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Abstract. This paper reviews and extends the procedure used to measure the nematic

order parameter by X-ray scattering. We show that the well-known integral equation derived by
Leadbetter and coworkers, relating the scattered intensity 1(0) to the orientational distribution

function f(fl),
can

be analytically simplified both in the general case and in the case of the

Maier-Saupe distribution function. The Maier-Saupe distribution leads to a
particularly simple

analytical result previously obtained by Paranjpe and Kelkar. This result is extensively discussed

here and tested
on a

large variety of thermotropic liquid crystals. In most cases, this very simple
and practical approach provides

a
good description of the data This supports at the same time

the analysis of the scattering leading to Leadbetter's integral equation and the Maier-Saupe
distribution. We also discuss the validity and accuracy of this simple method compared to other

ones.

1. Introduction

The determination by X-ray scattering of the orientational distribution function of crystallites

or molecules with respect to a
fiber axis is a recurring problem met in many domains of

condensed matter physics Powerful methods, such as the exploitation of pole figures [1, 2], first

devised for classical metallurgy have later been successfully applied to the study of polymers

[3, 4]. This question is also of particular importance in the case of liquid crystals and has

therefore been addressed very early. Falgueirettes and Delord [5], De Vries [6] and Leadbetter

and coworkers [7] have thus discussed methods of measuring the nematic order parameter of

classical mesophases of simple rod-like molecules. The simplest approach is that of Leadbetter

et al. and it was widely applied (with different variants) to many mesogenic compounds [8, 9].

This method consists in the exploitation of the so-called "wide angle diffuse ring" corresponding

to the lateral mean distance between first neighbour molecules and is based on several quite

drastic assumptions which it is useful to recall here:

I) the molecules are considered as rod-like homogeneous particles of revolution symmetry;

(*) associd au
CNRS
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n) the wide angle diffuse ring is only due to the lateral interferences between these particles;
therefore, a

diffuse ring of scattering centered at the origin of reciprocal space is attached

to each particle;

iii) the previous assumption also implies that the orientational distribution function of a

single particle is obtained by treatment of the intensity scattered by a cluster of interfering
particles instead of a single one. This is more or less comparable to a kind of mean field

approximation and tends to overestimate the order parameter;

iv) the form factor of the particle and the nematic longitudinal correlation length are not

taken into account though they strongly affect the scattering of highly oriented phases.
This results in a systematic underestimation of the order parameter

The last two assumptions were fully discussed in reference [7].
A geometrical analysis then leads to the now classical formula [7] relating the intensity 1(9)

scattered in a direction at an angle 9 with the director, to the orientational distribution function

f(fl) of the rod axis:

I(°)
=

~~~~

lfidfl
(i)

where fl is the angle between the rod axis and the director (Fig. 1).
This integral equation is usually numerically inverted by assuming, m most cases, a more or

less specific expansion of1(9) and f(fl). However, this equation can also be analytically inverted

a) b)

Fig. I. a) Definition of the angle fl between a rod and the nematic director
n

The ellipses represent
the molecules b) Definition of the polar angle 0 describing the scattering in the wide angle diffuse

ring (40.8 at 66 °C).
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[10, 11] but this calculation gives f(fl) through a somewhat complicated integral formula also

involving derivation of the data sets. Furthermore, such a process does not provide any means

of estimating the validity of the distribution function thus derived.

Recently, Deutsch [11] has also shown that the order parameter S can be calculated with

the formula:

S
=

fl2
"

1 N~~
~ ~~~

I(9) sin~
9 + (sin 9 cos~ 9) Log

~ ~j ~
d9 (2)

2
o C°S

«/2

where N
=

/
1(9)d9

o

We present here very simple analytical calculations of equation (1) both in the general case

and with use of the Maier-Saupe orientational distribution function and we compare the results

of these calculations with X-ray scattering experiments on
different compounds. This will give

us the opportunity to check at the same time the validity of equation (1) and of the Maier-Saupe

orientational distribution function.

2. Calculation of Equation ii)

2.I. CALCULATION IN A GENERAL FRAME. The orientational distribution function f(fl)

can be expanded without any loss of generality either in a series of Legendre polynomials of

even degrees or also in a series of circular functions:

oJ

f(fl)
#

~j f2~ COS~~ fl (3)

z=0

Inserting this in equation (1) leads to:

Ii°)
-

~

nl~i~°I)~l~~~~(~odfl

using z =
cos~ fl,

we obtain:

