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Abstract. We discuss various mechanisms for viscous dissipation
m

the linear response to

oscillatory shear of incompressible foams (such
as

biliquid foams
or dense emulsions). These

include viscous flow of liquid in films and plateau borders; intrinsic viscosity of the surfactant

layers; and diffusion resistance Marangoni-type and marginal regeneration mechanisms
are

considered for the transport of surfactant. We predict (on the basis of typical parameters for

bihquid foams) that the zero shear viscosity is usually dominated by the intrinsic dilational

viscosity of the surfactant monolayers, though other forms of dissipation may be important
m

certain systems. We give a
preliminary analysis of the frequency dependent rheology arising

from
an

interplay between these dissipation processes and elastic storage mechanisms

1, Introduction

Foams and dense emulsions have nontrivial flow properties. They are viscoelastic solids, charac-

terized in linear shear response by a complex modulus G* (uJ) whose real part, G'(uJ) approaches

a limiting value at low frequencies [1-3]. There are several theoretical models for calculating
this elastic modulus G e G'(0), which is generally governed by the surface tension of films

a

and droplet size R, scaling as G
r-

a/R for high volume fractions of the included phase [4, 5].

At the same time, a nontrivial loss modulus, G"(uJ)
= uJJ~(uJ) is observed in experiment; this is

a weak function of frequency uJ, and often about 10% of G'
over a wide frequency band [1-3].

This suggests the presence of a spectrum of viscoelastic relaxation modes extending to very low

frequencies (sometimes far below I Hz (3]). At even lower frequencies we expect ion general
grounds) that J~(uJ) should approach a constant value J~(0), the zero shear viscosity.

Previous theoretical studies of foam rheology have mainly focussed on rigorous solution of

fluid mechanical equations in several asymptotic (often nonlinear) flow regimes (5-9]. These

calculations, though valuable, do not provide a clear overview of the various sources of dissipa-
tion in linear response to infinitessimal deformations. A more phenomenological approach has

sometimes been taken (10, iii, in which the film is a structureless two-dimensional viscoelastic

continuum.

In this work we take a microscopic approach and try to examine qualitatively various mech-

anisms for dissipation in foams, without exact calculation. The discussion is nonetheless quite

delicate and a careful comparison is made of the different mechanisms in both dry and wet
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Fig 1. Dry foam (solid line) and wet foam (dashed line).

foams. As well as estimating the resulting contributions to the viscosity
J~ =

J~(0), this allows

us to make some qualitative remarks about frequency-dependent effects. Since we are not

attempting exact solutions of specific models but use a more qualitative approach, most of

our discussion will be applicable to both ordered and disordered foams. An additional mecha-

nism which only appears in a disordered foam in the linear response regime will be discussed

explicitly at the end of Section 3.2.

For simplicity we consider only incompressible foams so that we can neglect any bulk dila-

tion effects and the rheology is primarily due to interfacial phenomena. Dense emulsions are

always virtually incompressible in this sense. Gas/liquid foams can probably also be consid-

ered incompressible under shear if the Laplace pressure (I.e. difference in pressure between

the two phases) is much smaller than the pressure of the included phase. We also assume the

surfactant is soluble only in the continuous phase, which we will refer to for simplicity as water

(and the included phase as oil). Further we assume the volume fraction of the oil phase is close

to unity. We neglect fluid inertia throughout, and assume that in the linear response regime,
the deformation is small enough to leave the topology of the foam unchanged. (For disordered

foams, this may be dangerous; we return to this point at the end of the paper.) When numeri-

cal values are needed, we will mainly use those for small-cell biliquid foams [12-14] which have

droplet radii R and film lengths L in the range 0.1-10 ~tm, with film thicknesses d of order 5-20

nm
and plateau border radii

r
of order 100 nm The surface tension is about 10~~ N m~l and

the viscosity 10~~ kg m~l s~l. These foams (in common with most others)
are wet, but the

dry foam limit (r ct
d) is still of interest as a limiting case (Fig. 1).

For the wet case, more conventional foam size parameters (which we take as R ct 100 ~tm,

r m 10 ~tm, d ct 50 nm) are also discussed. (For even larger cell foams inertial effects may

become important.) In discussing wet foams, we assume that there is enough surfactant in

the plateau borders for the system to effectively be held at constant chemical potential. The

breakdown of this assumption signifies an intermediate regime between wet and dry cases.

