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Abstract. The swelling of sponge-like bicontinuous mesophases of bilayers of surfactant (or
lipid) in water as a function of dilution is analyzed. Analytic formulae for the swelling

are
derived

assuming ii) constant aggregate thickness and (it) fixed surface area per surfactant molecule at

an
imaginary surface located within the bilayer. Approximate swelling laws are derived for bi-

continuous films and compared with swelling behaviour of disconnected sheet-like, rod-like and

globular aggregates. It
is

shown that sponge-like "oil-in-water" bicontinuous aggregates can be

readily distinguished from rods, sheets or
globules in surfactant/lipid aggregates; the morpholo-

gies of aggregates of reversed curvature ("water-in-oil")
are

less easily deduced from swelling
data. Accurate scaling laws for (ordered

or
disordered) symmetric and asymmetric sponges,

sheets, rods and globules
are compared with experimental data of bicontinuous cubic phases

in the binary glycerol monooleate water system and the pseudo-binary didodecyl dimethyl
ammonium bromide cyclohexane water system as well as some data within dilute sponge-like

phases. In the latter cases, scattering data as a
function of composition admit identification of

symmetric and asymmetric sponge phases.

Introduction

This paper addresses the issue of swelling in lyotropic mesophases, particularly bicontinuous

mesophases, which consist of sponge-like aggregates. The work is motivated by recent reports
of accurate swelling measurements of bicontinuous cubic phases [1-3]. Given the availability
of accurate structural data as a function of composition, we are perhaps now in a position to

move beyond structural description and explore the physics of these phases, such as stability
and the location of neutral surfaces [4].

Bicontinuous phases are made of mixtures of surfactant (or lipid) and water. The most

celebrated cases are the cubic phases [5~7] and L3 ("sponge") phases [8-10]. The morphology
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Fig. i Schematic picture of one possible bicontinuous cubic phase, of symmetry Im3m and genus

three per unit cell (related to the P~surface) (Left) A reversed cubic phase (V2), with the surfactant

bilayer centred
on

the P-surface (Right) A direct cubic phase (Vi), with the water film centred on

the P~surface.

of sponge phases is probably variable, although in some systems they can be well modelled

as random spongelike bilayers immersed in water or oil continua. The sponges may be both

"symmetric" or "asymmetric", depending on the mean curvature at the centre of the bilayer.
Symmetric sponge phases are characterized by zero mean curvature at the mid-surface of the bi-

layer, so that both constituent monolayers are curved equally; asymmetric phases have nonzero

mean curvature at the mid-surface of the bilayer. In the case of cubic phases, the mesophase

consists of a single-sheeted, hyperbolic surfactant or lipid bila»er immersed in interpenetrating
water continua ("reversed" phases, V2 bicontinuous cubic phases)

or a polar film in hydropho-
bic continua ("normal" phases, Vi phases). In reversed crystalline mesophases made up of a

monodisperse surfactant or lipid distribution, the centre of the bilayer is expected to lie on an

infinite periodic minimal surface (IPMS) Ill]. In cubic phases of normal curvature, the IPMS

lines the mid-surface of the water film (Fig. 1). Bicontinuous cubic phases are believed to be

well-described by IPMS of cubic symmetry. Bicontinuous phases of other symmetries are also

geometrically feasible, although their existence in liquid crystals has yet to be established.

The structure of an ordered bicontinuous mesophase is specified in general by two labels

which distinguish the IPMS: its space group symmetry and its topology. For example, a num-

ber of possible bicontinuous morphologies arise within the space group, Im3m ((229), including
bilayers draped over the P-surface, the I-WP surface or the Neovius (C(P)) surface [12]. All

three structures have been conjectured to occur in various liquid crystalline mesophases [13]. In

principle, the symmetry of a crystalline mesophase can be directly determined from diffraction

experiments (although the dynamics of these phases often result in poorly resolved diffraction

spectra). The topology of the phase, which characterizes the connectivity of the tunnel net-

work of the bicontinuous morphology, is less readily deduced. The topology of the bilayer is

conventionally described by the genus, g. or its Euler- Poincar4 characteristic, x, per unit cell

of the underlying IPhIS. (These indices are linked via
the relation valid for orientable surfaces,

y =
2 2g).

A number of techniques for deducing the genus per unit cell of the bilayer have been published

previously; all require knowledge of the chain length of the surfactant molecules, the unit cell
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dimensions and the composition of the mixture and some require values of the head~group

area [11, 14, 15]. These techniques assume that the polar~apolar interfaces in the aggregate
form parallel surfaces to an IPMS. The parallel surface approach is used throughout this paper
also The "master plot" technique has been shown to provide useful topological information,
provided that the bilayer thickness and head-group area (which allows the monolayer area per

unit cell, A, to be determined)
can be independently estimated. These estimates are usually

made by assuming their values are close to those in neighbouring phases, such as lamellar and

hexagonal phases. If the morphology of the bilayer its topology and symmetry remain fixed

during swelling, a plot of 2«l~/o~
vs.

