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Abstract. We present a semiclassical perturbation method for the description of atomic

diffraction by
a weakly modulated potential. It proceeds in a way similar to the treatment of light

diffraction by
a thin phase grating, and consists in calculating the atomic wavefunction by mean~

of action integrals along the classical trajectories of the atoms in the absence of the modulated part

of the potential. The capabilitie~ and the validity condition of'the method are illustrated on the

well-known case of atomic diffraction by a Gaussian standing wave. We prove that in this situation

the perturbation method is equivalent to the Raman-Nath approximation, and we point out that the

usually-considered Raman-Nath validity condition can lead to inaccuracies in the evaluation of the

phases of the diffraction amplitudes. The method i~ also applied to the case of an evanescent wave

reflection grating, and an analytical expression for the diffraction pattern at any incidence angle is

obtained for the first time. Finally, the application of the method to other situations is briefly

di,cussed.

1. Introduction.

The diffraction of atomic de Broglie waves by standing wave light fields II -4] or mechanical

microstructures[5] has recently received considerable interest because of its potential

application as an atomic beam splitter, one of the key components for the development of atom

optics and interferometry [6). Among the different realizations of atom diffraction gratings
proposed to date, the near-resonant Kapitza-Dirac effect [7] (the diffraction of atoms from a

standing laser field) has led by far to the most theoretical work [8]. Widespread interest in this

effect arose because the phenomenon is the quantum mechanical analog of diffraction of light

waves by a matter grating and also because it is conceptually one of the simplest examples of

stimulated momentum transfer between atoms and light. The theoretical description of such a

transmission diffraction grating is greatly simplified in the Raman-Nath regime of diffrac-

tion ill where the change in kinetic energy of the atoms due to diffraction is neglected

compared to the atom-field coupling. The problem then reduces to one dimension and the

diffraction grating acts as a thin phase grating (the interaction between the atoms and the

stationary laser wave only affects the phase of the atomic wavefunction). In contrast, the

theoretical treatment of atomic diffraction by an evanescent wave reflection grating [3, 41 is
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known to lead to several unusual problems, which are related to the fact that the motion

perpendicular to the diffraction grating can no longer be eliminated in a con~tant motion

approximation. Indeed, the slowing down and eventually the reversal of the atomic motion is

intrinsically associated with the reflection grating, and the problem remain~ necessarily two-

dimensional. As a consequence, only a few attempts [3, 41 have been made to describe this

diffraction process, and to our knowledge, no theoretical treatment provides a clear physical
picture of atomic diffraction in the limit of small saturation of the atomic transition ja regime of

great interest in atom optics experiments).
We present in this paper a semiclassical perturbation method which permits the treatment of

atomic diffraction by a weakly modulated potential. The method applies both for transmission

and reflection gratings, and proceeds in a way similar to the treatment of light diffraction by a

thin phase grating. It is based on the evaluation of the atomic wavefunction by means of action

integrals along the classical trajectories of the atoms calculated in the absence of the modulated

part of the potential. ln order to illustrate the capabilities and the limits of the perturbation
method, we first consider the well-known near-resonant Kapitza-Dirac effect for which we

prove the equivalence between our method and the Raman-Nath approximation. Furthermore,

we show that the commonly-accepted validity condition of the latter actually leads to

inaccuracies in the phases of the diffraction amplitude~. The case of atomic diffraction by a

weakly modulated evanescent wave grating is then investigated and an analytical expression
for the diffraction pattern at any incidence angle is derived for the first time. Finally, we

discuss the application of the method to the situation of time-modulated potentials and to the

case of multilevel atoms.

2. Semiclassical perturbati~e calculation of the diffraction spectrum.

We present in this section the principle of the semiclassical perturbation method for calculating
the diffraction spectrum of an atomic de Broglie wave interacting with a weakly modulated

potential. For illustration purposes, we will here restrict the discussion to the case of a spatiallj0
modulated potential (the discussion of a time-modulated potential is postponed to section 5).

2. DESCRIPTION OF THE MODEL. We consider the simple case of a two-level atom incident

on the optical diffraction grating provided by an appropriate arrangement of laser beams.

Because we are interested in the regime of coherent atom optics (limit of negligible
spontaneous emission), we restrict ourselves to the case of low saturation of the atomic

transition where the reactive part of the atom-laser wave coupling (light-shifts) is predominant

over the dissipative part. We also assume that the detuning between the laser waves and the

atomic frequency is properly chosen ~o that the atoms follow adiabatically the optical potential
associated with the light-shifted ground-state level, and that any Doppler effect can be

neglected. The Lagrangian of the atomic system is then of the form :

L(r, I)
=

Lo(r, I) Fv (r) (1)

where r
stands for the position of the atomic centre of mass, and r for its velocity. In

equation j, Fv jr ) denotes the spatially modulated part of the optical potential responsible for

atomic diffraction. This potential is assumed to be a small perturbation (F Ml is the

perturbation parameter) compared to the non spatially modulated Lagrangian Lo which

contains the kinetic energy term.

2? CALCULATION OF THE ATOMIC WAVEFUNCTION.