In Section 2 we list various sources of dissipation and elasticity, defining the parameters

which control their magnitudes. Some of these mechanisms also arise in problems of foam

drainage, as discussed in the review of Ivanov and Dimitrov [15]. In Section 3, we consider

dissipation in dry foams in which the plateau borders occupy negligible volume; in Section

4, wet foams are considered. Section 5 contains a
discussion of relaxation modes and their

corresponding frequencies; Section 6 is a summary of our conclusions.
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2. Loss and Storage Mechanisms

2.I. FLUID ViscosiTY. The deformation of a foam sets up flows in the fluid contained in

the oil droplets, the plateau borders, and the thin films. For a bulk shear rate I, the oil phase
of viscosity

J~~
will contribute a dissipation per unit volume of the foam of order

Tb
ct J~~i~ II)

since the local shear rate within a droplet is similar to that of the foam itself. (We
assume the

viscosity
J~~

does not greatly exceed that of the water phase, J~w; recall that the droplet volume

fraction is close to unity). In the borders and thin films, where the fluid has viscosity J~w, there

is a local dissipation
Tb ct J~w(i7u)~ (2)

which must be integrated over the water region within a unit volume (large enough to contain

many droplets). Here Vu stands for the local shear gradient (recall that the fluid is incom-

pressible), this is often much larger than the bulk average value, I, since the local flow tends

to be amplified by geometrical factors (see Sects. 3 and 4).

2.2. DiffusioN RESISTANCE. An applied deformation may set up gradients in the sur-

factant concentration c, for example by stretching one film and compressing another. The

resulting differences in chemical potential can drive a diffusive flux j which, like the flow of

charge carriers through a resistor, generates dissipation. The entropy production then obeys

[16]

~~ ~ ~c~~ ~~~

which must be integrated over the water volume; for an ideal solution c and D are the

(monomer) concentration and diffusion constant. (For charged surfactant without salt, D

should be the appropriate collective diffusivity.) In an aggregated micellar system, if the

micellization/demicellization is fast to reach local equilibrium, we may identify as usual an ef-

fective diffusion constant D
=

£~ n~D(n)c(n)/ £~ n~c(n) 11?, 18] where n is the aggregation
number, c(n) the corresponding number density, and Din) the diffusion constant of an aggre-

gate. The diffusion of large aggregates, although slower, is less dissipative than the molecular

diffusion of surfactants and this means the effective diffusion constant cannot be used directly

in (3). The correct entropy production is found instead by replacing Dc in the denominator

of (3) by the expression £~ n~D(n)c(n). For simplicity we will normally assume parameters

close to or below the critical micelle concentration so that this complication does not arise.

However, even a modest micellization (say half the total material in micelles) can lead to a

much decreased diffusion resistance.

Diffusive transport could cause a nontrivial relaxation spectrum at frequencies above the

inverse diffusion time, UJD l~
D/p~, where p is the distance over which surfactant must be

moved. In principle this could be as large as the droplet size R, giving (for 10 ~tm droplets)

a relaxation frequency in the 1-10 Hz range. This would be a good candidate for the slow

relaxations observed in experiment. However, we shall see in Sections 3 and 4 that this very

slow process can be bypassed by a Marangoni-type effect.

2.3. INTRINSIC FILM ViscosiTiEs. A surfactant monolayer is characterized by intrinsic

surface shear and dilational viscosities ~t and ~; the dissipation is (ignoring prefactors)

T8 t

/
/~(is)~ + ~(V u)~ (4)
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where the integral is over the monolayer surface in a unit volume, is is the 2-D shear rate

in the layer and i7
u a

2-D dilation rate (which need not vanish even if the bulk fluids are

incompressible) (see for example p. 33 of [19]). There is little ambiguity about the definition

of ~t and experimental estimates of it 11 10~~-10~6 kg s~l for SDS under various conditions

[20] are
presumably reliable [20-22]. The intrinsic dilational viscosity ~ is harder to measure,

however, and literature values are somewhat scattered (ct 10~~-10~~ kg s~l) [22, 23]. This

may be because the process of dilating the film interacts nontrivially with the surfactant in

the adjacent solution; for example the measured dissipation then includes part of the diffusion

resistance considered separately above.

It is convenient to define an intrinsic dilational viscosity ~N as that relating to dilation with

no ezchange of surfactant to the adjacent solution (I.e., at fixed total number N of molecules

adsorbed). However, it will also prove useful to consider two further dilational viscosities.

The first is ~z, defined at fixed chemical potential of surfactant (I.e., fixed area per adsorbed

molecule L), and relevant to situations of fast exchange with a bulk solvent. Any diffusion

resistance is excluded, but dissipation associated with the adsorption/desorption process for

surfactant in the immediate neighbourhood of the surfactant layer (presumed fast) is included

in this definition.