~~~~

~

2

o~9 ~~~

This integral is tabulated [12] in the form:

/z"~~
(cos~ 9 x)~~~dz

=
(cos~ 9)~+"~~B(/t, v)

~~~ ~

where B(/t, v) is the Beta function. Here, we have v =1+1 and /t =
1/2 resulting in:

but B(1/2,
t

+1)
can be expressed with r functions:

B(~ ~+i) =

rll)r(t+1)
~~ r)+i+jj
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and using the relations:

~
~

~ ~ ~)
~~~~~~~~

~~)

where

(2t + 1)!!
=

1.3.5.7. .(2t + 1) and r(t +1)
=

t!,

one finally obtains the equation:

1(°)
=

f
f2~

~~~)"i~j,
COS~~ ° (4)

z=o

1(9)
=

Jo +
~

f2 cos~ 9 +
~

f4 cos~ 9 +
~~

f6 cos~ 9 +
~~~

f8 cos~ 9 +
~~~

fio cos~° 9 + (4')
3 15 35 315 693

Equations (4, 4') show that, within the model proposed by Leadbetter and coworkers, the

intensity scattered can be expanded in a series of cos~~ 9, the coefficients of which give directly
those of the expansion of f(fl) in equation (3). This remark means that no numerical inversion

of equation (1) is needed but the mere fit of1(9) in the series expansion (4') gives immediately

access to f(fl). Note that for 9
=

~/2, the intensity is not zero but equal to Jo. However, Jo

may be negligible m front of the other f, coefficients in the case of a very oriented phase and

only in that case.

From a different point of view, it would seem that expanding f(fl) in a series of Legen-
dre polynomials P2z would be more elegant and practical to calculate the order parameters.
Unfortunately, such an expansion did not yet seem to lead to simple results.

We can now calculate the order parameters: the most important order parameter is S
=

(3(cos~ fl) 1) with:
2

«/2
f(fl) cos~ fl sin fl dfl

~~°~~ ~~
«/2

(5)/
f(fl) sin fl dfl

o

using the series expansion (3) and z = cos fl, we easily obtain

f f2z

2t + 3

(COS~ fl)
#

~ ~ (6)
~j f2~

2t +

and hence S. The isotropic state is described by f2z
"

o except for Jo # o, which correctly

gives < cos~ fl > =
1/3 and S

=
o. The perfectly oriented state is described by f~~

=
0 except

when f2z - oc, which correctly gives < cos~ fl >
=

1 and S
=

I. Note that the denominator

is equal to 1/4~ if the distribution function is normalized.

Other order parameters < P2k(cos fl) > can also be calculated in this way.
«/2

Finally, the integrated intensity 1(9)d9
=

is a constant. (As already implicitly noted
8

in reference [11], no solid angle correction of the form sin 9 needs to be made to calculate the
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integrated intensity because it is directly included in 1(9) by the solid angle of the detector it-

self. Actually, this property is always valid for any form of f(fl) since it derives mathematically
from the general form of equation (1).

2.2. CALCULATION IN THE FRAME OF THE MAIER-SAUPE ORIENTATIONAL DISTRIBUTION

FUNCTION. We now consider the Maier-Saupe distribution function [13] because it is a

simple and widely used particular case. This distribution function is of the form

f(fl)
=

e~~°~~ ~ (7)
Z

where Z is a normalization constant given by:

Z
=

4~ e~~~dx (8)
~

and m is a parameter describing the strength of the nematic interaction compared to the effects

of temperature. The scattered intensity is expressed as

w/2 ~mcos~p~j~ fl
Ii°)

- £-~ z
~~~~

oidfl.