2.2.I Tfie WKB method. In the framework of a semiclassical (WKB) treatment of the

atomic center of mass motion, the atomic wavefunction is evaluated by means of action
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integrals along classical atomic trajectories. As shown in Appendix A, assuming that at time

t
= t~, the atoms have not yet interacted with the diffraction grating and that the atomic

wavefunction corresponds to a plane wave of momentum p~, the wavefunction at position

rj and time tj is given by

~/(ri t<J exP
'

S(ri, ti iP,, t,)1 (2J

where

S(rj, t, p~, t~)
=

p, r(i~) +

'~
dt Lir(t i, r(t)1 (31

1,

is the action integral along the classical trajectory r(t) solution of the Euler-Lagrange
equations associated with the Lagrangian L (Eq. (I)), given the boundary conditions :

~
~~' ~' (4)

r(ti)
= r/

with M the atomic mass, and the requirement that r(t~) be situated outside the interaction

region. Note that the first term in the right-hand side of equation (3) take~ into account the fact

that the boundary conditions (4) differ from the usual case where the initial and final positions
of the trajectory are specified. This term is associated with the phase of the atomic

wavefunction at the position r(t~).
It is interesting to note that the above-described method for evaluating the atomic

wavefunction closely resembles the way one accounts for interference or diffraction effects in

conventional optics (where optical paths are calculated along light ray~ derived from Fermat's

principle), and therefore is subject to the same validity conditions. More preci~ely, it requires
that both the amplitude of the wavefunction and the optical potential vary slowly on the scale of

the atomic de Broglie wavelength. It thus breaks down near the points where classical

trajectories cross each other, e.g., near caustics or focal points. Another characteristics of the

WKB method is that it require~ the knowledge of the classical trajectories for the total

Lagrangian L, which in practical applications requires a numerical integration of the Euler-

Lagrange equations.

2.2.2 Tfie peitm.batten metfiod. We show here that by taking advantage of the weakness of

the spatially modulated potential Fl'jr ), it is in fact possible to evaluate the action integral (3)

perturbatively up to leading order in
F

using only the clas~ical atomic trajectories for the

unperturbed Lagrangian
L~~

[9, 10]. The interest of this method is that the unperturbed

trajectories are often known anal_»ti<.al/;, and therefore allow for analytical derivations of the

diffraction spectrum.
The perturbation method proceeds as follows. We expand the action integral (3) and the

actual atomic trajectories r(t), solutions of the Euler-Lagrange equations for the perturbed

Lagrangian L, in powers of the small parameter F

r(t
=

ro~tJ + ~ri (t) +
~~ r2(t) +

~5~
S(r,, tj p~, t~)

= S~~ + ~Sj + F~ S~ +

Note that ro(t corresponds to the unperturbed classical trajectories, solutions of the equations

of motion for the unperturbed Lagrangian Ljj. Substituting equation (5) into (3), using
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equation and separating the different orders in F, we get a set of equations the three first of

which are (see Appendix A)

i~

So
= P, rn(t,) + dt Lujru(t ), iii (t j (6aj

,,

Ii
Sj

=

dt v [r,j(t)] (6b)

S~
=

I '~
dt rj (t VV ire (t >1 (6c)

2
f

Equation (6a) is nothing but the exact action integral (3) in the limiting case F =

0 where the

modulated part of the optical potential vanishes (no atomic diffraction). As a result, even

though So is generally known analytically, it plays no role in the characterization of the

diffraction spectrum and therefore will not be considered in the following. More relevant is

equation (6b) which describes the phase-shift accumulated by the atom along its mipe/.tw.bed
trajectory r~jjt), due to the presence of the modulated part of the optical potential.

Sj actually contains the first order information about the distortion of the atomic wavefront by
the diffraction grating, and can thus be used to derive the diffraction spectrum. This is the

central point of our perturbation treatment of atomic diffraction. It is clear however that such a

method will only be accurate in the limit of small ~, and we now discuss its validity range.
Considering equations (2) and (5), it appears that an appropriate condition is that

E~ S~ be sufficiently small compared to fi, in other words that the higher perturbation orders do

not significantly affect the atomic wavefunction. Using equation (6c), the validity condition of

our perturbation method thus reads

<j
I ~~ ~~~~~~~ ~~~~°~~~~ ~~ ~~~

for all possible trajectories. In fact, it is interesting to find an upper limit for the left-hand side

of equation (7) which permits a more transparent physical interpretation of the validity
condition. Note first that the gradient

p
Vv is the additional force acting on the atom due to

the modulated part of the potential. From the classical point of view, this force is responsible
for the momentum transfer involved in the diffraction process. As a result, the time integral of

the force will be of the order of the maximum momentum transfer Ap~~~ observed in the

diffraction spectrum (see Fig. I). Second pry (t)( corresponds to the deviation of the atom

from its unperturbed trajectory. Its maximum is ~i,~,~, the largest displacement observed after

the atoms have excited the interaction region with the light grating (see Fig. I). One thus

obtains a condition for the validity of the perturbation method

which states that the error in the atomic phase due to the integration of the classical action

along the unperturbed trajectory must be smaller than I, in other words that our approximate
semiclassical estimate of the atomic wavefunction be essentially the same as in the WKB

method.

For illustration, let us consider the situation of a phase grating modulated along a single
direction in space with a period a, and let n~~, be the maximum diffraction order observed in

the experiment. Condition (8) then reads

~i~~~ « ? a/ii~~, (9)
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Fig. I.- Perturbed (wlid line) i,ei.iii.v unperturbed (da~hed line) atomic trajectories. At time

t
= t~

where the atoms exit the interaction region with the diffraction grating, the maximum deviation in

momentum (resp. in position) between the perturbed and unperturbed atomic trajectories is ~p~,,,, (re;p.

