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Abstract. In this paper we
consider the effects of spontaneous emission

on
the problem

of atomic reflection from an
optical evanescent travelling wave. The atoms are assumed to be

travelling
so

slowly that the external degrees of freedom of the atom need to be treated quantum
mechanically. Spontaneous emission is modelled using

a
fully quantum mechanical model based

on the quantum Monte Carlo technique which includes the effects of atomic recoil. The results

of the simulation are compared with
a

semi-classical Monte Carlo simulation in which the atomic

motion is treated classically and the internal state of the atom is assumed to follow the light-
induced quasipotentials adiabatically between spontaneous emission events. The spontaneous

emission leads to a broadening of the momentum distribution of the outgoing wave packet and

mechanisms for this broadening are discussed.

1. Introduction.

With the recent interest in producing optical systems such as cavities for atomic de Broglie

waves, the importance of having efficient optical elements such as atomic mirrors has become

apparent. Atomic mirrors which are based on the repulsive potential created by an evanescent

light field [I] have been experimentally realized by several groups [2-5]. To date, most anal-

yses of such mirrors have been concerned with achieving high reflectivities and maintaining
coherence throughout the interaction and have thus sought conditions for which spontaneous
emission may be avoided [1, 6-8]. Consequently, large laser intensities and detunings are used.

When spontaneous emission is important, it has been found experimentally by Seifert et al.

[5] that the distribution of outgoing momenta can be substantially broader than one might
estimate from a simple consideration of the atomic recoil during spontaneous emission. They

present a semi-classical analysis for this broadening in which the internal atomic state is treated

quantum mechanically but the external motion is treated classically. This gives good agree-

ment with the experimental results for the parameters used. In this paper we use the method

of Monte Carlo wave functions [9, lo] in order to investigate the effects of spontaneous emission

on the distribution of outgoing momentum in the situation where both internal and external

degrees of freedom of the atom are treated quantum mechanically. When the atomic beam
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has a sufficiently well-defined momentum, it is no longer possible to treat each atom as being
well-localized. Instead, a wavepacket must be used to represent the spatial atomic coherence.

A Gaussian wavepacket is chosen as it has the minimum width in position space compatible
with a specified momentum uncertainty. The analysis treats the time-dependent evolution of

such atomic wavepackets as they interact with the field. The results of these simulations are

compared with the semi-classical approach and we find that when the spatial extent of the

atomic wave packet becomes comparable with the scale over which the light-induced potential
varies, additional quantum mechanical effects become significant in determining the outgoing

momentum distribution.

2. System dynamics without spontaneous emission.

Figure is a schematic diagram of the configuration in which a beam of cold two-level atoms

impinges at glancing incidence on the evanescent light field produced by the total internal

reflection of an intense laser beam at the surface of a prism. We shall treat the light field

classically, but use a quantum mechanical description for the internal and external degrees of

freedom of the atom. When spontaneous emission is not present, the system Hamiltonian in

the rotating wave and electric dipole approximations is

H
=

(
+ hoi ii) (Ii + he212) (2j

/ Dl~~(r) Ej~~(r, t) d~r + cc.j (I)

where p is the centre of mass momentum of the twc-level atoms with mass m, and ii) and (2)

are the lower and upper atomic levels with energies hoi and he2 respectively. D(~)(r) is the

dipole moment operator of the atom which is given by

~~~~(~)
"

l~12) (Ii 4~ i~) i~i ~(~ ~a) (2)

where p is the dipole moment vector and ra is the position of the atom. The electric field of

the light is E[~~(r, t) where

E[~J(r, t)
=

EOF(y) exp[I(kLz uJLt)] (3)

Atom
Reflected

be~~,

z

Light
Travelling

Wave

Fig. I. Atomic reflection from
a

travelling evanescent light field.
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F(y) specifies the transverse field profile, UJL is the angular frequency and kL is the wavenumber

of the light.
Working in an interaction picture with free Hamiltonian h(ei + UJL)(2) (2( + hoi Iii (ii and

defining the wave functions Ii and #2 via

lit)
=

/ d~r i#i(r, t) lr) @ Ii) + #2(r, t) lr) 4~ 1211 (4)

we obtain the Schr6dinger equations