Substituting successively
z =

cos~ fl, t
=

(cos~ 9 z)~/~ and y =
m~/~t,

we obtain:

m
cos2

~~~~
~~ °~

~
~~~~ ~~~~~

~~ (9)

where erf(~1)
=

~
e~~~dy is the error function [12].

fi ~~
This result was first obtained and discussed by Paranjpe and Kelkar in reference [14]. It

shows that equation II) combined with the Maier-Saupe distribution function implies that the

scattered intensity should be fitted to the simple form (9).
At this point, it is instructive to use the series expansion of the error function:

2
~

°~ ~k
err(~)

#
-e~" ~j ~12k+1

9~
~ ~

(2k + 1)1!

to obtain an alternative form for 1(9):

°~ ~z z 2z

~~~~
Z

~

Ii
~~)!! ~~'~

1(0)
=

l
+

~~ cos~ 0 +
~~

cos~ 0 +
~~~

cos~ 0 +
~~'~~ cos~ 0 +

..j
(9")

Z 3

5~
1°5

45~

which should be compared to the general form (4). It appears that in the frame of the Maier-

Saupe distribution function, all the coefficients of the series are related so that there remains

only one independent parameter, m. Indeed, the Maier-Saupe distribution is obtained by only

considering the quadrupolar term of the multipole development of the interaction which is a

severe restriction.
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Here also, we can calculate the main order parameter S. Starting from equation (5) and

substituting x = cos fl leads to:

1

~ 2
/

z e~~ dz
j~j~)

(cos~ fl)
"

°

1
~

Jo (m)
e~~ dx

The integral J2(m)
can be integrated by parts and related to Jo(m). J2

"
[e~ Jo).

2m

1 W
~Now, it can be recognized that Jo

"
e~ dz is actually Dawson's integral [12, 13]@

cc ~

So that Jo can be expressed as a series: Jo
"

£ ~ Finally, S is given by S
=

~ ~

k!(2k +1)

(3(cos~ fl) -1). Table I shows the values of S as a function of m. Higher order parameters
2

can be calculated in exactly the same way. Here also, it can easily be checked that the integrated
intensity remains equal to 1/8.

Now, we would like to compare the description given here with the experimental data.

Actually, two hypotheses should be separately checked: first, the validity of equation (1)
obtained by Leadbetter et al. [7], then the validity of the Maier-Saupe orientational distribution

function. However, the expansion of1(9) in the form of a series of circular functions as predicted
by equation (4) in the general case is a result always valid as soon as

1(9) has the cylindrical

symmetry. Therefore, the fit of1(9) with expansion (4) is actually not by itself a proof of

the validity of equation (1). To test the validity of equation (1) we would therefore need an

independent way of determining the f2z coefficients of expansion (4). In the absence of such

an independent means of deriving f(fl), we could only try to compare the values of S obtained

in this way with those of the literature. Altogether, in this respect, the situation is quite the

same as that of the analytical inversion method of reference [11]. Furthermore, expansion (4)
land (9') too) converges only very slowly, especially in the case of large order parameters. This

Table I Relation between the Mater-Saupe coejfictent
m

and the order parameter S.

m Jo <cos2 J> S

I 1.46 0.43 O.15

2 2.37 0.53 0.30

3 4.22 0.63 0.45

4 8.23 0 70 0.55

5 17.17 0.76 0.65

6 37.73 0.81 0.71

7 86.03 0.84 0.76

8 201.51 0.86 0.79

9 481.52 0.88 0.82

10 1168 23 0.89 0.84
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makes the use of this expansion extremely awkward and inefficient so that we did not really
try to apply it. The fundamental interests in expansion (4) lie in the following points:

o
it shows the direct relation (so far unknown) between the development of1(9) and that

of jjfl);

o
it shows the constraints imposed on such a type of development by the choice of the

Maier-Saupe orientational distribution function instead of a general one.