The second, ~B, is the dilational viscosity of a surface comprising one half of a thin bilayer.
Here neither N nor L is fixed; instead one has a fixed composition of the bilayer as a whole,
which determines a certain adsorption isotherm for the dependence of the local chemical po-
tential on the dilation. (For very thin bilayers, ~B should approach ~N.) An experimental

measurement of the dilational viscosity 2~B for
a bilayer will generally include some diffusion

resistance (due to transport of surfactant from the centre of the bilayer to the two surfaces)
however, unless the surfactant is very insoluble this is likely to be a small contribution, since

the distance involved is so short. In what follows we assume that this diffusion across a bilayer
is rapid, and the associated dissipation negligible.

2.4. FILM ELASTICITY. The mechanisms considered so far are purely dissipative. Mechan-

ical energy is however stored in the films, and this is the origin of the elastic modulus G'(uJ)
of the foam. The free energy change bF of a piece of surface of whose area A is increased by
bA obeys

bF/A
= a

bA/A + E(bA/A)~ (5)

where
a

is the equilibrium surface tension and E is the Gibbs elasticity. As with ~, we can

formally distinguish three values of the Gibbs elasticity. The first,

~~ 0~~r ~~~

(with r
=

N/A) is the usual definition at fixed adsorbed number which is of order 10~~ Nm~l

for SDS [22, 24], whereas Ez is that at fixed chemical potential (I.e., for a surface in contact

with a large reservoir); this vanishes identically. Finally, EB can be defined, by analogy with