~~~ ~~
i~~

~ ~~~ ~ -hflf(~)e~~L~/2
~~~~~~~~~~~~

~ ~~~

where fl
=

2p Eo/h may be assumed to be real, A
= UJL (e2 ei) is the detuning and # is

a vector whose components are #i and #2.
We now write # as a superposition of plane waves in the z direction so that

m

~~~'~~
2xh

/_~ ~~~ ~'~~'~~'~~~~~~~ ~~~

Substituting this into the Schr6dinger equation, we find that the ground state amplitude
~2i(y, kz,t) couples only to the excited state amplitude ~22(y, kz + kL,t) and vice versa. Thus,
for each value of kz we have the coupled equations

2 2

ih~§~i (Y, kz, t)
=

-) ~

~

)j
~2i(y, kz, t) hflf(y)~2~(y, kz + kL, t) (7)

t 'l~ 2

h~§~2(Y>
kz + kL, t)

=

(-~ ($
(kz +

L)~j
hA) ~22(y, kz + kL, t)

'l~

-(hflf(Y)§~i(Y, kz, t) (8)

If we consider atoms incident in the ground state with well-defined kz
=

kI, it is only necessary

to deal with the vector q7(y, t) whose components are ~2i(Y, kI, t) and ~22(Y, kI + kL, t). We may

remove a common phase factor exp[-ihk)t/(2m)] from each component to obtain

~~~'~~'~~
~$~'~~'~~ ~ -hfl~(y)/2 -&(~~i~~~~ ER

~'~~'~~ ~~~

where AD
=

hkIkL/m is the Doppler shift seen by the atom due to its motion in the light and

ER
=

h~k[/(2m) is the recoil energy which is usually very small.

3. Quantum Monte Carlo approach to spontaneous emission.

The quantum Monte Carlo wave function approach to treating spontaneous emission is de-

scribed in detail by Dum, Zoller and Ritsch [9] and by Molmer, Castin and Dalibard [10].
Instead of using a density matrix to represent the mixed state of the system, a conditional

wave function is introduced which describes the state of the system conditioned on a particular
history of photodetections. An ensemble of photodetection histories is generated using random

numbers and the time-evolution of a particular conditional wave function is referred to as a

quantum trajectory. By calculating ensemble averages over these quantum trajectories, the
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expectation values of all quantities tend to those found calculated using density matrices and

the master equation.
As discussed by Molmer et al. [lo], the quantum Monte Carlo technique allows us to include

Liouvillians of the form

£p
=

£ cm pc[ c[ cm p
pc[ cm lo)

m

~ ~

This equation typically arises from linear couplings between system operators Cm and their

respective baths. In the case of spontaneous emission, the various possible values of
m represent

the possible directions of propagation k and polarization
e

of the outgoing spontaneously
emitted photon. We find that

Cjk,e)
"

4(e* p) exp(-ik r) iii (2( (11)

On the right-hand side, the first two factors represent how efficiently an atom with dipole

moment p radiates spontaneously with polarization e, the exponential represents the the mo-

mentum kick of -k imparted to the atom due to recoil and 11) (2( is the operator which lowers

the atom into the ground state.

In the quantum Monte Carlo algorithm, a quantum jump results in one of the "collapse
operators" Cm being applied to the system wave function (ifi(t)). Between one quantum jump
and the next, we adopt the following procedure [11]:

I) a random number r
uniformly distributed in the interval (0,1) is generated;

it) the wave function (~l(t)) is evolved using a Schr6dinger equation with the non-Hermitian

Hamiltonian

H'
=

H
~~ £ C(Cm (12)
2

where H is the system Hamiltonian in the absence of the loss process. For the case

of spontaneous emission, the sum becomes an integral over permitted directions and

polarizations of the outgoing photon and this reduces to

H'
"

H
)

12) 121 (13)

iii) as this evolution proceeds, the norm of
~b

decreases. When (~b( ~b) = r, a quantum jump
is carried out. One of the collapse operators Cm is chosen according to probabilities
proportional to (ifi( C(Cm (~l). This collapse operator is applied to (ifi) and the result is

renormalized. I-e-, we set

