent at first order but differ in third or fourth

order. When the main model space is degenerate one can use the very general equation

QRP
=

~
(VX YVZ) (55)

Eo Ho

where two of the three operators X, Y and Z can be either Q or R.

5. Conclusion

This work presents several classes of effective operators which generalize the wave-operator and

effective Hamiltonian of the traditional QDPT. We have kept the Bloch formalism as much as

possible while the usual condition that all the solutions of the H~i have to be exact has been

relaxed. Since there are several ways to get approximate solutions, there are many possibilities
for constructing intermediate Hamiltonians. We have presented a systematic method to obtain

intermediate Hamiltonians ranging from a very simple and economical one where almost no

corrections are introduced for the intermediate states, to more sophisticated ones, one of them

being the original H,nt Proposed by Malrieu et al. [14].
Concerning the application of the intermediate Hamiltonian to Quantum Chemistry one should

admit that these intermediate Hamiltonians have only a formal or mathematical interest. On

the one hand, the use of H,nt to high perturbational order would imply the same amount of

work as a simple diagonalization and surely will not be faster than a standard Davidson scheme.

On the other hand the use of the second or third order H,nt in many-body problems would not

result in any improvement because none of the presented Hint have a correct size-consistency

or are separable. Traditional QDPT was separable However, Malrieu et al. have shown that,
if one leaves the order by order concept and instead, for a given order, includes a little part
of the next order, size-consistency could be restored. This will be published in a forthcoming

paper.
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