~B, as the value pertaining to bilayer conditions; this obeys

~~ ~~ l~~il~
~

~~~

where the subscript denotes that the composition of the bilayer is held fixed. (The result is

obtained from the definition, which follows from (5), that EB
"

A(0~F/0A~)B.) Note that

EB vanishes in the limit of a thick bilayer which acts as a perfect reservoir.
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At zero frequency, per unit volume one has a stored free energy F ct
Gi~ where i is the

strain and G e G'(0)
ct

a/R. This arises purely from the first term m (5); the fractional area

change in the system is of order i~ since there can be no linear term if the resting state is in

equilibrium.
In a high frequency measurement, the dilation of individual regions of surfactant monolayer

will vary from place to place, and hence so will the surface area per head L. Locally, in a

step strain for example, individual films have fractional changes in area of order i, with a

signed coefficient that is orientation dependent and vanishes on average to linear order in i;
however the modulus could be higher than G'(0) due to the fact that the area increment is

not optimized globally. At high frequency, when the value of surface tension varies locally, the

Gibbs elasticity term in (5) can also contribute to order12. Accordingly, the stored elastic

energy is higher than in equilibrium, and G'(uJ) will be an increasing function of frequency.
Elastic energy can be stored also by varying the film thickness, so that work is done by

or against the disjoining pressure II between and the hydrostatic pressure within droplets
(these balance in equilibrium). The corresponding modulus is of order (d2/R)011/0d; it can

be estimated using models for the interactions (van der Waals, Coulomb, etc.) in the films.

This contribution is generally negligible for a wet foam (25j. However, for a dry foam it can

be significant. Indeed, assuming that d0II/0d
ct II, it is of order IId/R, where the Laplace

condition applied to the plateau border regions gives II ct
a/r. For a dry foam r ct d, and

so the modulus arising from film compression is of order a/R, I-e-, comparable to that from

changes in film area. (It could even be larger in the extreme dry limit of
r « d which we do

not consider further.)

2.5. FURTHER COMMENTS.. In principle, of course, at very high frequencies the intrinsic

film viscosities (Sect. 2.3) and Gibbs elasticity (Sect. 2.4) must merge into a single viscoelastic

behaviour. However, we expect this to occur at a frequency associated with molecular relax-

ation within the film which should be much higher than any connected with the various other

processes of interest here. Therefore we treat the Gibbs elasticity EN, surface shear viscosity

/t, and surface dilational viscosities JON, Jcz as frequency independent. The same can be done in

practice for EB and NE, though these involve contributions from diffusive transport between

the centre and edges of a bilayer: for bilayers of lo nm
thickness, this would lead to diffu-

sive relaxation frequencies in the high MHz range, far above those of interest in rheologjcal
experiments.

3. Dissipation in Dry Foams

If a dry foam is subjected to oscillatory shear (of infinitesimal amplitude), there is at low

frequency a certain entropy production which can be calculated by imagining the strain rate

to be constant. As the foam is deformed, some films are stretched and others compressed at

(fractional) rates of order I. This process generates an intrinsic entropy production controlled

by ~B, considered in Section 3.3 below. But in addition, to prevent accumulation of the

continous phase fluid (which lies within the films) and of surfactant, there must be fluxes of

each species from the regions of compression to those of stretching. The driving force for the

surfactant current is differential expansion of the surfactant bilayers; its strength depends on the

Gibbs elasticity EB. The driving force for equilibration of film thickness (fluid transport) gives

a comparable modulus contribution, and arises from disjoining pressure changes as discussed

above. Each flux generates a certain dissipation, which we now estimate. Since we consider

only linear response, when more than one mechanism is able to relax the same quantity, the

physical one will be that of least dissipation [26].
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d

Fig. 2. Poiseuille flow profile within
a stationary bilayer (bold lines) of thickness d

3.I. FLUID TRANSPORT. Fluid transport within the films requires local velocity gradients
of order Vu

r-

iR/d. This scaling follows from considering a Poiseuille-type flow within a

bilayer whose surfaces are stationary (Fig. 2). In practice, the surfactant monolayers will

move also at a rate that depends on the interfacial stresses, but so long as this is significantly
different from the flow velocity in the bilayer midplane, the scaling of the dissipation rate per

unit volume of foam is unchanged:

~~ ~ ~~ ~~~ ~~~

This is much larger than that contributed by fluid flow within the oil droplets (we assume, as

stated previously, that
J~~

is not too large compared to J~w).

3.2. SURFACTANT TRANSPORT. As mentioned above, Poiseuille-type flow of the fluid en-

trains motion of the monolayers; it also causes convection of the dissolved surfactant. Both