~"m.m).

which means that the deviation of the atoms from their unperturbed trajectories must be small

compared to the grating period diiided bj' (lie ma.vimiim diffiia<.lion older. Note in particular
that condition (9) is stronger than the validity condition of the WKB method, which requires
that no caustics or focus points appear inside the interaction region between atoms and lasers,

and which reads

~l'~
j,

@ a
(10)

As it happens, the validity condition (8) of the perturbation method embodies the range of

applicability of the semiclassical method, provided however that the incident atomic de

Broglie wavelength remains small compared to the spatial variation scale of the optical
potential. Finally, it is possible to transport condition (8) from the spatial to the time domain by

noticing that ~i~,,, is of the order of ~p~~,/M times the typical interaction time
r

between the

atoms and the light grating. In this way, one obtain~ a validity condition equivalent to (8)

which reads

~~~~~'
z « h (I Ii

To conclude, we point out some important features of the above perturbative method. First,

the method clearly establishe~ an analogy between atomic diffraction by a weakly modulated

optical potential, and light diffraction by a thin phase grating. Second, it is valid no matter the

form of the unperturbed atomic trajectories, and thus identically applies to transmission and

reflection gratings. Third, as will be shown in the following, it generally leads to unalvti<.a/
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expressions of the diffraction amplitudes because Sj only involves the unpeitw.bed atomic

trajectories which are often known analytically.

2.3 CALCULATION OF THE ATOMIC DIFFRACTION SPECTRUM. In a real experiment, atomic

diffraction is observed at a distance from the grating much larger than its typical spatial

modulation scale (generally of the order of a micron). As a result, the atomic wavefunction (2)

evaluated just at the exit of the interaction region with the grating does not properly account for

the observed diffraction pattern. In fact, it is necessary to propagate the atomic wavefunction in

the far-tie/d region for obtaining the appropriate diffraction spectrum. Here are summarized the

main results of Appendix B, where the detailed derivation of the diffraction spectrum is

pre~ented.
For illustration purpmes, we consider a two-dimensional geometry (,i-z plane) where atoms

are incident from = =
oJ with momentum p~ on a diffraction grating with spatial modulation

of period a in the i direction (the formalism can be generalized straightforwardly to a three-

dimensional situation). Because of the periodicity of the grating, the atomic diffraction

spectrum displays a discrete pattern. The diffraction orders are labeled by an integer number

n
which denotes the momentum transfer nhc/ (with q

=

2grla) from the grating to the atoms in

the.i direction. It follows from energy conservation during the diffraction process that the

atomic momentum p~"~
=

(p("~ p~"~) associated with the n-th diffraction order reads

ll i ~~~

~~

' ?~

where p~_, is the component of the incident atomic momentum along the i axis. As ~hown in

Appendix B, the diffraction amplitude a~, associated with the ii-th diffraction order can be

evaluated from the value of the atomic wavefunction on a surface = = zj located at the exit of

the interaction region between the atoms and the light grating. More precisely, two situations

can be distinguished depending on the way the atomic wavefunction is evaluated.

. Deiii,ation fi.om the WKB ti~ai0eJim<.tier. In the case where the atomic wavefunction is

evaluated following the WKB method (Sect. 2?,I ), the diffraction amplitudes are given by

(see Appendix B)

ai
~
'a I' d I

i
+
~il' ~ ir i exP pi

r i1~

where r~(x,, z~) belongs to the ideally infinite surface z = zj, and pi ~j.<~) denotes the z-

component of the atomic momentum associated with the classical perturbed trajectory

r(t ) ~atisfying the boundary conditions (4). It is important to note that equation (13) does lint

merely correspond to the Fourier tran;form of the atomic wavefunction after the interaction

with the diffraction grating. A difference indeed arises due to the supplementary factor in

square brackets, which accounts for the angle of inclination of the trajectories with respect to

the normal of the surface = = =,.

. Deii10ation fi.ofii the peitw.batioii methr)d. In the case where the atomic wavefunction is

evaluated following the perturbation method described in section 2.2?, it is consistent to

evaluate the diffraction amplitudes by substituting condition (I II into equation jl 3). As shown

in Appendix B, this yields

~' ~

j[
~ ~ ~~~~ ~~~ ~ ~~

~~
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which is the simple Fourier transform of the atomic wavefunction after the atom-grating
interaction.

3. Illustration example : diffraction by a Gaussian standing wave.

We illustrate in this section the capabilities of our perturbation method by considering the well-

known case of atomic diffraction by a Gaussian standing wave, leading to the nearly-resonant
Kapitza-Dirac effect. We show that our method recovers the analytical expression for the

diffraction orders II, 2] at any incident angle, and we prove its equivalence to the Raman-Nath

approximation. The validity condition (8) of the method is verified by comparison with

numerical WKB calculations, and we show that the accepted validity condition of the Raman-

Nath approximation can lead to inaccuracies in the evaluation of the phases of the diffraction

amplitudes.

3. CALCULATION OF THE DIFFRACTION SPECTRUM. Consider a two-dimensional geometry
where an atomic beam of momentum p~ crosse~ the waist Ml

of a Gaussian standing wave at the

incidence angle 6 j6 0 at normal incidence j, and assume that the atomic kinetic energy is

much larger than the height of the optical potential provided by the light field. The Lagrangian
describing the atom dynamics thus takes the form Ii with

La
=

M i~ 5 al

Fv (r
=

~ vi exp (- 2 =~/w~~) ( + cos 2 lx ) lsb)
,/2gr

where t
=

?gr/A is the wavevector associated with the laser wavelength A. As described in

section 2.2.2, the perturbation method is based on the evaluation of the action integral
Sj (Eq. (6b)) describing the phase-shift undergone by the atoms along their unperturbed
trajectories ro(t)

=
(,io(t ), zo(t )) which read

to(t
= ,i'~ +

~~'
t

~
6)

Co (t )
jj"

t

The phy~ical origin of the phase-shiit can be visualized in figure 2a where we have projected

the trajectories (16) onto the perturbation potential (lsb). More precisely, Sj is evaluated by

substituting equations jlsb) and (16) into (6b). One thus gets

sj
'

Vi r(1 + p~~j61cos 2 ti~) (17)

where
r =

Mti,/p~_
=

is the typical interaction time between the atoms and the laser wave, and

p~~ 6 i~ a real parameter describing the amplitude of the phase modulation which depends on

the incidence angle 6 [1Ii

~ ~ ( ~)p j~ exp jkti. tan
KD ?

Note that the Kapitza-Dirac incidence factor p~~ decreases exponentially with the parameter

IA, tan 6
=

k(p~ ,/M) r, which corresponds to the dimen~ionless displacement of the atoms

along the standing wave direction during the typical intraction time
r. In particular,
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Fig. 2.- Unperturbed atomic trajectories (bold line~) projected onto the perturbation potential
FV (mesh). The atomic difiraction process results from the spatially modulated pha~e-shift undergone by
the atoms along their unperturbed trajectories where they interact with the perturbation potential. la) Ca;e

of a Gaus~ian ~tanding wave. lb) Case of an evanescent wave reflection grating (,i-z coordinates). Note

that the potential surface only corresponds to the spatially modulated part of the optical potential, and

thus takes both positive and negative values. (cl Same a~ figure 2b, but t-time coordinates. Note the

analogy with the case of figure 2a.
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p~~
=

(maximum value) at normal incidence, whereas p~~ tends toward zero at grazing
incidence (because of the spatial averaging of the potential modulation).

Finally, using equations (17), (5) and (2), one obtains

~k ii. =j) oc exp
' Fl'j

r p ~~(6 cos [2 k (-ii zj tan 6 )] (19)
2 h

from which the populations of the diffraction orders follow straightforwardly (see Eq. (14))

~ ~

FV
T

~n ~» ~ KD( ~
~ fi

(~°)

0.4
~~ n=1

0.3

c
n=2j

'
~-~

~ '

0.1
'

6
2 3 4 5

angle of incidence (nuad)

~~ n=1

n= 2

'~
n=3

0.1
'~

'

6

AM n/2

angle of incidence (tad)

Fig. 3. Population~ of the diifraction orders n
1-3 iersuv the incidence angle 6 (difiraction orders

n and fi are equally populated). (a) Case of a Gaussian standing wave transmission grating, with

Hi =

100 A and Fil r/ (2 fi 3. The diffraction pattern displays a dramatic dependence on 6 on the scale

of a few mrad. lb) By contrast, the evanescent wave reflection grating leads to a diffraction spectrum

which varies much more smoothly with the incidence angle (x q, Fp, =/(hx) 3).
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with J,, the n-th Bessel function of integer order. Note that equation (?0) exactly corresponds to

the result derived by Martin et al. II 2] using the Raman-Nath approximation. Note also that the

estimate (20) is subject to the condition II ), which can be written in the form

4 n$~, E~
r « h (21)

where E~
=

h~ k~/2 M is the one-photon recoil energy, and n~~~ is the maximum diffraction

FV
r

order, given approximately by n~~, m
p~~

2 h

We have represented in figure 3a the dependence of the population~ of the three first

diffraction orders as a function of the angle of incidence 6, for a typical experimental value of

the laser waist ii> =

100 A ?]. As reported in [12], the diffraction ~pectrum is found to display

a dramatic sensitivity on the incidence angle on the scale of 5 mrad. This property results from

the large value of ti> used in figure 3a as well as in the experiment of reference II ?) (see

Eqs. (18) and (20)).

3.2 COMPARISON wiTH THE RAMAN-NATH APPROXIMATION. As shown above, the pertur-
bation method allows u~ to recover exactly the analytical expression for the populations of the

diffraction orders obtained using the Raman-Nath approximation. We show here that both

approaches are actually equiiialent in the case of a Gaussian standing wave diffraction grating.
Let us briefly recall the main features of the Raman-Nath approximation [2, 12]. This

approach is based on the Schrodinger equation describing the interaction between fast atom~ of

incident momentum p, and the laser standing wave. In the interaction picture and after

adiabatic elimination of the excited state, this equation reads

ifi 3 fl~(; tj
=

~~ ~~
+ ~l'jr jtjj fl~(, t) (?2j

2 M 3,2 ~~

where I' is defined as in equation (15b) and rjj(t as in equation (16). The atomic wavefunction

i~ then Fourier-expanded as #rj,v, t)
=

jja,,(t )e~"'~' and the diffraction amplitude~ u,, are

found to satisfy

' "
'

'

~ 2 >1/?, ,/M'
~ 2 a,j + a,,

+
~

~ ~~
~~~'~ ~