A/(2a~) la is the lattice parameter of the crystal) is

linear, with slope x, and intercept a, characteristic of the bicontinuous morphology [3, 19]. It

is clearly preferable to be able to determine the bilayer topology without resorting to such ad

hoc assumptions. In fact, the technique can be improved.
In the next section, we show how the topology can be estimated without prior knowledge

of the head-group area, although the bilayer thickness (twice the monolayer width, I) must

be known. Following that, we demonstrate that the functional form of the bilayer swelling is

sensitive to the location (if any) of an inextensible "neutral" surface (equivalent to the "pivotal"
surface described in [16] ), and a more accurate analysis of swelling is derived.

The Swelling of Normal and Reversed Hyperbolic Bilayers

Imagine a folded bilayer (of reversed curvature, I-e- enclosing water channels) whose mid-

surface lies on an IPMS. This surface has zero mean curvature and non-positive Gaussian

curvature at all points, I-e- it is equally curved towards both intertwined sub-volumes (~). An

average measure of the bilayer curvature is afforded by the average Gaussian curvature,

/
Kda

~ ~ ~~ i(W)

where A(W) is the surface area of the region W of the surface. In crystalline mesophases, W

typically refers to an integral multiple of the asymmetric patch of the IPMS, such as a unit cell.

In disordered mesophases, W refers to a volume of the assembly which is at least as large as

the cube of a characteristic distance of the mesostructure, such as the average spacing between

bilayers. This average Gaussian curvature is related to the average magnitude of the radii of

curvature, < R >, by the equation < R >=< -K >~~/~

The volume of space V(x) bounded by a saddle-shaped patch, W, of the IPMS of area Ao,

the parallel surface to W displaced from the IPMS by a distance x and the surface normals

around the boundary of W is [11] :

~2
VIZ)

#
ADZ 1-

~

(l)
3 < R >

Consider now a film of half-thickness x, whose mid-surface lies on an IPMS. The film volume

is 2V(x). life assume that the film is "homogeneous", I-e- its Gaussian curvature is nearly

constant In this case, the volume of space associated with the region W of the film is bounded

by the pencil of normal vectors around the boundary of W, pointing towards both sides of the

(~) By analogy with
a

planar curve, a
surface is characterized by two radii of curvature, whose

re-

ciprocals
are

the principal curvatures, ki and k2. The
mean

(M) and Gaussian (K) curvatures are

defined by M
=

(ki + k2)/2 and K
=

ki k2
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Fig. 2. Schematic picture of the tetrahedron which defines the volume of space associated with

a
minimal surface patch, shown in the centre of the tetrahedron. The edges AB and CD define the

location of tunnel axes on either side of the surface

film, which is a tetrahedron (Fig. 2) whose two edges AB and CD define the axes of the tunnels

in the IPMS. Each tunnel axis lies at a distance equal to the average radius of curvature, < R >

from the mid-surface. From equation (1), the half-volume of the tetrahedron is:

Vi /~ =
Ao < R >

1 ~ ~ ~~
=

~~° ~ ~ ~ (2)
3<R> 3

The volume fraction of the film, lb~
=

~~~
is thus:

1/2

~~
_

3

iii~
j1

~~~

2
iii

The scaled average radius of curvature of the homogeneous film (measured at the mid-surface

of the film) as a function of the "concentration" of the film is thus:

j
~

= cos
))

+
Vi sin

))
,

where A e
tan~~ I~@j

(4)
<

x

These equations are directly applicable to lyotropic bicontinuous mesophases, where the film

may be the water layer or the bilayer (of half-thickness x). Assume for convenience that the

mesophase is crystalline. The required relation between the lattice parameter and the topology
of the bicontinuous phase (per crystallographic unit cell) emerges by way of a dimensionless

constant, known as the "homogeneity index", H, which links the surface area of the IPMS per

unit cell, A~~, the volume of the unit cell, V~~, and the Euler-Poincard characteristic per unit

cell, x [17]:
~~~~ ~

~ 20rx)~/~V~~
"

4
~~~

(The value of 3/4 has been derived analytically for ideal homogeneous minimal surfaces. The

exact value of H depends on the IPMS, but for low-genus IPMS which typically occur in

bicontinuous mesophases, the approximation is a
good one, c-f- Tab. 1.)
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Table I. Symmetry, Euler-characteristic lx), genus per conventional cubic unit cell and

homogeneity index for
various IPMS.

IPMS space group symmetry z genus H

gyroid Ia3d -8 5 0 .7665

P-surface Im3m -4 3 0.7163

D-surface Pn3m -2 2 0.7498

1-WP surface Im3m -6 4 0.7425

Neovius Im3m -16 9 0.6640

The area
of the mid-surface of the film, A~~, is related to the average Gaussian curvature

of the mid-surface via the standard equality < K > A~~
=

20rx, which implies that A~~
=

-20rx < R >~.