will contribute to the surfactant current; however, this will not in general give the correct

surfactant transport to maintain the steady state. Therefore a second process, with a different

ratio of surfactant to fluid transport, is also required.
One possibility is the diffusive motion of surfactant through the fluid in the centre of the

films. (We assume that the local equilibration between the fluid and its adjacent monolayers
is fast.) To maintain a differential dilation rate of order I between two neighbouring films, the

local surfactant current density j within the fluid of the film (over and above that provided by
the Poiseuille-type flow) obeys

J m

)I
19)

This arises as follows: an area A of film expands or contracts at a rate Ji
ct §A, resulting

in a source or sink of surfactant molecules AIL. IL is the area per molecule.) This must be

balanced by a divergence term of order Ad i7 j. The divergence V j is essentially the current

gradient in the plane of the film, which is everywhere of order j /R. The resulting dissipation
(see (3)) obeys

~~ ~c~~ d~~2?~ ~~~~

To this must be added the intrinsic contribution from steady dilation of the monolayers com-

prising the film surfaces; this dilation, of order I everywhere, occurs at constant composition
of the local bilayer and gives a dissipation ~Bi~ Per unit area [27]. The result can be written

Tbct~~Zi~+I
Ill)

d # R
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where j
=

DcJ~wL~ IT. For aggregated species j has no particular significance and can be large

or small compared to unity. However for nonaggregated species j is, to within a prefactor, the

volume fraction # of surfactant; typically (e.g., for SDS) j
ct 0.I#. The dissipation in (10) can

thus be very large at low surfactant concentrations; for example, in SDS close to but below

the CMC ii
m 10~~) it is of order 10~ times that from fluid transport (8). This suggests that

another, less dissipative, mechanism for surfactant transport will dominate, if it exists.

Such a mechanism is provided by the motion of surfactant molecules in the monolayers
themselves (as opposed to those dissolved in the water films) in response to the differences

in surface concentration that arise. There are two contributions to this motion: diffusion of

molecules within the monolayer, and a Marangoni process [21, 28]. Surface diffusion (with
surface diffusion constant Ds as usually defined [28] occurs without momentum transport in

the monolayer; it therefore requires local backflow of fluid, which occurs in small regions (whose
size is of order the hydrodynamic radius a ct T/J~wDs of a surfactant) around each molecule.

This backflow leads to fluid dissipation which can also be viewed as a diffusion resistance; the

entropy production is given by an expression similar to equation (3) as

~~ ~
Tr rR

~~ ~~~~

where js is the surface current density, and the factor 1/R
comes from the area to volume

ratio. (The factor EN/Tr arises from the dependence of the chemical potential on surface

concentration r and is unity in the ideal gas limit, r
-

0.) In contrast, the Marangoni effect

consists of surfactant transport by convection of the adjacent fluid which moves in response

to a surface tension gradient. Alternatively one can view it as a coherent motion of the

surfactant monolayer in response to a concentration gradient, but now this motion entrains

the neighbouring fluid and momentum balance is not local to the monolayer. (In smectic liquid
crystals this would be referred to as a collective diffusion which is responsible for the peristaltic
mode (29, 30].) As shown below, the corresponding entropy production is of order

~~ " r~id~~ ~~~~

Comparison with 11 2) allows us to identify a characteristic length ~ m
(Tr/ EN )L la. For d > ~,

the dissipation from the Marangoni process is lower, and therefore this occurs in preference to

the surface diffusion. For typical dense monolayers, ~ is a molecular length it nm), so we

assume from now on that surface diffusion can be neglected.
As sho,vn in Figure 3, the Marangoni motion requires adjacent monolayers, separated by a

fluid film of thickness d, to be moving in opposite directions with velocities of order Ri. The

flow pattern is too complicated to work out in detail, but typically establishes shear gradients
of order Vu m

iR/d in the film; the dissipation from this motioli is then the same as for fluid

transport. (Writing this in terms of the surface current js m rRi leads to Eq. (13) above.)
There is also a dissipation from the stretching or contraction of the film surfaces as they move

through the system. The total dissipation is therefore of order

Ti t ilw (i~ +
ji~ (14)

This mechanism is able to relax the surface coverage within any given droplet. In an ordered

foam, all droplets have the same area as each other, both before and after shear, so that

complete relaxation is possible. In principle, however, relaxation of a disordered foam may

also require transport from one droplet to another. For soluble surfactant, the Marangom

process can combine with diffusion over very short distances (of order the bilayer thickness d)

to achieve this effect at a minimal further cost in dissipation.
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Fig. 3 Marangoni motion in a foam under shear requires some adjacent monolayers to move in

opposite directions (as indicated by the bold arrows).