~'~~ ~~ ~' ~~~~~~~~
j~

~

~ ~xp(- 2 t~/T~) (~l' ~

Finally, the kinetic energy term in equation (23) is neglected compared to the average atom-

field coupling, provided that the Raman-Nath condition i~ fulfilled :

4 11(j, ER « Fp
KD

V ~~~~

Hence expression (?0j is readily obtained.

In fact, the Raman-Nath approximation is equivalent to the Schr0dinger equation (?2j

ti.ithr)lit tfie tineti<. eneig_v term, the solution of which

~ ii.j. t ) oc exP I-1
~ j, ~~ ~ ~~~~ ~~ ~~~~

is rigorously equivalent to the result (19) obtained using the perturbation method. It i~

important to note however that despite the mathematical equivalence between the Raman-Nath
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approximation and the perturbation method, both approaches are associated with different

validity conditions. Indeed, whereas condition (21) applies to the latter, the Raman-Nath

approach is associated with equation (24) which can be rewritten using the expression of

n~~,,, in the form :

2 n~~~ E~
z « h (26)

Thu~, condition (21) is more severe than condition (26) by a factor of the order of

n,~,, which can be significantly larger than I. We show in the following section that as far as

the pr)/>ulations of the diffraction orders are concerned, conditions (2 Ii and (26) are not easily

distinguishable, but that equation (21) is actually more accurate than (26) for the estimate of

the phases of the diffraction amplitudes.