Combining this with equation (5) gives:

~ 2~ ~<~i>~~ ~~~

where o e I©~/~ (e.g. the lattice parameter of cubic phases).
Consider first bilayers of reversed curvature (e.g. V2 phases). Assume that the bilayer

consists of identical back-to-back monolayers, in which case the mid-surface of the bilayer
defines a minimal surface. The required equation for the bilayer topology in terms of the

lattice parameter, a, the composition, 16, and monolayer thickness, I, follows from (4) and (6):

x=

Iii
lCOS

Ill +/Sinlllll~ (7)

The lattice parameter is expected to vary with the surfactant concentration according to the

formula:

jay j-2«Xj~~~(/. (Aj jAjj~~7 H
~~~ i ~~~~ i

>

~~l~~~ I/Sin Ill
C°S

llll~
(8)

assuming that the minimal surface is homogeneous.
The analogous relations for bicontinuous mesophases of normal curvature (such as Vi phases)

are as follows. Here, the IPMS runs through the mid-surface of the water film, and the lip ophilic
moieties form interpenetrating fenestrated channels on either side of the polar film. If the half-

thickness of the water film is t, the volume fraction of water, lbw
=

~~~,
is given by the

1/~
expression:

~~
<

~

>
~~

2 < R >

(from (I) and (2)).
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Fig 3 Variation of the scaled lattice parameter with composition for bicontinuous cubic (Vi (a);
V2 16)) mesophases of different genera per unit cell, from equations (ii) and (8) in the main text. (a
is the '~lattice parameter" of the mesophase, equal to the cube root of the unit cell volume, I is the

width of the monolayer and 4ls is the lipid/surfactant volume fraction.).
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Fig. 4. Plot of experimental data points for some bicontinuous reversed cubic phases (V2), together
with theoretical swelling curves for genus two structures (full curve), genus three (long-dashed curve)
and genus five (short-dashed curve), from equation (8) in the main text. Crosses represent data for

the (room temp glycerol monooleate water system, (1 =
17 I; data from 11, 18]; this paper).

Delta symbols denote data from the pseudo-binary didodecyl dimethyl ammonium bromide water

cyclohexane cubic phases (1 =
13 I[19]); the diamond denotes

a
sample within the AOT water

cubic phase (1 =
7 I[20]) The square denotes data for the high temperature lecithin water cubic

phase (1 =
18 I[21]) and the circles denote high temperature strontium carboxj,late soaps (SrC12~

=
12.6 I, SrC14'

=
12A I; SrC16>

=
13.i I; SrCi8i

=
14 3 I; SrC20,

=
15.0 I. The C14 and

C18 molecular lengths have been estimated from the neighbouring H2 phase, and the others estimated

from data for the corresponding Ca soaps [22]).

Ifn~e
(

,onehas
~ ~

3n~ n~~ = 21bw (9)

Since < R >= + t, equation (6) implies:

x =

/ ())~ Ii ~)~ (lo)
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The swelling functional of a bicontinuous phase of direct morphology is thus:

I H
~1- ~~

'~ 3
~1- ~~

~~~~

where
+f

is the single physically accessible root of the cubic polynomial (9).
Plots of the expected swelling as a function of the bilayer topology for both direct and

reversed phases are illustrated in Figure 3.

These theoretical curves are readily generalizable to bilayers whose mid-surface does not

define a minimal surface. (To lowest order, this generalization can be made by simply inserting
the relevant value of H into Eqs. (8) and (11)). The equations agree well with measured lattice

spacings in some bicontinuous cubic mesophases of lyotropic liquid crystals. It is clear from

Figure 4 that over a wide range of concentrations and temperatures the measured dimensions

of the cubic mesophases agree with the values expected from the swelling equations above.

Clearly, the structural assignments of the V2 phases, viz. the gyroid, the P-surface and the

D-surface, are topologically correct. Further, the assumed value for H (ca. 3/4) is also in

agreement with the data, so that it is reasonable to claim that these bilayers wrap onto IPMS.

Logarithmic Swelling Laws

These swelling equations can be best compared with the expected swelling behaviour of other

morphologies, including sheet-like (lamellar) aggregates and globular and rod-like micellar

aggregates, using log-log plots of the lattice parameter vs. composition. (The swelling laws for

lamellar, spherical and cylindrical aggregates are outlined in the Appendix.) It is clear from

Figure 5 that logarithmic plots offer a useful technique for characterizing the morphology of

aggregates in direct phases. The differences between reversed mesophase morphologies are less

marked, except for highly concentrated mesophases.
There is a remarkable similarity between the slopes of these plots and an index of the local

molecular shape within the aggregates, known as the surfactant parameter [23]. This shape

parameter is dependent on the curvatures of the interface. It is defined to be equal to vial,
where

v is the volume bounded by a patch on the interface and a parallel surface to the patch,

a is the area of the patch and I is the separation between the parallel surface and the patch.
Consider the variation of this volume vii),

as a function of the separation distance, (, the area

of the patch, a(() and the (variable) surfactant parameter, s((). This volume variation is equal
to the area, so that:

~~~~~ ~~~~ ()~

u'it)
=

a(t)
=

s'(t)a(t)t + s(t)a'(t)t + sit)a(t) (12)

where the prime denotes a partial derivative with respect to (.
This equation can be integrated to give:

a(f)
= C

f~~ exP
/ ~' ~)))~~df)

(13)

where c is a constant.