However, practically speaking, expansion (4) is very hard to use. Fortunately, we will show

in the next section that, in most cases, the Maier-Saupe distribution function is valid so that

equation (9) can safely be applied. Moreover, we have indications that when equation (9)
does not describe the scattering quite well, this is not due to the Maier-Saupe distribution but

rather because one of the underlying assumptions I-iv is not valid.

3. Experiments

We have studied several mesogenic compounds ranging from classical rod-like molecules to

phasmidic molecules and mesomorphic polymers in order to try to define the domain of va-

lidity of the previous results We have considered SmA phases as well as nematic ones since

the nematic order can be followed in the SmA phase too. The case of SmC phases is more

complicated but can be addressed in a similar way as shown in reference [7]. The X-ray scat-

tering experiments were performed with already described classical set-ups using a focussing
monochromator (lCuK~

=
1.541 1), point collimation, a magnetic field to orient the sample

and an air-evacuated camera [15]. The scattered intensity was recorded on photographic X-ray
films and special care was taken to use them in their properly linear dynamic range. The

scattered intensity (Fig. 1) was then digitalized with a scanner previously standardized with

Kodak photographic step tablets of calibrated optical densities. The experimental scattered

intensity I~,p(9) needs to be corrected in order to obtain the normalized intensity 1(9) scattered

by the sample:

I~xp(9)
=

k .1(9) + IBG

IBG represents all the background intensity such as inelastic scattering from the sample and

residual instrumental noise. This term of
course depends on the scattering angle and also

slightly on the temperature but we assume that it does not depend on the polar angle 9. We

estimated IBG by averaging its values measured in different areas around the diffuse ring. IBG

is rather difficult to appreciate and since it has a crucial influence on the subsequent data

treatment especially at low order parameters, its influence is one of the flaws of the whole

procedure.
The Lorentz-polarization and absorption corrections proved to be negligible at these scat-

tering angles.
The multiplicative constant k gathers various factors such as the intrinsic scattering power [1]

of the sample, the exposure time, the sample volume, etc. This term has to be very accurately

determined when absolute measurements are needed, which is a rather tedious work. For our

purpose, fortunately, there is no real need to perform absolute measurements and this constant

will remain as a fit parameter of not much significance.
Figures 2 a-d show the experimental scattered intensity Iexp(9) and its fit (smooth solid

line) by equation (9) for compound 40.8 (N-(4-n-butyl oxybenzylidene)-4-n-octylaniline) at

different temperatures in the nematic and SmA phases. There are only two fit parameters:
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the multiplicative factor k and the parameter m of the Maier-Saupe distribution function. In

the nematic phase, the fit is very good whereas it is only fair in the SmA phase. This is most

probably due to the fact that, in the latter phase, we observe a series of diffuse lines in the

diffraction pattern. These diffuse lines arise from longitudinal correlations enhanced in the

SmA phase, and alter the measures of I~xp(9). This good agreement between the observed and

predicted shapes of the scattered intensity means that both the procedure of Leadbetter et al

leading to equation (1) and the Maier-Saupe distribution function, in spite of all their drastic

assumptions, do describe the wide angle scattering by 40.8. Moreover, the order parameters
(Tab. II) obtained by the fit are quite comparable to those obtained in [7] through numerical

25000,o

200000

,
isooo,o

~
m)
~

ioooo o

sore o

~
~o 0 20 o 40 o So o go o

POLAR ANGLE
a)

25000 o

20000 o

,
isooo o

~
m)
~

ioooo o

sooo,o

o
o~ ~ ~~ ~ ,~ ~ ~~ ~ ~~ ~

POLAR ANGLE
b)

Fig. 2. Scattered intensity Iexp(0) versus polar angle for compound 40 8 at: a) T
=

78 °C (ne-
matic), S

=
0.40. b) T

=
74 ° C (nematic), S

=
0 50 c) T

=
66 ° C (nematic), S

=
o.65. d) T

=
56 °C

(smectic A), S
=

0 78
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Fig. 2. (Continued)

inversion, except at high temperatures close to Tc. This discrepancy may come from the lower

signal/noise ratio which may have hampered one or the other method. More surprisingly,

the values of the order parameters obtained with use of formula (2) are about 20% larger

than the previous ones. Formula (2) derives mathematically from equation (1) without use

of the Maier-Saupe distribution function and should therefore be equivalent to the numerical

inversion performed in [7]. We do not understand at this time the origin of'this discrepancy.