~~~ ~
~§~jf~~

j~§)

~~~~

m m

At this stage a new random number is generated to find the time of the next quantum
jump.

It is straightforward to calculate the relative probabilities (ifi( C(Cm (ifi) with which sponta-

neous emission occurs in different directions if we know how the atomic dipole moment p is

aligned. If p is aligned with the driving light field, the probability of emission per unit solid

angle dfl in direction k is proportional to

P(fl)
CC

I» ei l~ + 1» e21~ (IS)
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where ei and e2 are two polarization vectors orthogonal to k. The probability density is

normalized to give an integral of unity when taken over all possible outgoing directions.

For a circularly polarized classical light field travelling along the z axis, we may suppose

p to be given by (p((k + I#)11. In order to find the probability of spontaneous emission

per unit solid angle along the direction (9, #) in spherical polar coordinates, we consider k
=

(k( [sin 9(k cos #+f sin #) +I cos 9]. We may choose ei,2 to be any two unit vectors perpendicular

to k, A convenient choice is (b + I$)11 where b
=

cos9(kcos# + f sin #) I sin 9 and
$

=
-k sin # + f cos #. Evaluating the inner products in (15),

we find

p(n)
« jj(case + 1)2 + jcoso -1)2j (16)

Normalizing this according to

/~~ /~ P(9, #) sin 9 d9 d#
=

1 (17)
o o

~~~~~~

pr(spontaneous emission into dfl) ~(~
~ ~°~~ ~~ ~~ ~~~~

It is now possible to use a random number generator to produce a direction (9,#) according
to this distribution. The probability is independent of # which is thus distributed uniformly
in the range o to 2x. The cumulative distribution function for 9 is given by

Given a random number distributed uniformly in the range o to 1, the above relationship is

inverted to find a corresponding value of 9.

In a similar way, it is possible to show that for a linearly polarized classical light field, the

probability of spontaneous emission depends on the angle ifi between the polarization direction

of the incident field and the wave vector k of the emitted light. We find that

Pr[spontaneous emission into dill
=

~ sin~
ifi dfl (20)

8x

A random number generator can similarly be used to choose the direction of spontaneous
emission in this case.

4. The semi-classical Monte Carlo algorithm.

A semi-classical algorithm was developed by Seifert et al. [5] in order to explain experimental
results for atomic reflection off an evanescent wave mirror. In this model, the external mo-

tion of the particle is treated classically. The matrix in the Schr0dinger equations of motion

equation (9) may be regarded as defining a potential within which the atom is moving, The

eigenvalues of the matrix are hence known as quasipotentials and the eigenvectors define the

particular combinations (called the dressed states) of the internal atomic states which experi-

ence these potentials. The dressed states and quasipotentials depend on the intensity of the

light field "seen" by the atom and if the rate of change of this intensity is sufficiently slow,

an adiabatic following approximation [12] may be employed which states that the atom will

"follow" a dressed state as the intensity changes slowly.
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(a) Quasipotential (b) Quasipotential
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~e~ > 0 ~~a > 0
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Fig. 2. (a) Quasipotential curves and ~'path" of atom incident
on mirror in the ground state, (b)

transitions between dressed states caused by spontaneous emissions

The quasipotentials experienced by the atom are

U+(Y)
"

~ ~ @
(21)

where a =
-h(A AD) + ER and b

=
-hflf(y)/2. The associated dressed states are

I-i
=

fit-
~~ @

Iii +
21j (22)

_~ + ~2 + 4b2
I+i

=
fit+

~~
Iii + 121 (23)

where fit+
are normalization constants.

In the absence of the light (F
=

o), the quasipotentials are U-
=

o and U+
= a. The dressed

state (-) corresponds to the ground state ii) and (+) to the excited state (2). The light-
induced level shifts for low intensities b < a/2 is +b~ la which corresponds to the predictions

of perturbation theory. For positive effective detuning (Ae,
=

A AD > o),
we find that

a < o and so the light raises the U- quasipotential and lowers the U+ quasipotential. Atoms

in the (-) dressed state are repelled and those in the (+) dressed state are attracted by regions
of high intensity. The gradient force experienced by the atom is -8U+ lay.