If the surfactant parameter remains constant (s) as ( is varied, so that the shape of the

aggregate is fixed, we obtain the area scaling equation:

a(()
= c (~~~/~ (14)
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The constant, c, can be determined as follows. Two characteristic lengths in the system are

the intm-aggregate radius, I, and the inter-aggregate (half) spacing, a. If the aggregate is a

hyperbolic bilayer, I is equal to the half-thickness of the bilayer and o is equal to < K >~~/~.

If the aggregate is a hyperbolic monolayer, carving out a porous network in the solvent, is

equal to the pore radius and a is equal to the average spacing between pores. If the sliding
length parameter, (, is set to a, the area is ala), so that

~

yi~~~/s
~~~~
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The volume fraction of the aggregate for a film of thickness I, 16, is then related to the surfactant

parameter within the aggregate, s and the "surfactant parameter" for the parallel surface to

the interface between the solvent and the film, located at the distance o, s~:

~ s~~~o ~ ~~~~~
~~~~

Thus, the characteristic spacing, a, is expected to scale with the composition like:

iogia)
~

-siogi~) 11?)

provided the variation of the surfactant parameter remains small and the aggregate "thickness~',

I, remains constant. The surfactant parameter is exactly constant, with respect to ( variations,
if the aggregates are spherical (oil-in-water,

s =
1/3), cylindrical (oil-in-water,

s =
1/2)

or

lamellar Is
=

1). In other cases, s'If) is not zero.

The gradients of these log-log plots are valid for a given morphology, and hold for both

crystalline and disordered mesophases. In both cases a denotes any characteristic length scale

in the mesostructure. In order for the scaling laws to be applicable the film thickness must

remain constant and the topology, x (e.g. per unit cell for crystals, per unit volume (a3) for

disordered phases) of the film must remain fixed during dilution or concentration of the phase.
Further, the homogeneity index, H, of the film must remain constant, which generally implies
that the mean curvature of the film does not vary during the swelling. (H depends on the

symmetry and topology of the structure, however, this effect is a minor one, particularly for

low-genus surfaces, c-f- Tab. I.)
This swelling analysis is useful, although it is less than the whole story. So far, we have

focused on mesophase swelling which preserves the film thickness. Other swelling modes are

possible, which allow for the thickness to vary on swelling. In particular, we focus on transfor~

mations which conserve the area of a parallel surface to the mid-surface of the film. We call

this the "neutral" surface.

The existence of a neutral surface is a result of central importance to understanding the

stability of both lyotropic and thermotropic mesophases, since the neutral surface (or the

"pivotal surface" is the simplest location at which to locate an imaginary surface that describes

the film bending energy [16]. The location of the neutral surface determines the relative stability
of bicontinuous geometries, and the whole approach adopted in this area to data modelling
films by imaginary surfaces relies on as-yet unproven assumptions about the nature and

existence of this surface.

Neutral Surfaces in Crystalline Bicontinuous Mesophases of Reversed Curvature

The swelling behaviour of bilayers of reversed curvature can be readily analyzed assuming the

neutral surface is a parallel surface displaced from the mid-surface of the bilayer by a distance

t. The homogeneity index of the mid~surface of the film (assumed to be a minimal surface) is:

jflso(0)j
~/~

~£
=

~~~~ ~
(~~)

(-2«x)1/2a3 (-20rx)1/2a3

where Q(0) is the area per surfactant molecule at the mid-surface of the film, and n~ denotes

the number of surfactant molecules per unit cell of the film. The volume fraction of the film,

16 "

~~~~ (19)
a3
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where u~ is the volume of a surfactant molecule.

Combining (18) and (19) gives:

Q(0)
=

~"~~ ~(~~~~~~
(20)

The area per surfactant molecule at the parallel surface to a periodic minimal surface is:

Q(t)
=

Q(0) (1+
~ ~~~)

(21)
uc

Combining (20) and (21) gives:

The elling
follows directly rom

this equation, once the
location

of the neutral

surface (t)
is set.

or a
reversed ilayer, we expect the position of this neutral to lie

somewhere
between t 0 and one of the centres of curvature of

upper
bound

on t is
related

to the ilayer opology

~~

=
and 4~~

=

x < >~

~ < ~

a a -2«~
The plest law ollows if the neutral surface is located at the mid~surface of the

bilayer (t = 0). In
this case,

haracteristic lengths of the mesophase vary linearly with the

inverse oncentration
of the film, a m~ b~~.