3.3. ViscosiTY. The total dissipation rate from the currents of fluid and surfactant, under

low frequency shear (of infinitesimal amplitude), will be the sum of two contributions; one

scaling as (8) and another which is the lesser of (11) and (14). In either case, the overall

contribution to the viscosity of the foam is of order ~JwR Id + ~B/R. Hence for the dry foam

we estimate the shear viscosity (ingnoring prefactors) as

This result is similar to that for the bulk dilational viscosity of a
dry foam undergoing a

uniform volume expansion as calculated in some detail by Edwards et al. (p. 363 of Ref. [19]).
However, those authors neglect the second term since it is formally negligible in the limit of

small d. Although definitive values of ~B (defined for a bilayer)
are not available, published

estimates of dilational viscosities are of order 10~5 kg s~l, which means that in practice, for a

small-cell bihquid foam, the second term is typically of order 10~ -10~~Jw and should dominate

over the first.

4. Dissipation in Wet Foams

We now turn to the case of wet foams, which differ from the dry case in that plateau borders

are present at the edges where thin films meet. These serve as reservoirs for both water

and surfactant, thereby altering the dynamics of the foam (Note also that the borders form

a connected, three dimensional network of pores which are wider than the thickness of the

adjoining films As mentioned in Section I, we assume that the reservoirs are large enough for

the surfactant monolayers to deform at constant chemical potential. This requires in effect that

there is more surfactant dissolved in the water at the borders than is present in the monolayers.

Although this will be true for macroscopic borders, there should also be an intermediate regime
where

r » d (so the foam is not dry) and yet the surfactant reservoirs contain only a minority
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Fig 4. Marginal regeneration (MR) process, allowing for finite film thickness d. In this case, the

plateau border
is

stretched. Stretching
is concentrated in a region of length p and viscous dissipation

takes place only in the "mouth" of the film. In MR, the stretched part of the monolayer acts as the

sink for the surfactant flux with flux density j

of the total surfactant present. This regJme will display behaviour intermediate between the

dry limit, considered above, and the wet one considered here.

In principle, all the relaxation mechanisms considered previously for the dry foam are still

available for the wet case. However, because of the borders, in the wet foam there are further

processes which may alter the dissipation associated with surfactant and water transport. We

consider these now.

4.I. MARGINAL REGENERATION. Marginal regeneration (biR) is a process whereby fully-
formed films are drawn out of the plateau border regions (31] This process concentrates

the stretching of the layers into small regJons where films meet the borders (giving greater
dissipation there) but reduces the viscous losses in the films [32]. In the wet case, there is no

flow in the central regions of the film, but surfactant and fluid flows
are set up in the connecting

regions between films and borders. A detailed study of this process has been made in the case

of films of negligible thickness (8j, for which the dissipation has a singular dependence on the

flow rate (so there is no linear response regime). To find the linear response, we must allow for

the finite thickness d of the films. In this case the dissipation takes place within the borders

and the "mouths~' of the films, that is regions extending distances of order p obeying d < p < r

into the borders (Fig. 4). Films are drawn from the borders at velocities of order Ri< and

so in the mouth regions the local velocity gradients of order Rilp. The mouths have specific
volumes of order (p/R)2

so that the dissipation per unit volume of foam from fluid motion is

of order

Ti C~ ~w7~ (16)

Note that the precise value of p is unimportant.

At the same time~ surfactant currents are set up in the plateau borders. The material is

transported from near the centre of the border to the surface in a region where a
film is being

drawn~ and in the opposite direction at the edge of a contracting film. The details of the

surfactant current density j are not clear, but assuming source and sink regions of order p in
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size and r in separation, one finds

T8 t °~~j~()/~~i~ Ii?)

with Ina m 1. Note that again the value of p is only of minor importance, since in practical
terms the logarithm is of order unity. This dissipation for the MR process is reduced by a

factor d/R compared to that for diffusive transport through the bilayers themselves (see (10));
it can be written to within logarithms as

(compare (11))

TJ m
~Zi~ (18)
#

For micron scale biliquid foams containing SDS at or below the CMC, this process might give

an effective viscosity of order 10~ ~Jw.

The MR process of course requires local dilation of monolayer and therefore incurs a dissipa-
tive contribution governed by the intrinsic dilational viscosity. At low frequency, the relevant

value is ~z, since the monolayer is in contact with a reservoir (the border). Supposing (as
previously) the dilation is localized to regions of order p in size, the local dilation rate is of