If an atom is initially in the ground state when it is far from the atomic mirror, it follows the

dressed state -) and experiences the gradient force -8U- lay. It is straightforward to integrate
the classical equations of motion for this force law. Figure 2a shows the quasipotentials U+(y)
for an evanescent wave. As the atom approaches the mirror, the (-) state contains a greater

portion of the excited state (2), and the probability of being in the excited state is given by

p~
= (2( -)(2

=

fif2. The probability of a spontaneous emission in interval dt at time t is

i p~(t)dt where i is the linewidth. The probability that no spontaneous emission occurs within



N°11 QUANTUM EFFECTS IN ATOMIC REFLECTION 1903

the interval o to T is thus given by

Pr[No spontaneous emission in o < t < T]
= exp I- iPe(r) dr (24)~~

In order to find the time for a spontaneous emission, a random number
r is generated which is

uniformly distributed in (o,1). An additional variable I is integrated along with the position
and velocity in accordance with the differential equation

~~
=

-iPe(t)1 (25)

This is initialized to I(o)
=

1 and a spontaneous emission is deemed to occur once I falls to

the value of r.
After each spontaneous emission, I is reinitialized to one and a new random

value of r is generated to determine the time of the next spontaneous emission.

The spontaneous emission results in two physical effects, the recoil imparted to the atom and

the projection of the internal atomic state to the ground state. The direction of the emitted

photon is chosen from the appropriate angular distribution and a momentum kick of -hkL

is given to the atom. This changes the momentum but not the position of the atom. In the

dressed state picture, the ground state is a linear superposition of the (+) and (-) states. In

keeping with the semi-classical approach however, only one of these dressed states is selected

with probabilities dependent on their overlap with the ground state. The atom is assumed to

follow adiabatically the new dressed state and to be subject to the force -8U- lay
or -8U

+
lay

until the time of the next spontaneous emission.

As discussed by Seifert et al. [5], if the atom makes a transition to the +) state, it experiences

an attractive gradient force, which strongly deflects it towards the mirror. Unless a further

spontaneous emission occurs, such an atom will be lost to the mirror surface. Figure 2b shows

a possible semi-classical "path" for the atomic state, where the vertical transitions indicate

spontaneous emissions. Atoms which are reflected can be deflected through large angles due

to such large fluctuations in the force [13].

5. Solution of the quantum mechanical equations.

In order to include spontaneous emission, the evolution between quantum jumps is given by

modifying the Hamiltonian according to equation (13) in the Schr6dinger equation (9). The

resulting equations are solved by a split-operator method [14] by separating the Hamiltonian

into a part which is diagonal in momentum space and another which is diagonal in position

space. The former is given by

2 2

~~
~ ~

~ -hAe, + ~R ih'f/2 ~~~~

" ~~~~~~ p(/(2m) hA~
+ ER ihi/2 ~~~~

and the latter by

~
° -hflf(Y)/2

(28)
~ -hflf(y)/2 o

In the split operator method, the differential equation

ih(q~ =
(HA + HB)q~ 129)

>OLRNAL DE PHYSIQUE II T 4 N' it NOVEMBER 19~4 72
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with formal solution