This form is to that
for

lamellar

and has (mistakenly) been
of flat

If
here

is a neutral
surface located within each hydrophobic chain region of

the
esophase,

at a fixed distance
from

the free
chain

ends towards the polar

function of reciprocal
oncentration

is non-linear, articularly n

ase, write

e
ion

22)
:

_
~ j I j t

Provided the concentration is not too high, I cs I, since
"~

m

~~
cs so that 0 < t/1 <Q(t)I Rio)]

spans possible locations of neutral surfaces within each monolayer. As t/I approaches unity,
the a vs.

lb~~ function (Eq. (24)) exhibits increasing non-linearity. The range (of lb~~) of the

single physically realistic branch of the function narrows, so that the formation of bicontinuous

bilayers of reversed curvature is impossible above a maximum concentration, set by the exact

location of the neutral surface (Fig. 6).
It turns out that the functional form of the swelling law assuming fixed film thickness is

close to that due to a neutral surface located at t/1
=

1/2 (Fig. 6). Note, however, that

it is impossible for the film thickness to remain exactly constant while maintaining a neutral

surface at a constant distance from the mid-surface of the bilayer.
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Fig. 6. Plot of swelling (a is an arbitrary length scale in the structure)
as a function of the volume

fraction of the bilayer for hyperbolic bilayers of reversed curvature (e g V2 phases, connected sponges),
from equation (24) in the main text. The unmarked curves denote swelling laws assuming that the

bilayer swells while maintaining a neutral surface located at a
parallel surface to the mid-surface of the

bilayer (i) approximately at the mid,surface of the bilayer (full line), (iii approximately 1/4 of the way

along the molecule t/~
=

i/4 [dotted-dashed curve) (iii) approximately 1/2 way along the molecule

(large-dashed curve) (iv) approximately 3/4 along the molecule (dotted curve) iv) approximately at

the water interface (small~dashed curve) The curve marked with open nablas denotes the swelling
behaviour assuming the thickness of the bilayer remains constant.

In order to investigate the possibility of neutral surfaces in swelling mesophases, we have

analyzed swelling data collected here and elsewhere for glycerol monooleate (GMO)-water
mixtures within the two reported bicontinuous cubic phases [1, 18], as well as data within the

cubic phase region of the DDAB water cyclohexane system [19]. If a neutral surface is

maintained during swelling, whose location is fixed at a certain distance t from the mid~surface

of the bilayer, the swelling data follows the polynomial derived from equation (24):

16 =
cio-~ + c20-~,

where

Both linear (c2 " 0) and cubic fits (ci, c2
uous cubic phases of

GMO-water and DDAB-cyclohexane-water mixtures Figs.

7-11).

The
room emperature GMO-water

data are consistent with a neutral surface located at the

mid-surface
of the

GMO
bilayer within both the Ia3d and Pn3m cubic phases

(Figs.
7, 8). In other words, during

swelling, both the thickness of the bilayer

per GMO molecule at the polar-apolar interface vary to
maintain

constant area per GMO

at the IPMS. Further, within
experimental

id-surface is constant within both phases.

The data
collected

within the Ia3d phase
also

fit a model suming neutral
surfaces slightly

displaced
fi.om

the id-surface, the trend is not certain (Fig. 7). Given the un-

certainty of the data, it is
impossible

to choose unequivocally
one of these models over the

other
It is apparent from these
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Fig. 7. Swelling plot within the Ia3d bicontinuous cubic phase region of glycerol monooleate (GMO)
water mixtures at 25 °C, from equation (25). (Data courtesy of Chung and Caffrey. The lipid volume

is taken to be 593 i~, corresponding to a
density of ig cm~~) The full line is the best fit to the data

assuming a constant area per GMO molecule at the mid~surface of the bilayer (37.0 i~). The dashed

line indicates the best fit to the data assuming the area per GMO at the mid~surface varies with

composition and the neutral surface lies towards the polar region within each monolayer (t
=

S-S I,

area per GMO at the neutral surface, 36.0 i~).
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Fig. 8. Swelling plot within the Pn3m bicontinuous cubic phase region of glycerol monooleate

(GMO) water mixtures at room temperature. (The lipid volume is taken to be 593 i~, corresponding
to a

density of ig cm~~) The full line is the best fit to the data assuming a constant area per GMO

molecule at the mid-surface of the bilayer (36.9 i~), from equation (25). No physically realistic value

for the location of
a

neutral surface displaced from the mid-surface can be deduced from this data (a
best fit leads gives imaginary value for the distance, t).

The underlying physics of swelling of the bicontinuous Ia3d GMO-water phase at 35 °C is

more clearly discernible. In this higher temperature mesophase, a model assuming the presence

of neutral surfaces within each monolayer, approximately half-way along the GMO molecules,
fits the data well, while one assuming a neutral surface at the mid-surface leads to a poor fit

to the data (Fig 9). It is curious to note that the effect of elevating the temperature has

been simply to shift the neutral surface towards the polar regions, without altering its area.