3.3 COMPARISON wiTH WKB cALcuLATioNs. Here we discuss in more detail the validity

of the perturbation method, by comparing it to the WKB treatment of atomic diffraction. In

view of section ?, one can express the WKB wavefunction #rw~~ in terms of the perturbed

wavefunction
#r~~~, as

~WKB
~ ~perl ~~~~ (~~~

where in the limit of small deviations between the two approaches,

3 @ (-ii
= Y~

sin [2 t (ii =j tan 9 (28)

Here
Y~

=4n$~~E~ z/h is the small parameter from condition (211. As a result, from

equation (27) and neglecting possible asymmetries in the diffraction, the diffraction spectrum

derived from the perturbation method appears as the convolution of the WKB diffraction

spectrum with the Fourier tran;t'orm of the function

~,~~~ ~f >n j,,, ~ /2 exp 14 '
~l4

~" l ~~ ~~~ ~ ~~~~~ ~p j
=

e

~~~ ~

which only display~ even diffraction orders, and has a typical width 3m
= Y~.

In the limit
Y~

» where condition (21) is not fulfilled, the convolution spectrum is large and

thus the diffraction spectrum derived using the perturbation method differs significantly from

the WKB spectrum. In contrast, in the limit
Y~

« I where the validity condition (21) is

fulfilled, the convolution spectrum is narrow, and hence the perturbation method is a good

approximation. Quantitatively, the second order expansion of function (29) reads

exp(I 3 ~fi )
=

~ ,

=

e~'~~~
+

~
cos [4 t (,ij zj tan oil '~

cos [8 t (,ij Ii tan 6 II '~' (30)
2 8 16

As far as the phases of the diffraction amplitudes are concerned, the difference between the

WKB and the perturbation method thus reduces to a global phase-factor e~'~'~. It is also

possible to compare the populations of the diffraction orders using equation (30). After a

straightforward calculation, one finds

2

~ii.
pert ~i< WKB

~
~ /~ [~ ~« ("« + ~n

4 + ~n
+ 4

(~n
2 + ~n

+ ~
)~ (3 )

where the argument of the Bessel functions is the same as in equation (?0). Since the term in

square brackets is typically of the order of unity, we see that the populations of the diffraction
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orders derived from the WKB and the perturbation method only differ by a fraction of

Y~~. It is important to note that the perturbation method, and hence the Raman-Nath

approximation, is therefore much more accurate for the evaluation of the modulus square than

for the estimate of the phases of the diffraction amplitudes.
We have performed numerical WKB calculations of the diffraction spectrum, and compared

the results with those of the perturbation method. We have confirmed that in the case where

condition (? Ii was fulfilled, the phases of the diffraction amplitudes actually differ by the

amount Y~/2. The populations of the diffraction orders were not clearly distinguishable as

expected from the smallness of Y~~. We have been particularly interested in the range of

parameters where condition (26) was fulfilled, whereas condition (21) was not. In the

parameter space that we have explored, we have observed that the populations of the

diffraction orders were still given to a good approximation by equation (20), but that the phases
of the diffraction amplitudes actually differed significantly from the WKB estimates.

In conclusion, it turns out that the validity of both the perturbation method and the Raman-

Nath approximation are subject to one condition for the phases (Eq. (21ii and to another for the

modulus square jEq. j26)) of the diffraction amplitudes.

4. Diffraction by an evanescent wave reflection grating.

We consider in this section the atomic diffraction process associated with the reflection grating
provided by an evanescent wave having a small standing wave component. Similar to the

analogy between the Kapitza-Dirac effect and light diffraction by an acoustic wave, one might

expect the evanescent wave reflection grating to be similar to the light diffraction grating
produced by surface acoustic waves (where the periodic undulations of the free surface act as a

surface grating). In fact, important differences arise between atom and conventional optics
concerning the reflection gratings. First, the repulsive potentials of atomic mirrors typically

vary on the scale of the optical wavelength, which is generally much larger than the de Broglie
wavelength of the incident atoms. The situation is reversed in conventional optics where

metallic or dielectric surfaces achieve spatial changes in the refractive index on a spatial scale

much smaller than the optical wavelength. Second, from a geometrical optics point of view,
atomic trajectories display properties different from those of light rays because of the nonzero

atomic mass. For instance, the fact that an atom can be decelerated until its velocity is zero has

no equivalent in conventional optics. We show here that in the semiclassical regime of

reflection, the ei,anescent wave reflection grating is actually much more closely analogous to

the tiansmis.lion than to the iefle<.tier grating of conventional optics. More precisely, we prove
that it is equivalent to the transmission grating produced by a standing laser wave having an

Eckart profile (oc sech~ ). Analytical expressions for the populations of the diffraction orders at

any incidence angle are obtained, and the experimental conditions for observing the diffraction

spectrum in the thin phase grating limit are briefly discussed.

4. CALCULATION OF THE DIFFRACTION SPECTRUM. Consider a two-dimensional geometry
where an en~emble of laser-cooled atoms of momentum p~ is incident on an evanescent wave

reflection grating [3, 4] having a small standing wave component. Let 6 denote the angle
between p, and the normal of the mirror, and assume that the optical potential height provided

by the evanescent wave is larger than the incident kinetic energy of the atoms. The Lagrangian
describing the atom dynamics thus takes the form (I with II 3] :

Lo
=

MF~ Vi e~ ~ ~° (32aj

FV (r)
=

FV e~ ~~ cos 2 q-1 (32b)



N° II ATOMIC DIFFRACTION BY A THIN PHASE GRATING 1967

where the wavevectors K
and q are typically of the order of the vacuum wavevector

t
=

2gr/A associated with the laser wavelength A. Following the semiclassical perturbation
method described in section2.2.2, we first derive the unperturbed atomic trajectories

ro(t)
=

(,<o(t), zo(t)) which are given by [14]

ro(t )
= .i~ +

~~'
'

t
~

~

(33)

zu(t)=- In
~~° sech~(t/r)

~
"

~ ~~

where
r

M/Kp,
=

is the typical reflection time of the atom on the evanescent wave mirror.

Second, we evaluate the action integral sj (Eq. (6b)) by time-integration of the perturbation
potential experienced by the atoms along their unperturbed trajectories (see Fig. 2). Using
equations (32b) and (33), this potential is found to be

2

FV (t
= F

~"'
cos [2 q(,i, + p,, ,/Mt ii sech~(t/r (34)

By comparison with equations (lsb) and (16), it clearly appears that equation (34) is

analogous to the perturbation potential experienced by the atoms in the Kapitza-Dirac

geometry discussed in section 3 with the following substitutions

l'j ~

,'2
gr

p) ~/2 M

~,l~
/K