q~(t)
= exP ~-

~~~~ ~~~)
q~(0) (30)

is solved by approximating

exp ~-
~~~~

~~~~~~) q7 m exp ~-
(/~)

exp
(- ~~)~~) exp ~- (/~)

qJ (31)

which is accurate up to second order in At. The evolution involving HA reduces to multipli-
cations involving exponentials in momentum space while the evolution involving HB proceeds

in position space according to

~2i(Y,t + At)
=

cos[flF(y)At/2]~2i(v,t) + I sin[flF(y)At/2]~22(Y,t) (32)

~22(v,t + At)
=

cos[flF(y)At/2]~22(Y,t) + I sin[flF(y)At/2]~2i(y,t) (33)

A fast Fourier transform is used to convert the wave function between the spaces. By swapping
alternately between the spaces and applying the appropriate evolution operator in each, a

solution to the original equation may be obtained.

For efficiency, it is important to choose the time increment At appropriately. This is espe-
cially so in this problem, where the light profile F(y) is rapidly varying with y. While the

atomic wavepacket is far from the mirror, HB is close to zero and large timesteps are possible.
The stepsize must be reduced as the wavepacket approaches the mirror. An adaptive method

for varying At was developed for this problem which proceeds as follows.

I) The error in a timestep may be estimated by calculating the difference between the two

approximations to the Hamiltonian

e(At)
=

"~'a i'b"

lli~il
(34)

where

~~ ~~~ ~~~~) ~~P ~-~~)~~) exp
_

iHAAtj

~~ ~~~

~~ (/~)
exp ~- ~~A6tj ~~

il)~ ~ ~~~~

h
~

2h
)i~ (3~~

The error is a quantity which scales as
(At)~. However, it is relatively expensive to

compute as it requires six Fourier transforms rather than the two transforms for a normal

step. Consequently, such an error estimate is only carried out approximately once every
hundred normal steps.

ii) If the error estimate lies within the specified tolerance (chosen as
10~~ in the simulations),

the values of all the variables are saved in case we need to restart the simulation back at

this point. The next error estimate is scheduled after another hundred normal steps.

iii) If the error estimate is much smaller than (less than 0.2 times) the specified tolerance,
the step size may be safely increased using the (At)~ scaling law to give a target error of

0.7 times the tolerance.

iv) If on the other hand, the error estimate is greater than the specified tolerance, the results

are discarded and the simulation is restarted from the last saved point. The step size is

decreased using the (At)~ scaling law to give a target error of 0.5 times the tolerance.
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Using this strategy, it is found that adaptation takes place without too much time being spent

on estimating errors and backtracking.
The split-operator method described above was used to simulate the system between spon-

taneous emission events. Each spontaneous emission is treated straightforwardly by using
random numbers to give the direction of emission (9,#) of the photon and modifying wave

functions as follows

1~2(l/>t)inew
"

° (37)

~Ji(§,t)jnew
=

fif~J2(§,t)jojd eXp(-ikL§ S1n 9 CDS w) j38)

This projects the atom into the ground state and applies a momentum kick in the y direction

to simulate the recoil, fit is a normalization constant chosen so that the new wavefunction

is properly normalized after the jump. The component of the momentum kick along the z

direction is hkL sin 9 sin #. This changes the velocity of the atom in the z direction which alters

the Doppler shift AD slightly. The new value of the Doppler shift is used for the subsequent
simulation following the spontaneous emission. The ability to carry out a simulation with

definite
z momentum is an advantage of the quantum Monte Carlo formulation. For each

realization, the z momentum is well-defined between spontaneous emissions. On the other

hand, a density matrix approach would require us to keep track of a range of z momenta as

this quantity varies across the ensemble.

6. Results.

In the numerical simulations, we employ normalized dimensionless variables as follows, fl is

the value of the Rabi angular frequency at the position where F(y)
=

I. Angular frequencies
and decay rates are normalized with respect to fl, energies with respect to Ail, lengths with

respect to Al (mfl) and momenta with respect to fi4. We shall denote the dimensionless

variables by tildes so that for example, lD
"

AD /fl etc.

The atomic parameters selected were loosely based on those for the 5Si /2 to 5P3 /2 transition

of Rubidium [3] with a spontaneous emission linewidth of 6 MHz and a wavelength of 780 nm.

If we choose fl
=

2x x 30 MHz, we find I
=

0.2. Using an evanescent wave F(y)
=

Fo exp( -y la)
with exponential decay length of a =

100 nm, we find that h
=

50. The initial kinetic energy in

the y direction, namely EI
=

h~k) /(2m), is chosen so that the atomic de Broglie wavelength in

the y direction is approximately twice the decay length. This gives i~I
"

2 x
10~~ Physically,

this corresponds to a y velocity component of about 2,4 cm
s~~. The z component of the

velocity is adjusted to give an incident beam angle of I mrad. The photon wavenumber in

dimensionless units is iL
=

0.016. In order to make the mirror reflect atoms incident in the

ground state, the effective detuning Ae,
=

A AD is chosen to be positive with Ae,
=

0.05.

These are the defaults used in the simulations and in the following we shall only explicitly

mention the parameters which are not set to these values.

In figure 3, we show the interaction of a wavepacket of initial momentum uncertainty

ap
=

0.002 with the evanescent wave when the spontaneous emission I is set to zero. The

dimensionless t1nle is defined by I
=

fit. The value of Fo has been adjusted so that the clas-

sical turning point is located at y =
0. In the sequence of plots, we see that the wavepacket

approaches the mirror and bounces off. During the bounce, there is interference between the

components travelling towards and away from the mirror, leading to the oscillations in proba-
bility at intermediate times. In these plots, only the ground-state atomic population is shown,

the excited state component being too small to be visible on the scale chosen. The concept
of a quantum mechanical path for the particle is not well-defined but it is possible to plot
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Fig. 4. Comparison of quantum mechanical (solid lines) and classical (dashed lines) motion of

an
atomic wavepacket in the evanescent light field in the absence of spontaneous emission. The

quantum mechanical graphs
are

of the mean position (§) and the mean y momentum iffy) of the

atomic wavepacket shown in figure 3. The classical results
are

found by integration of the equations
of motion in for the (-) state quasipotential U- (y).

between the classical and quantum mechanical calculations.

In figure 5 we show five realizations of the semi-classical Monte Carlo algorithm for the default

parameter values. We see that the plots of y as functions of t are necessarily continuous since

the effect of a spontaneous emission is to impart a discontinuous momentum kick to the atom.

This is appropriate when the atom may be treated as a point particle so that its wave nature

is not important. When this is not the case, it is necessary to consider the external degrees
of freedom quantum mechanically. In figure 6, the results of five realizations of the quantum

Monte Carlo calculation are shown for the same parameters. As before, the expectation values

(j) and (ji~) are shown. The most apparent difference between these plots and those for the

semi-classical ones is that (jj) exhibits discontinuities at the positions of the quantum jumps.
Since in an evanescent wave, the force on the atom changes rapidly with position due to the

approximately exponential shape of the quasipotentials, a process which changes the position
of the atom within the evanescent field will lead to fluctuations in the force and a broadening
of the outgoing momentum distribution. The extent of this broadening will depend on the

size of the position jumps and the spatial scale on which the quasipotential varies. In the

quantum-mechanical simulations, the continuous trajectories of the semi-classical picture are

replaced by "paths" with discontinuous changes in the mean location of the wavepacket which

leads to an additional broadening of the distribution of outgoing momentum when the average

over many trajectories is considered.

In order to discover the origin of these jumps in position, we recall that in the quantum
Monte-Carlo algorithm, the effect of

a spontaneous emission (Eqs. (37) and (38)) is to set

the new ground state to a normalized version of the old excited state. In figure 7, the com-

position of the wavepacket from the simulation which generated figure 3 at time I
=

2 x
10~
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zn
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Fig. 5. Graphs of (a) position and (b) momentum for five trajectories of the semi-classical Monte

Carlo algorithm showing that the position is a continuous function of time but that the momentum

changes discontinuously at the spontaneous emission events. Default parameter values
were chosen,

namely
=

50, /heT
=

0.05, l~i
=

0.002, §
=

0.2 IL
=

0.016 and 3p
=

0.002.

0.5 1.5 2 2.5 3 3.5 4

I
x

10~