Note however, that the data are also consistent with an assumed swelling at constant bilayer
thickness (c.f. Fig. 6).
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Fig 9. Swelling plot within the Ia3d bicontinuous cubic phase region of GMO water mixtures

at 35 °C (Data courtesy of Chung and Caflrey.) The full line is the best fit to the data assuming a

constant area per GMO molecule at the mid~surface of the bilayer (38.8 i~,
assuming the molecular

volume of GMO is 593 i~). The dotted line indicates the best fit to the data assuming the area per
GMO at the mid~surface varies with composition and the neutral surface lies towards the polar region
within each monolayer (t

=
9.6 h, where the area per GMO at the neutral surface is 34.8 i~), from

equation (25).
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Fig 10. Swelling plot within the Pn3m bicontinuous cubic phase region of DDAB cyclohexane

water mixtures at room temperature. The full line is the best fit to the data assuming a constant area

per DDAB molecule at the mid~surface of the bilayer (79.5 i~, volume of DDAB + cyclohexane per

DDAB molecule equal to 1000 i~). The dotted line indicates the best fit to the data assuming the

area per DDAB at the mid-surface varies with composition and the neutral surface lies towards the

polar region within each monolayer it
=

6.1 1, where the area per DDAB
is

fixed at 76.5 i~), from

equation (25)

In both cubic mesophases of the DDAB syst,em, the data are consistent with an inextensible

mid-surface of the bilayer, viz. t
=

0 (Figs. 10, 11). (There
are slight indications of non~

linearity, however, they remain at this stage inconclusive.) The area per surfactant molecule at

the mid-surface is almost equal in both mesophases, as in the room temperature GMO-water

system. Appropriate scaling (by the topology and homogeneity index) for each phase leads to

a unified picture of the swelling across the entire domain of bicontinuous cubic phases. The

scaled data for the DDAB system is plotted in Figure 12.
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Fig. ii. Swelling plot within the Im3m bicontinuous cubic phase region of DDAB cyclohexane

water mixtures. The full line is the best fit to the data assuming a constant area per DDAB molecule

at the mid-surface of the bilayer (area
=

77 0 i~). The dotted line indicates the best fit to the data

assuming the area per DDAB at the mid-surface
varies

with composition and the neutral surface lies

towards the polar region within each monolayer (t
=

7.9 I, where the
area per DDAB is fixed at

74 1 i~), from equation (25).

120 °°

o

O/
~

j 100

b
+
R

80 u

D

60
15 2.0 2.5

1/w(DDAB+cyclohexane)

Fig. 12. Swelling plot for both bicontinuous cubic phases detected in the DDAB cyclohexane
water system. The diamonds and squares indicate data points

in
the Im3m and Pn3m cubic phases

respectively The lattice parameter data in)
are normal12ed ma the factor (-H~x) ~/~ to allow

a
direct

comparison of the
area per DDAB molecule at the free chain ends (the mid-surface of the bilayer) The

linearity of the plot of normalised lattice parameter vs.
hydrophobic volume fraction 11 /4l) indicates

that the
area at the mid-surface of the bilayer is fixed throughout both cubic phases. The line of best

fit leads to an area
of 77.7 i~

per surfactant molecule at the mid-surface, from equation (28)

Crystalline Bicontinuous Mesophases of Normal Curvature

The formulae derived in the previous section are directly applicable to crystalline bicontinuous

mesophases whose channels are lined with the lipophilic moiety (e.g. Vi Phases). In these

cases however, the locations of the neutral surfaces it)
are close to t =< R >, rather than at

the mid-surface of the (reversed) bilayer, t
=

0. This difference accounts for the very different

exponents of the swelling laws for normal and reversed bicontinuous phases, shown in Figure 5.
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Disordered "Sponge" Phases

Some disordered mesostructured phases called L3 Phases exhibit flow birefringence. This

defining characteristic probably disguises a multitude of mesostructures, based
on molten

columnar, globular (e.g. vesicular), lamellar or bicontinuous morphologies. The swelling for-

mulae derived so far are also applicable to these cases, and they may be used to determine the

morphology of the aggregates within an L3 Phase. Scattering spectra of L3 Phases typically
exhibit a single broad peak, whose location in reciprocal space is related to the inverse of a

characteristic spacing within the mesostructure in real space. This spacing can be used in

place of the lattice spacing typical of crystalline mesophases, in order to study swelling char-

acteristics. The functional form of the swelling data can be used to determine the mesophase
morphology, as well as the approximate location of

a neutral surface within the mesophase.
Note however, that in the absence of extra data (such

as the bilayer thickness ), absolute values

of the neutral surface area and location cannot be deduced.

A water-rich "sponge" phase (denoted L(, presumed to be of normal curvature and of sponge
morphology) has been identified in mixtures of water-Nacl-pentanol and sodium dodecyl sul-

phate (SDS), and a related oil-rich (L], reversed curvature) sponge phase in water-dodecane-

pentanol-SDS mixtures [10]. In the original study, the characteristic spacing la)
was found to

vary approximately as o m~

lb~~ in both phases. This result is inconsistent with the swelling
laws derived above (Fig. 5), since this implies that the aggregates are of reversed curvature

(and any morphologyl). Closer analysis of this data shows deviations from this swelling rela-

tion. Accordingly, we have reanalyzed the data, estimated from the original figure and listed

in Table II.

The L( data fit reasonably well within a sponge model (Fig. 13), provided the neutral

surfaces are displaced from the mid-surface of the bilayer. From equation (25), the distance

between the neutral surfaces and the mid-surface, t, is related to the topology of the bilayer

Table II. Estimates of the characteristic spacing vs. composition from Figure 5 of [10].