We have also considered other classical rod-like molecules of the no-m series and of the series

of Schiff bases (Fig. 3). These various compounds essentially led to the same conclusions as

those obtained from the study of 40.8. We have then chosen "phasmidic" molecules which

considerably depart from the classical structure of rod-like mesogens since they are made from

an unusually long rigid core grafted with several aliphatic chains at its extremities [16]. The

IOUIINAL DE PIJYSIQUE fl T 3, N° I, JANUARY 1993
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Table II. Comparison between the order parameter estimations made by ~lse
of eq~latton (9),

after reference [7b] and by use of eq~latton (2) obtained in reference [11].

T /Tc S (this S (after S (by use

work) Ref [7]) of Eq. (2))

0 997 0.40 0.67

0 991 0.50 0.74

0.989 0.60

0.986 0.50 0.74

0.980 0.61

0.974 0.60 0.63 0.79

0.963 0.65 0.82

0 960 0.67

0.952 0.71 0.87

0 946 0.73

0.935 0.78 0.75 0.91

0.920 0.76

~~
AA

n

a
°o, a

-06 a
,oRb

g
~

oo°

jj
0.4 O 404 ~~~

n 408

~~
o 504 404

' TBEA

o

o.8 o 85 o-g 0 95

T/Tc

Fig. 3. Order parameter variation versus
reduced temperature in the nematic phase and smectic

A phase of
some

compounds of the nO
m

series (the
arrows point the transition between the two

mesophases), and in the nematic phase of the terephthal-bis-ethylanihne (TBEA).

chemical formula of the phasmidic compound is- (H15C70)24 C024 NCH # CHN # 02C #
(OC7H15)2.

The wide angle scattering is still well described by equation (9) either for a pure phasmidic

compound or for its mixtures in various parts with classical rod-like molecules. Thus, the

phasmidic mesogen in no way differs from the conventional ones in this respect. However the

exact signification of the resulting S values is questionable. In fact an assembly of phasmidic
molecules contains two sets of chains oriented at 60° one to each other, and it is clear that the
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Fig. 4. Order parameter variation
versus composition for mixtures of

a
phasmidic compound with

terephthal-bis-decylanibne (TBDA).

angular extension of the wide angle scattering arc depends both of cores and chains orientational

distributions. Therefore the S values reported in Figure 4 are partly representative of the

distribution of the chain long axes which depends of the molecular architecture. Indeed the

addition of a rod-like molecule, the terephthal-bis-decylaniline, to the phasmidic compound,
though does not significantly modify the stability range of the nematic phase, increases the

order parameter.

In general, the validity of the assumptions leading to the description of the scattering is

essentially assured by the disorder of the phase: the disorder indeed tends to average the

molecular conformations so that the molecules can effectively be described as homogeneous
cylindrical rods. Besides, in a highly disordered phase there will be little enough short range-

order for the cluster approximation to be correct. Moreover, the more disordered the phase,
the smaller the influence of the other features of the diffraction pattern. The influence of these

features such as the diffuse lines, perpendicular to the meridian depends on the form factor

of the considered molecule, as it appears in Figures 5a-c where different experimental curves

around S
=

0.7 are compared: the fit is less good for the compounds of the terephthal-bis-
alkylaniliiie than for the no m series. In addition, the effects of the finite nematic correlation

length is small when the order parameter is not too large (I.e. S < 0.8) [7]. In order to examine

to which extent equation (9) can be applied to the case of large order parameters, we hat,e

considered very
oriented'nematic phases, namely those of mesomorphic polymers.