~~~
0.5 1.5 2 2.5 3 3.5 4

I
x

10~

Fig. 6. Graphs of mean position and mean momentum of the atomic wavepacket for five trajectories

of the quantum Monte Carlo algorithm showing that the mean position has discontinuous jumps at

the spontaneous emissions. The same parameter values were used as for figure 5.
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Fig. 7. Position probability density functions of ground (solid line) and excited state (dashed line)
populations in the wavepacket simulation of figure 3 at time I

=
2 x

10~ when the wavepacket close to

the middle of the bounce. The peak of the excited state population lies closer to the mirror that the

peak of the ground state population.

(near the point of closest approach) is shown on a logarithmic scale. The solid line indicates

the probability density of the ground state component and the dashed line that of the excited

state component. It is clear that the peak for the excited state component is much closer to the

mirror than that for the ground state since the excited state is in fact generated by interaction

with the light. If a spontaneous emission was to occur at this time, the ground state wave

function would be set to the excited state wave function, causing a discontinuous change in

the expected value of the position. Although this particular simulation was done without the

non-Hermitian part in the Hamiltonian, the same argument holds true in general.

We now compare the momentum distributions of the outgoing atoms as these are the exper-

imentally measured quantities. In the quantum mechanical calculation, each realization shows

how an incoming wavepacket with a certain momentum uncertainty evolves into an outgoing
probability density for the momentum. According to the quantum Monte Carlo prescription,

these probability densities must be averaged over many realizations to give the experimentally
measurable distribution. In the following simulations, averages are taken over a hundred re-

alizations. By contrast, in the semi-classical calculation, each realization traces the motion

of an atom through the system, and the momentum remains well-defined throughout. Atoms

entering with the same momentum can leave with different momenta due to different histories

of spontaneous emission during the interaction. In order to compare the results with those of

the quantum calculation however, the incoming atoms are chosen to have a range of momenta

drawn from the same Gaussian distribution as that of the quantum mechanical wavepacket.