~~~~

exp (- 2 z~/tii~ j
~

sech~(Kz

This shows that in the limit of a small standing wave component, the evanescent wave

reflection grating actually behaves as a ti"ansmission grating (see Fig. 2). This is because the

optical potential associated with the evanescent wave varies very smoothly on the scale of the

incident de Broglie wavelength [15].

Substituting equation (34) into expression (6bj, one readily obtains

~l
"

~
Ew

6
~'

°
cos 2 q_i'~ (3~j

where p~w al is the evanescent wave incidence parameter analogous to equation (18) given
by

P~w(a
=

ar tan a q/~

~~~'~ ~~ ~~~' ~ ~/"
~~~~

which has a similar asymptotic behaviour as pKo (Eq. (18)) as 6 tends toward 0 or

gr/2. Finally, using equations (36), (5), (21 and (141, it is straightforward to derive the

populations of the diffraction orders which are found to read :

a~
~

=

J(
E

p
~w

6 )
~~'

' (38)
AK

Note that equation (38) is analogous to expression (?0) with the replacements (35), as

expected from the analogy with the Kapitza-Dirac effect. Note also that the argument of the
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Bessel functions (or equivalently the number of observable diffraction orders) is here

proportional to the incident momentum in the z direction in the case of the reflection grating,
whereas it is inversely proportional to it in the case of the transmission grating (see Eq. (20)).

This is because in the case of the transmission grating, the height of the perturbation potential
is fixed and therefore the atomic phase-shift decreases with incident momentum because of the

I/p, ~-dependence of the interaction time
r.

By contrast, in the case of the reflection grating,
the height of the effective perturbation potential experienced by the atoms is proportional to the

squat-e of the incident momentum, as shown by equation (35). For increasing momentum the

increase of the potential height therefore overcomes the decrease of the interaction time, hence

the phase-shift increases with p,_
~.

Similarly to the case of section 3, the accuracy of equation (38) is subject to condition (2 Ii
with n~~~ m F p

~w
( 6 p, =/hK, with the restriction however that the semiclassical description of

the reflection process be valid, I.e., p,
=

» AK [14]. In fact, even though condition (21) is

required for the accuracy of the phases of the diffraction amplitudes, equation (38) remains

valid in a broader range of parameters given by a condition similar to equation (26).
We have represented in figure 3b the dependence of the populations of the three first

diffraction orders as a function of the angle of incidence 6, for typical experimental

parameters. In contrast with the case of a Gaussian standing wave (Fig. 3(a)), the diffraction

spectrum of the evanescent wave reflection grating does not exhibit a dramatic sensitivity on

the incidence angle. This characteristic arises from the difference in the spatial extensions of

the gratings along the z direction (w
=

100 A for the transmission grating, w =
I /K

m
A /2 gr

for

the reflection grating).

4.2 CONDITIONS FOR AN EXPERIMENTAL REALIZATION. Here we briefly discuss the exper-
imental conditions required for the observation of atomic diffraction by an evanescent wave

grating in the regime of small modulation of the optical potential investigated in the preceding
section. Let us first examine the implications of the validity condition (21). Using the

expression of
r

and assuming that K m
k, one obtains as a first constraint

p, w ? n(~, hk (39)

In order to observe 5 diffraction orders, one thus has to achieve typically p,,= I100 hK.

Second, one has to take care of the absence of spontaneous emission events during the

reflection process. As shown in II 6], the spontaneous emission probability P,~ per reflection

reads

P,p
=

"
~ 140)

where r is the natural width of the excited state and A is the laser frequency detuning from

resonance. In order to avoid spontaneous emission, one thus needs a laser detuning
A =10~ r. Third, it is necessary to realize a sufficiently high optical potential barrier for

reflecting the atoms, I-e-, Vi
1

10~ E~. Because Vi is inversely proportional to the detuning

~, this requires a large laser intensity, typically of the order of 103 W/mm2 (case of rubidium

atoms). This shows that such an experiment requires amplification techniques of the

evanescent wave using either surface plasmons [17] or thin dielectric waveguides [18].