We first selected a well-known series of main-chain polyesters of the following chemical

formula

-O
O

N=NO
O O~C-(CH~)n-CO

~ ~
DP

cH CH~
3

which was
studied by a large variety of techniques [17]. For polymer PE-11 (n

=
11), we

observed that equation (9) still provides a fairly good description. In contrast, in the case of

polymer PE-10 (n
=

10) some discrepancy occurs at low temperatures. Indeed, the fit is not as

good and gives order parameter values S m 0.7 (Fig. 5d) which are too low compared to what

could be inferred (S > 0.8) by inspecting the diffraction pattern. In this case, the small-angle
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diffuse ring looks more like a small diffuse line than a diffuse ring. This means that the phase
is highly ordered so that assumption iv) clearly breaks down. The fact that we observe this

discrepancy for PE-10 rather than for PE-11 comes from a classical odd-even effect [17]. The

spacers of PE-11 present many more gauche conformations than those of PE-10 and therefore

decrease both the nematic longitudinal correlation length and the nematic order parameter
(Fig. 6).

We have also selected several side-chain polymers of another well-known series [18].
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Fig. 5. Scattered intensity Iexp(0) versus
polar angle for S m 0.7. Comparison of different

com-

pounds a) 40.4, T
=

48 °C (nematic), S
=

0.70. b) TBEA, T
=

176 °C (nematic), S
=

0.69. c) 30%
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=

63 ° C (smectic A), S
=

o.70.
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Fig. 6. Order parameter variation versus
reduced temperature for main chain polymers PE10 and

PE11 in the nematic phase.