order (R/p)I and the corresponding dissipation

TJ ct

ii~ (19)
P

This depends more strongly on the length scale chosen for pi for small-cell biliquid foams

the enhancement in dissipation over a uniform dilation process (as arises in the Marangoni
mechanism~ for example) could be of order 10-1000 (this assumes ~z is comparable to ~B,

which is not certain) The resulting viscosity contributions are very large (~J/~Jw
r-

105-lo~).

4.2. COMPETITION wiTH MARANGONI PRocEss. For the MR process the total dissipation
(from (16), (18), (19)) is

T@ m J~wi~ + ~Z i~ +
ii~ (20)

4 P

where d < p < r. Recall from (14) that the Marangoni process has in contrast

Tb m J~w
(i~ +

ji~ (21)

[33]. In view of the large intrinsic dissipation represented by the third term in (20),
we expect

the Marangoni-type process to dominate the transport of surfactant for wet foams, as it did for

dry ones. (However, this is subject to our rather inaccurate knowledge of the typical magnitudes
of ~z and ~B.) For MR to dominate over Marangoni, one would require a relatively modest

~z and a relatively high surfactant concentration and/or diffusivity (this last requirement is

easily satisfied above the CMC). Also MR will be important under conditions when the sliding
of one monolayer over its neighbour in a bilayer is essentially forbidden. (This process is a key
component of the Marangoni mechanism.) That could arise if the water films in the bilayers

are so thin as to be essentially frozen, giving a very large dissipation for sliding to replace the

first term in (21).

4.3 FLmD TRANSPORT. To maintain a uniform bilayer thickness, Poiseuille-type flow of

the kind discussed in Section 3.1 is required, unless the MR mechanism is operative. (In the
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case of MR, films of the equilibrium thickness are drawn directly out of the borders). This

gives a dissipation, as there, of

Tb ct J~w
~12 (22)

However, there is also a need to equilibrate the volumes of the plateau borders themselves.

Since the edges in the foam have order 7 changes in length when a strain is applied, the border

volumes are themselves perturbed linearly in strain (though with a coefficient that vanishes on

the average). The resulting water flux from one border to another could flow through the films,
but a less dissipative route exists; the borders form a connected network and fluid can flow

from one to another directly. This gives a dissipation which can be estimated by imagining the

surfactant monolayer at the border surface to have no velocity along the axis of the border,
though it will still have a dilational motion as the fluid leaves or enters. This leads to an excess

or depletion of surfactant on the surface, so that a diffusive current must be maintained to

allow surfactant to equilibrate between the centre of the border and its surface. The result of

all these processes including fluid flow, dilational viscosity, and diffusive transport of surfactant

is of order

T8 C~

ilw
+

ii
+ ill17~ 123)

where the first term is much smaller than (22), though the second could be larger for small

droplets. The final term (diffusion resistance) could be large compared to the second for border

radii r > ~tm in systems at or below the CMC.

4.4. ViscosiTY. Summarising the above, we expect surfactant and water fluxes to be

accommodated by a combination of Poiseuille-type flow (22), the Marangoni process (21), and

the border processes (23). (The first two are essentially the same as in the dry foam considered

in Sect. 3). Thus we obtain our final estimate

where we have
assumed NE > Jczr/R. This final result differs from the case

only by the last term, which arises from diffusion within the borders. Assuming literature

estimates of ~B (23], the second term typically minates. The first term assumes that the
bilayer films can be sheared

friction should be used instead.

The
esults for wet

oams given
above

if it
does

is
of

order

J~

4 P

where the three
ontributions

are
from

fluid flow, diffusion resistance and intrinsic
ilation.

(The
ontribution from the flow of fluid along border channels,

iscussed above, is egligible.)

5. Mode Structure

By superposing the mechanisms described above, we can construct an informed guess for the

mode structure governing the shape of G*(uJ) at higher frequencies. Formally one should

write down and diagonalize a full set of equations of motion for the conserved (hydrodynamic)
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variables (see for example Ref [34]); for our problem these can be chosen as the local concen-

trations (averaged over the film thickness) of surfactant and fluid. (The latter is equivalent to

the film thickness itself.) Here we take a more heuristic approach.

5.I. MARANGONI CASE: WET FOAM. Formally we can separate the driving forces for the

surfactant and water fluxes; for a wet foam, these have very different orders of magnitude (they
become similar in the dry case as discussed in Sect. 2 4). We study first systems where the

Marangoni relaxation mechanism dominates over marginal regeneration.
The dissipation rate /lJ~12 for the Marangoni process is given by (14), and the driving force

is of order /lGi, where the modulus contribution /lG m EB/R arises from the local dilation

of bilayers). Hence the relaxation frequency is of order

"~ ~

~
~

wR2~~+
~B