5. Application of the method to other experimental situations.

We have shown so far that the semiclassical perturbation method was a convenient tool for

describing atomic diffraction by a weakly spatially modulated potential. We mention here

possible extensions of the method to other situations of experimental interest.
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. Atomic- inteifierometi-y. In atomic interferometry~ it is often necessary to derive atomic

phase-shifts due to small potentials, associated for example with a gravitational field or the

rotation of the interferometer. In this situation, the expansion (6) can be used to calculate

perturbatively the atomic phase-shifts using action integrals along the unperturbed atomic

trajectories [19].

. Time-modulated potential. Because the central point of the perturbation method consists

in evaluating the time-integral of a perturbation potential experienced by an atom along its

unperturbed trajectory, the method applies straightforwardly to the situation where an atom

interacts with an optical potential having a sufficiently small time-modulated component. For

an illustration in the case of a time-modulated evanescent wave optical potential, see

reference [20].

. Mu/tiler,e/ atoms. Certain experimental situations arise where the multilevel structure of

the atoms plays an important role. For example, one can be interested in the atomic diffraction

process by a Gaussian standing wave saturating the transition between a ground-state and a

long-lived excited state. One can also consider a situation where the saturation of the optical
transition is negligible, but where the Zeeman degeneracy of the ground-state is involved le. g.,

an atom interacting with a standing wave displaying a polarization gradient). In such cases, the

atomic state must be described by a spinor the components of which are associated with a given
atomic internal state. However, in the case where the potential responsible for the mixing of

the internal states can be considered as a small perturbation, it is possible to generalize our

method and to derive the time-evolution of the atomic spinor by integration of the evolution

operator associated with the perturbation potential along the unperturbed atomic trajec-
tories [2 II-

6. Conclusion.

We have presented a semiclassical perturbation method which allows one to describe in a

simple way the interaction between an atom and a potential having a small modulated

component. This method is the analog in atom optics of the treatment of light interaction with

thin phase objects in conventional optics. It generally provides clear physical pictures as well

as analytical descriptions of the interaction process. It consists in evaluating the atomic

wavefunction by time-integration of the modulated potential along the unperturbed classical

trajectories of the atoms. A validity condition of the method has been given and illustrated on

the well-known Kapitza-Dirac effect, where the method has been proved to be equivalent to

the Raman-Nath approximation. We have also used the perturbation method for deriving for

the first time an analytical expression for the populations of the diffraction orders of an

evanescent wave reflection grating at any incidence angle. This perturbation method should

prove interesting in a broader range of experimental situations, as shown by its application to

the treatment of atom interaction with time-modulated potentials [20].
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Appendix A.

Semiclassical perttttrbative derivation of the atomic waveftttnction.

In this appendix we derive equations (2) and (3) of section 2.I for the semiclassical atomic

wavefunction, as well as the perturbative expansion (6) of the action integral (3).
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A. SEMICLASSICAL DERIVATION OF THE ATOMIC WAVEFUNCTION. For a time-independent
Hamiltonian system, the quantum propagator can be represented by a Feynman path

integral [22]. Thus, if at time t
=

t,, the atom is described by a plane wave of momentum

P,

' <r, t< ~
exP iP, r) ~A. ')

then at time t
=

tj, the atomic waveiunction is given by the convolution product

4i ir< t< -

dr, K (r< t< r, t,i exP P, r, (A.2)

with the Feynman propagator defined as the path-integral

lrf. t<J I It,K(r,, t~(r,, t,
=

5) [r(t)] exp L(r(t ), Fit )) dt (A.3)
tr.

t1
~

t

The measure d)[r(t)] signifies that the integration is to be taken over all trajectories
r(t) satisfying the boundary conditions

lr(t,)
= r,

(A.4)
r(t,)

= r,.

The semiclassical version of the quantum propagator (A.2) arises from a stationary-phase
approximation. The path integral is then dominated by contributions from classical trajectories

since these render the phase of the integrand stationary. The phase of the atomic wavefunction

(times h) is therefore given by the value of the generalized action :

Sir(t), r,i
=

p, r, + j~'L(rit i, r(t )) dt (A.5)

t

for the specific initial point r, and the trajectory r(t) which fullfill the stationary-phase
condition

0
=

bS
=

p, br, + br
~~

+
~~ br

i ~ i
dt (A.6)

dF

,

t,
~~ dt at

for any small deviation (br,, br(t)) from the path of stationary phase. Because the boundary
conditions (A.4) impose the relation

br<t,) br, (A.7)

it follows from (A.6) that

(t,)
=

fi
it,

= p,
dr

dL d iL
(A.8)

p ~ =

o.
~ t dF

As expected~ one finds that the stationary-phase trajectory r(t) is a classical trajectory (it is

solution of the Euler-Lagrange equations of motion) which satisfies the boundary con-
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ditions (4). The semiclassical atomic wavefunction is hence given by equations (?) and (3) of

section 2.1.