These polymers have the following chemical formula

f

~~~~~~-(CH )-OjCOfiOR
~ ~ ~

where X
=

H (polyacrylate) or CH3 (Polymethacrylate) and R
=

CH3 or OC4Hg.

Figure 7 shows the fits of I~~~(9) with equation (9) for X
=

CH3 and R
=

OC4Hg. Here also,
it appears that equation (9) provides a quite satisfactory fit to the data except for very large
order parameters S m 0.8-0.9. The results on polymer PA-OCH3 are quite comparable to those

obtained in reference [9c], with the same value of S in the nematic phase, the same jump at the

N/SmA transition but a slightly larger value at room temperature (0.85 instead of 0.75). This

larger value is in good agreement with that obtained (0.88) from NMR measurements on the

same compound [18]. Altogether, side chain polymers behave in the same way as conventional

mesogens as far as the validity of equation (9) is concerned (Fig. 5e).

4. Discussion

The variety of compounds presented in the previous section demonstrates that, in most cases,

the curve of scattered intensity1(9)
versus polar angle can be well described by equation (9).

This seems to ensure the validity of both the scattering formula proposed by Leadbetter et

al. [7] and the Maier-Saupe orientational distribution function From a technical point of

view, a fit of the data to equation (9) is clearly much easier to perform than the analytical or

numerical inversion of the integral equation (I). Furthermore, when the background is properly

subtracted, equation (9) only involves two unknown parameters (I.e. the multiplicative constant

k and the parameter m related to S). Therefore two single measurements of the scattered

intensity, for instance at 9
=

0° and 9
=

45°, are enough to determine the order parameter (and
the whole distribution). Actually, if one takes the pain of performing absolute measurements,

the multiplicative constant k would be known so that a single measure, at 9
=

0 for instance,
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would be enough to measure the order parameter. The most serious problems hampering this

method lie in the estimation of the background intensity especially at low order parameters,
and in the influence of other features such as additional diffuse lines or correlation length
effects especially at large order parameter. Because of these problems, we altogether estimate

the accuracy of our order parameter determinations to be around 10%, and the validity of the

approach becomes highly questionable for order parameters larger than m 0.8, and sometimes

0.7. It was also pointed out in [14a] that SmC fluctuations in the nematic phase may involve

molecular conformations very different from the rod-like model. In this case, equation (9) could

be roughly extended by considering a contribution due to the rigid core and another due to
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Fig. 7. Scattered intensity Iexp(0)
versus

polar angle for polymer PMAOC4Hg at: a) T
=

115 °C

(nematic), S
=

0.30. b) T
=

101 °C (smectic A), S
=

0.54. c) T
=

80 °C (smectic A), S
=

0.77. d)
T

=
25 °C (smectic A glass), S

=
0.85.
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Fig. 7. (Continued)

the chains.

As already noted in a large number of studies [7-9], the variation of the nematic order

parameter with reduced temperature S(T/Tc) has a similar behaviour for a vast majority
of compounds: it is the typical behaviour awaited for

an order parameter at a first-order

transition. Figure 8 summarizes this behaviour for both the classical rod-like molecules of the

nO.m series and the mesomorphic side-chain polymers studied in this paper. This figure shows

the very similar behaviour of all the compounds, be they of low or high molar mass.

Finally, let us briefly discuss the respective merits of the various experimental techniques

most frequently used to measure the order parameter. Local spectroscopies such as NMR or

ESR are also efficient methods, especially as they give local information more likely to describe

the behaviour of a single molecule rather than a cluster of molecules. However, ESR usually



N°I NEMATIC ORDER PARAMETER MEASURED BY X-RAY SCATTERING 129

O O
~ ~0.8 ° oO O

n
'.§

n .*~
§~

~'~
o PAOCH3 °

1'
t

u PMAOCH3
~ 0.4 o pMAOC4H9
W

. 404

~~ O 408

m 504

0

0.75 0.8 0.85 0 9 0.95

T/Tc

Fig. 8. Order parameter variations versus reduced temperature for all studied compounds of the

nO.m series and side-chain polymers.

requires the use of a probe which only partially follows the behaviour of the host molecules.

Moreover, both techniques do not give access to the whole orientational distribution function

f(fl) but to a limited number of its moments. From another point of view, NMR gives very
detailed information about the ordering of several (sometimes many) molecular sites but this

wealth of information can become confusing when a more synthetic description is desired. In

this case, macroscopic techniques such as magnetic anisotropy and optical birefringence may
be more suitable. Both methods do not give the whole f(fl) distribution but only its first

moment, S. These global methods need perfectly aligned samples over large volumes. The

order parameter is easily deduced from magnetic anisotropy measurements, the only difficulty
arises in controlling the quality of alignment. Optical birefringence is a very simple and prac-

tical technique, in which the misalignments are easily checked, but it suffers from the fact that

the relation between the macroscopic birefringence and the molecular polarizability is not as

straightforward [19]. Furthermore, since the largest contribution to the polarizability comes

from the ~ electrons of the rigid core, optical birefringence is more representative of the be-

haviour of mesogenic cores (similarly the magnetic anisotropy is mainly due to the aromatic

moiety of the molecule). In this classification, the scattering techniques are in between the

local and the macroscopic ones, so that the kind of information one wants to obtain should

be carefully thought of before selecting a technique. Moreover the comparison between dif-

ferent techniques could provide a better idea of the degree of ordering of the different parts
of molecules with complex shape such as phasmidic ones. Neutron scattering experiments
have also recently been performed [20]. In this case, the use of mixtures of hydrogenated and

perdeuterated molecules has allowed f(fl) to be obtained in a way quite different from that of

Leadbetter et al. [7]. The results were only in fair agreement with the Maier-Saupe distribu-

tion function in the nematic phase and partially disagreed in the SmA and SmC phases. This

discrepancy was interpreted as the influence of local molecular biaxiality. An advantage of this

technique is to get rid of many of the usual underlying assumptions I)-iv) such as the "clus-

ter approximation" but obvious drawbacks are the need for a neutron beam, for deuteration

and for
a large sample quantity. Therefore, in the field of the scattering techniques, equation

(9) first derived by Paranjpe and Kelkar, in spite of the shortcomings mentioned above and

the drastic hypotheses leading to equation (1), still constitutes the most practical method of

measuring the orientational distribution function and the nematic order parameter.
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