~~~~

which is similar to the results of reference [35, 36]. For small-cell biliquid foam parameters
in the dry limit (say d m r m 10 nm, R ci 10 ~tm) the characteristic frequency UJM should

be around I kHz. For conventional droplets UJM could be of order 50 Hz at low surfactant

concentrations (so that EB Cf EN which lies in the rheologically detectable range. At higher
surfactant concentrations the frequency is reduced further but the mode amplitude EB/R,

and hence the low frequency loss from this mode, is also reduced to a very small fraction of

G(0). This contrasts with usually reported values of 5-20%, and would be swamped by other

contributions.

For a wet foam with thin bilayers (so that EB is not small), the elastic modulus arising
from changes in film thickness is much weaker than that governing the Marangoni process,
of order /lG m

da/Rr
m

G(0)d/r (see Sect. 2.4). Combining this with the corresponding
Poiseuille-type dissipation (/lq

cM qwR/d) gives a characteristic time scale

"~ ~

~
~

i~J~w
~~~~

This expression is similar to the results of (37-39] for the overdamped peristaltic mode (or
~'squeezing mode" of thin films. For small-cell biliquid foams~ the result is of order 100 Hzj
for macroscopic foams R ct

10~~ m, r ct 10 ~tm~ d ct 50 nm, we have instead ton ci I Hz.

The slow equilibration of film thicknesses might therefore be a candidate for the low frequency
loss phenomena observed in many foam systems Ii 2]. However the associated elastic modulus

(mode amplitude) ~IG is typically only a percent or so of the equilibrium elastic modulus G(0).
The corresponding G"(uJ)~ even assuming a single loss peak rather than the disperse band seen

experimentally, could not exceed a percent or so of G(0). This mode is again not a good
candidate for the low frequency loss seen experimentally.

There is in addition a very weak elastic modulus of order /lG m
G(0)r/R associated with the

changes of volume of the plateau borders. This modulus is found by calculating the change in

area of the border surfaces needed to account for the local change in border volume associated

with a strain 7. It can drive a
fluid flow through the network of pores made up by these

borders, with a dissipation given by (23). The resulting relaxation frequency is

"~
R2J~w + ~zr + ~wr2 Ii ~~~~

This relaxation frequency is likely to be in the kHz range for small cell foams. For large cell

foams the frequency can be reduced, but is large compared to ton



N°1 LINEAR SHEAR RHEOLOGY OF INCOMPRESSIBLE FOAMS 49

5.2. THE DRY LIMIT. The dry foam can be studied by taking the limit r ct d in the

treatment just outlined. In this case the driving forces EB/R and a/R for the modes UJM and

ton are similar and the dissipations are also similar whenever ~B < J~wR2 Id (see (26)). In this

regime the two modes may become strongly mixed [39], the relaxation frequencies will remain

comparable to the expressions given above.

For the "intermediate" regime between wet and dry foams, there can be a further mode of

relaxation which arises because of a shift in the concentration of surfactant in the border regions
stemming from the deformation. (In intermediate foams, the concentration of surfactant in

the border is shifted significantly as the total surface area is increased; see the introduction

to Sect. 4). In this case, there can be a significant deficit of surfactant in one border and

an excess m
another, which does not match the corresponding deficit or excess of water. The

driving force cannot be large (at most ENr/R2) and becomes vanishingly small in the wet

limit of large borders. The border surfactant concentration could relax by diffusion (which is

highly dissipative)
or more efficiently by a "border Marangoni" effect in which the monolayers

in the border regions move in response to the chemical potential land hence surface tension)
gradient, entraining the border fluid. This sets up surface shear gradients of order I in the

adjacent bilayers (giving a dissipation of order ~t12 /R) and also flow dissipation
m the borders

obeying (23). The resulting relaxation mode has frequency typically in the kHz range or less~

but with a small amplitude.

5.3. MARGINAL REGENERATION. We now consider the case where MR dominates the

relaxation (which is feasible only for a wet foam). The MR process is subject to a driving force

which arises from the fact that, if film regions are held at fixed area
(no MR permitted) the

monolayer surfaces become nonminimal. As usual, the resulting total extra film area increases

quadratically with the strain. The driving force is governed by an area change bA IA
cM

R12 IT,
and gives a modulus of order

a
/r [40]. The corresponding dissipation is given by (20), resulting

in a relaxation frequency of order

~o~~ ~

'/r
(29)

which could be around 1 kHz. In addition, the border mode, governed by (28) is still present

and typically also in the kHz range.

Another characteristic relaxation frequency may be important in the MR case. This is

associated with the diffusion time to get from the centre of a plateau border to the edge:

UJD t
D/r~ (30)

which is typically in the kHz range for small-cell foams but possibly much lower, of order

10 Hz, for macroscopic foams (r m 10 ~tm). This frequency marks the onset of a spectrum of

relaxations associated with diffusion over
different length scales within the border, analagous to

the behaviour seen in monolayers in diffusive equilibrium [41, 24j. If UJMR > UJD, there may be

modifications to (29) arising from the enhancement of the driving force for area minimization

under conditions where the border surfaces cannot maintain constant area per molecule L.

This also means that the intrinsic dilation viscosity will be different from ~z. The viscosity

associated with diffusion resistance should also be reduced since some of the diffusion modes

are no longer involved. In principle a similar complication will also occur for other plateau

border modes, I-e- the border mode given by equation (28) and the "border Marangoni" effect

for foams in the mtermidiate regime.
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6. Discussion

We have calculated viscosities and characteristic frequencies for incompressible foams (e.g.,
dense emulsions, with the surfactant soluble only in the continuous water phase) for both the

wet and dry foam limits. In both cases it seems likely that the zero frequency shear viscosity

q =
G"/uJ is dominated by the intrinsic dilational viscosity of the film. Estimates of this for

SDS give viscosities of order 10~-10~qw for small-cell biliquid foams. However, other dissipation

processes may play a significant part in determining the zero shear viscosity for systems with

different parameter values than those for SDS. Experiments on more conventional (larger cell,
wet) foams 11, 2] and on small cell systeIns (3] show a spectrum of loss modes extending to

the lowest measured frequencies; this we have so far been unable to explain. Perhaps the best

candidate among the mechanisms we consider is the slow equilibration of film thicknesses for

large cells (only) this leads to suitably low characteristic frequencies ton but amplitudes of the

loss modulus that are too small. Similar remarks apply to the Marangoni relaxation governed
by UJM (26) in systems of small EB Long relaxation times and large viscosities are also possible

whenever diffusion over long distances is involved. However, for typical emulsion parameters,

it appears that diffusive transport over scales larger than the bilayer thickness d is generally
bypassed by Marangoni-type transport, driven by surface tension gradients.

Our work complements that of earlier authors who have made asymptotic analyses of var-

ious limiting cases (5-9] or studied simplified models involving only the intrinsic rheology of

structureless films [10, 11]. The true origin of low frequency loss modes in foams and dense

emulsions remains obscure. The observed loss modulus is often almost frequency-independent

at low frequencies [1-3]; this is also seen in some other materials such as slurries [42, 43]. Ac-

cording to linear response theory G"(uJ) must be an odd function and therefore G"(0) cannot

be finitej hence this behaviour suggests extremely long relaxation times.

One possibility is that the published data is not in the true linear response region, but instead

in a "quasilinear" regime (reminiscent of the above-yield response of a
Bingham plastic) which

might permit a constant part of G"(uJ). A constant G" means that the energy dissipated

per cycle is almost independent of frequency, a phenomenon characteristic of hysteresis. A

candidate for this type of response is the topological rearrangement of the foam [11]. For

an ordered structure under small strain, there is no rearrangement [4, 5] and therefore this

mechanism does not arise. For disordered foams, some rearrangement must occur with each

cycle but it is not obvious whether this should lead to a quasilinear response. More careful

experiments may be needed on a range of different systems before the situation becomes clear.

Finally, we note that some of the relaxation modes that we have predicted to arise at high
frequencies (above those typically encountered in conventional rheological experiments) might
be probed by other techniques~ such as accoustic attenuation spectroscopy, or the new method

of Mason and Weitz [44] based on dynamic light scattering.
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