A.2 PERTURBATIVE EXPANSION OF THE ACTION INTEGRAL. We consider the method

described in section 2? for deriving the action integral (3) by an expansion in powers of the

small parameter F. In fact, only the second-order term is non-trivial the zero-th order term

So corresponds to the absence of the modulated potential and hence to expression (6a), and

equation (6b) arises from the fact that the term linear in
F

involving the nonperturbed
Lagrangian Lo vanishes by virtue of the stationary phase-condition (A.6) for the unperturbed
trajectory ro(t). ln order to calculate the second-order term (6c)~ we have to expand both the

boundary conditions (4) and the Euler-Lagrange equations of motion for the pertw.bed
trajectory up to first order in F. This yields the relations~~ j iLo

0
=

Pi + rj
if ~~ if

r r,,, r r,>. t t, j A_9)
j j dLo jV d I d ~Lji

o
=

Pi + rj rj + ri
jj Jr Jr Jr dt jF ~r jF

r=r,,.r=r<,

The second-order term of the action is equal to

jt,
jLg ALU jv j j j 2

~~ ~' ~~~~'~ ~ ~~ ~~
Jr

~ ~~
jp

~~
Jr

~
2

~'
Jr

~ ~~
jp

~° ~~'~°~

Note that all the quantities inside the integral are evaluated along the iiipeitiiihed trajectory.
Finally, u~ing <A.9), the Euler-Lagrange equation for ro(t) and integrations by part~,
equation (A.10) is readily simplified to get the result (6c).

Appendix B.

Calculation of the diffraction spectrum.

In this appendix we derive the expressions of the atomic diifraction amplitudes (13) and (14).

B.I QUANTUM-MECHANICAL INTEGRAL THEOREM OF HELMHOLTz AND KIRCHHOFF. In a

potential-free region of space, the wavefunction of an atom of kinetic energy E satisfies the

Schrbdinger equation

V~#+~i~#=0.
(B.I)

h-

Because equation (B.I) has the same form as the Helmholtz equation in electromagnetic

theory, it is possible to use a quantum-mechanical version of the integral theorem of Helmholtz

and Kirchhoff [23] to express the atomic wavefunction in the far-field region (which describes

the diffraction pattern) from its value on a boundary surface I located in the free-field region

reached by the atoms after their interaction with the diffraction grating. One thus has

where n denotes the outward-pointing normal to the surface ~, and r, corresponds to the

endpoints of the classical trajectories along which the action integral (3) is calculated. The
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integral in equation (B.2) involves on one hand the quantum propagator G~(r, r,) for a free

particle of kinetic energy E, solution of

V~
+

~ ~f Ej G~(r, r~)
=

4w 3 (r r~) (B.3)
h-

(3 is the Dirac delta function), and on the other hand the value of the atomic wavefunction and

its spatial derivative n Vi on the surface I. More precisely, Vi is evaluated either from the

WKB or the perturbation method using the relation

V~ (r,)
=

j p~(r, ) ~ (r,) (B.4)

where p,(r~) is the local atomic momentum at the endpoint point r, of the classical trajectory.
Note that whereas the direction of p~(r, generally depends on r,, its modulus is constant, equal

to that of the incident atomic momentum p, (because of energy conservation in the diffraction

process).

B.2 DIFFRACTION BY A TWO-DIMENSIONAL PERIODIC GRATING. We consider here the

particular case of a two-dimensional diffraction grating located in the ~ioz plane (or

equivalently a three-dimensional grating with translational invariance along the ),-axis). We

assume that the grating has a finite extent in the =-direction, but is infinite in the >.-direction

along which it is spatially modulated with the periodicity a. Using the notations of section 2,

one thus has

V.;
,

V j-t + a =

V (.;) (B.5)

It follows from equation (B.5) and the Bloch theorem that the atomic wavefunction will take

the form

V.;,
z # (.< + a, z =

e'~' '~~ ii-;, z (B.6)

with p,
,

the component of the incident atomic momentum along the -<-axis [24]. In order to

take advantage of this property in the derivation of the diffraction spectrum, it is convenient to

define the surface I of equation (B.2) as a line
z = z~ (n

= -e~ is thus independent of

r,) and to express the two-dimensional quantum propagator G~(r, r,) in the free-field region

(=
~ =~) in the form [23] :

G~(r, r,)
=

I dp, exp
'

p (r r,) (B.71
p= h

where p= =

,~
<the integration is restricted to the interval (p, w

,/2 ME because

the evanescent wave components of the propagator do not contribute to the far-field

wavefunction). Using equations (B.4), (B.6) and (B.7), and dividing the integration range of

equation (B.2) into intervals of length a, one obtains

~j i j° u~~~ dp i +

P/. -~~/~ ~i>~,
z~) x~ (~ ~fa~'e'd

4 WA
,, ~

a
o

' ~~

x exp
' nip,

,
p, ) a exp

'
p (r r, ) (B.8)

h h
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Using the relation

~ ~ ~ ~i exP n(P,,
,

P,) a =

hq Z 3 ~P, P,.
,

nhq) (B.9)

,, ~ ,, ~

and expression(12) for the momenta associated with the different diffraction orders,

equation (B.8) finally yields

~ (r )<ai<ieid =

Z a,, exP (P '" '
r (B ' °)

,,

~

where a,, is the diffraction amplitude associated with the n-th diffraction order~ which reads

~~
~a

~j
'~

~

~~ ~~~ l~ ~~'~ ~~~ ~~"~
'~

~~'~

Even though equation (B, I) may be used to derive the atomic diffraction spectrum in the

framework of the perturbation method, it seems more consistent to retain only the terms of

(B.I I) which correspond to the accuracy range of the method. As previously discussed in

section 2.2.2 (Eq. II )), in the validity domain of our semiclassical method one has

~~(~~« ~
Ml (B.12)

~~

and hence

~~

,

l
~°

w I
II ~~~~'i ~~')~

« l (B.13)
Pi

~~ ~,

which yields

~~
° l « I (B.14)

Pj~~

Finally, one obtains the expression of the diffraction amplitude for the atomic wavefunction

derived using the perturbation method

~"
l j[ ~~ ~ ~~~~ ~~~ 1~~~ ~'l ~~'~ ~~

which is merely the Fourier transform of the wavefunction evaluated on the line z = z~, alter

interaction with the diffraction grating.
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