From the two thousand realizations carried out for each semi-classical calculation, the collection

of outgoing atomic momenta is converted into a probability density by plotting a histogram.
For a finite number of realizations, this necessarily involves binning the data, the width of the



1910 JOURNAL DE PHYSIQUE II N°11

a) b)

4 0 3 0 2 0 0 0 0.15 o-1 ~0 05 0
#v fi~

C) d)

0 3 0 2 0 0 0.1 0 3 0.2 0 0 0.
iv

by

Fig. 8. Outgoing momentum probability density (solid curve) calculated by averaging over 100

quantum Monte Carlo simulations. An indication of the accuracy of the simulation is given by the

+1a dotted curves. The solid staircase line is the result of averaging
over

approximately 2000 semi-

classical Monte Carlo simulations. (a) Default parameter values have been used, namely
=

50,
/heT

=
0.05, Ei

=
0.002, §

=
0.2 IL

#
0.016 and %p =

0.002. We find fi~M
=

12.I +1.0 and

fisc =
14.6 + 0.I are the average numbers of spontaneous emission for the quantum mechanical and

classical simulations. (b) Default parameters except that §
=

0.02. We find fi~M
=

2.8 + 0.3 and

hsc =
3.91+0.05. (c) Default parameters except that §

=
0.02 and

=
500. We find fi~ M =

10.7+0.8

and hsc
=

13.7 + 0.2. (d) Default parameters except that §
=

0.02, b
=

500 and fly =
0.005. We find

fi~M =10A + 0.9 and asc
"

13.9 + 0.2.

bins being a compromise between momentum resolution and having sufficient atoms within

each bin to reduce the statistical fluctuations. In the following graphs, the bin width is chosen

to be about the same as the width of the incoming momentum distribution as we do not expect

variations on a smaller scale than this.

In the following figures, the probability density of the outgoing atomic momentum is plotted.

The solid curve shows the result of the quantum mechanical calculation with the estimated

one-sigma errors (based on the variance in the hundred realizations) being shown by the upper
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and lower dotted curves. The result of binning the semi-classical Monte Carlo calculations is

shown as the staircase plot. The area under the quantum and semi-classical plots have been

adjusted to be equal to unity. Figure 8a is for the default parameter values and figure 8b

is for the same parameters except that the spontaneous emission rate I has been reduced to

0.02. In both of these graphs, we see that the classical calculation gives a smaller spread of

outgoing momentum than the quantum calculation. The initial half-width of the wavepacket
is 250 dimensionless units which is large compared to the scale of the evanescent wave h

=
50.

The quantum mechanical results also show a sharper spike at the position of the "specular
reflection" at which the outgoing momentum is equal to the incoming momentum. An atom

is specularly reflected if it undergoes no spontaneous emissions during the bounce and so it

appears that there are on average fewer spontaneous emissions in the quantum mechanical

simulations than the quasi-classical simulations. The mean numbers of spontaneous emissions

in the simulations are recorded in the figure captions and it is seen that this is indeed the case.

This can be understood since the quantum mechanical wavepacket does not penetrate the light
field as deeply as the classical turning point, and spontaneous emissions occur most frequently
in regions where the atom is excited by the light.

In figure 8c, the parameters which differ from the default
are I

"
o.02 and b

=
soo. The

evanescent wave is now falling off over a larger range and so the change in the quasipotential

across the wavepacket is much reduced. The approximation that the atom is a point particle
holds more accurately in this regime and we see that there is indeed a better agreement between

the classical and quantum calculations, although the spike for the specular reflection is still

larger in the quantum mechanical case. If the incoming momentum distribution is wider, this

spike would be broadened, leading to a better agreement. This is shown in figure 8d, where in

addition, the initial momentum uncertainty has been increased from ap
=

o.oo2 to &p =
o.oos.

7. Summary.

In summary, the quantum Monte Carlo technique is useful for treating spontaneous emission

in the regime of quantized internal and external motion as it straightforwardly models both

the effects of momentum recoil on the atom as well the stochastic nature of the emission

process without the use of large density matrices. The time-dependent solutions which it

provides give insight into the mechanisms which cause broadening of the outgoing momentum

distribution in the situation where the quantum mechanical atomic wave packet is so large that

the quasipotentials vary significantly across the packet.
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