Volume fraction Characteristic

of bilayer (F) spacing, a
(I)

Li* 0.064 475

0.087 330

0.142 200

0.231 125

0.247 100

L2* 0.054 535

0.067 450

0.091 320

0.145 160

0.185 135

0.239 125
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Fig. 13. Reanalysis of swelling data within the Li mesophase, recorded by Ga2eau et al. (SDS-
water-pentanol-Nacl mixtures [10]). The peak position in X-ray spectra is denoted by

cv.
The full

curve assumes that the area per SDS molecule at the mid-surface of the bilayer is independent of

dilution (volume fraction of the bilayer
=

4l),
viz cv m~

4l~~. The dotted
curve assumes neutral

surfaces displaced from the mid-surface, using equation (25), whose locations are discussed in the

main text.

within a volume a3 (where a is the characteristic spacing Ii), equal to the centre of the broad

scattering peak real space detected within the phase), x by the relation:

~i 1/3
~

i /2

t
=

~ (26)
-20rx ci

where ci and c2 are determined by the best fit of the polynomial (25) to the swelling data.

For a symmetric sponge morphology, the mean curvature at the centre of the bilayer vanishes,

so, assuming homogeneity, H
=

3/4, and:

~
i/2

t cs
-0.5x~~/~ ~fl) (27)

ci

(Note that for very dilute bilayers, this homogeneity assumption may break down, given the

large bilayer fluctuations associated with these phases The data of Gazeau et al. within this

mesophase are most accurately modelled by a polynomial fit of the following form:

16
=

30.990~~ 574400~~

so that the neutral surfaces are displaced by a distance of ca.
-2Iy~~/3i. In the absence of

independent knowledge of the relation of the peak position to the topology of the membrane,
nothing more can be said. (This issue is discussed further in the following section.) Note

however, that since x is of the order of -1, the neutral surfaces are located about 20 I
away

from the mid-surface of the bilayer, which is a reasonable value for a sponge phase of direct

morphology.
The L] data exhibit systematic deviations from the swelling behaviour expected for a sponge,

regardless of the location of the neutral surface (Fig. 14). So far, however, we have assumed

that the mean curvature at the centre of the bilayer vanishes (I.e. a symmetric sponge). The

swelling equations are readily generalized to a case where the mean curvature at the mid-surface

of the bilayer (normal or reversed) differs from zero (M), using the parallel surface equation
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Fig. 14. Swelling data (circles) for the Li Phase [10]. The full line indicates the best fit assuming

a
neutral surface at the mid-surface of the (assumed symmetric, sponge-like) bilayer The dotted line

indicates the best fit assuming
a

symmetric sponge-like bilayer, from equation (25), whose neutral

surfaces are displaced from the mid-surface. The dashed curve is a best fit, from equation (30), to

the data assuming an asymmetric sponge-like bilayer, whose neutral surfaces are removed from the

mid-surface.

analogous to equation (1):

~2
V(x)

=
Aox ~1+ Mx

~
(28)

3 < R >

This leads to an additional term in the final swelling equation:

"~ ~~~~~~~~~~

~
~ ~~~~~~ ~~~/~

~~~ l

j j~~)
aQ(t)

(Note that the mean curvature is scaled by the characteristic distance, so that the variable Ma

is a measure of the asymmetry of the membrane.) The polynomial describing the swelling of

an asymmetric bilayer is thus of the form:

4l
=

cia~~ + c~a~~ + c30~~ (30)

The swelling data for this mesophase is reasonably well-described by a polynomial of this form.

The scaled mean curvature, Ma, can be estimated from the coefficients of the polynomial ma

the equation:

Ma
=

H~~/~c/~/~c(~~c[~ (31)

and the location of the neutral surfaces by equation (27). Note that the value of the homo-

geneity index, H, is dependent on the mean curvature; it is of the order of unity. The best fit

to the data assuming an asymmetric sponge-like bilayer,

4l
=

24.14a~~ + 2214a~~ 213770a~~

results in a scaled mean curvature of ca. 0.01, and a displacement from the mid-surface of

4.8x~~/~, which suggests that the mesophase is indeed a reversed phase (since the neutral

surfaces lie ca. 4.8 I from the bilayer centre).



188 JOURNAL DE PHYSIQUE II N°1

A more conclusive analysis of these systems clearly requires further data. However, we hope
that this preliminary analysis of some "sponge" data demonstrates that X- ray data in isolation

does expose many structural features of these disordered systems.

Discussion

A number of swelling relations have been derived for bicontinuous bilayers in water, which we

have modelled as single-sheeted hyperbolic films. We have focused here on the functional form

of the swelling behaviour, since this approach avoids assumptions about bilayer dimensions.

The functional form of the swelling depends on the details of the swelling mechanism. The

simplest form results if the area of the mid-surface of the bilayer remains unchanged as the

composition of the lyotropic mesophase varies. In this case, characteristic dimensions of the

mesophase vary linearly with the reciprocal of the concentration, o m~

4l~~.

This result is not new: it was first suggested by Porte et al. [9] in their study of the scaling
behaviour of random isotropic films. However, their result was derived from a simple "pla-

quette" approximation to the P-surface: its validity to smoothly curved surfaces of arbitrary
topology remained unknown. It is apparent from equation (16) that this scaling behaviour

is valid assuming (I) constant area per surfactant or lipid molecule at the mid-surface of the

bilayer or (it) low concentration.

According to Porte et al. the constant of proportionality is close to 31 (recall that is the

monolayer thickness) the linearised approximation to equation (16) (valid assuming (I) or
(it))

gives a constant of proportionality of

(-16«xH~)~/~u~
Q(t)

Provided condition (it) is satisfied, )
cs I, so that

it)

a cs

~~f~~~~~~
(32)

If the bilayer mid-surface is a
(homogeneous) minimal surface, H

=
3/4, and the swelling law

can be written as.

a m~

-3.05X~~~4l~~

Porte et al. have assumed that the characteristic dimension, a, is a typical pore size, viz

(1/2)~ of the conventional (genus three) unit cell, so that ~ =
-1/2, yielding a constant of

2.42. (The facetting of Porte's surface, which leads to a large area relative to a homogeneous
surface, and thus a relatively large value of H, is responsible for the discrepancy between the

scaling constants). It is evident from equation (32) that the scaling factor is dependent both on

the topology of that portion of the film characterized by the dimension a, and the homogeneity
index H, which is (to lowest order) dependent on the mean curvature of the mid-surface of the

film.

In short, the "linear" fiinctional form of the scaling behaviour (32) is a valid approximation
below about 40% (v/v) lipid content, regardless of the location (if any) of the neutral surface(s).
This functional form has been shown earlier to agree with swelling measurements of some

disordered "symmetric sponge" (L3) mesophases [9, 10]. We have shown here that a slightly

more complex form can also be used to detect asymmetric sponges It is also a reasonable model

for the room temperature GMO water and the DDAB cydohexane water cubic mesophases.
In these crystalline systems, phase transitions between cubic mesophases apparently occur
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without any significant change in the area of the IPMS describing the mid~ surface of the

bilayer. The coexisting bicontinuous mesophases which form at the (first order) transitions

are thus well modelled by three isometric IPMS, the P~ surface, the gyroid and the D-surface.

These IPMS are related by the Bonnet transformation, which has been shown earlier to be

a useful description of the D-surface gyroid transition in the GMO-water system at room

temperature [24]. Clearly, this transformation, which also links the D- and P-surfaces, is also

a valid one within the DDAB cyclohexane water system. The swelling equations imply that

for coexisting hyperbolic membranes related by the Bonnet transformation, the ratio of lattice

parameters of the mesophases is:

~~~~ ~~~~~
~~~~

The swelling behaviour departs from linearity particularly in concentrated systems once the

neutral surface moves away from the mid-surface of the bilayer. This feature has been detected

in a GMO water cubic mesophase at 35 °C.

It should be noted that an accurate determination of the location of neutral surfaces requires
data over a large span of compositions, since only then can the linearity or otherwise of the

swelling function be established. This restricts the number of analytically accessible systems
severely. However, in the future we hope to return to this issue to analyse the swelling behaviour

of thermotropic mesophases, which remains unexplored.
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Appendix

The swelling behaviour of "classical" aggregates, viz.
spheres, cylinders and planes is easily

derived from standard geometrical formulae relating volumes and radii. In all cases we adopt
the assumption that the volume associated with an aggregate, or patch of an aggregate, is

bounded by a surface that is parallel to the surface bounding the aggregate (which is the

polar-apolar interface in surfactant-water aggregates). Two length scales are relevant. The

first, I, describes the average half-width of the film, I.e. the aggregate radius or half-thickness.

Further, the length a describes half the average spacing between the aggregates.
Consider first the case of spherical aggregates of direct morphology. In this case, the volume

fraction of the aggregate in solution is:

~i
~

lb=
o

Consider next spherical aggregates of reversed morphology (in which case the spheres are filled

with the solvent). In this case, the volume fraction of the aggregate scales according to the

law:
~

1 4l
=

°

a

Similarly, for cylindrical aggregates of direct and reversed curvature, the scaling laws are:

jlj~ ja-lj~4l= and 1-4l=
a a
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respectively. For lamellar aggregates, the corresponding relations are-

4l=~~land 1-4l=~~)
a

These equations allow the composition, 4l, to be related to the ratio a./I. The plots shown in

Figure 5 follow directly.
A clue to the general scaling law given in equation (16) is already apparent. Notice that the

exponents relating the composition to the ratio of the two length scales for spheres, cylinders
and lamellae are 3, 2 and respectively. The surfactant parameters (s) for (direct) aggregates
of these morphologies are

1/3, 1/2 and 1/1 respectively, so that in these cases at least, the

exponents are equal to 1Is. This relation is in fact true for all morphologies; its general validity

is derived in the main text.
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