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Abstract. A novel atomic beam splitter, using reflection of atoms off
an evanescent light

wave, is investigated theoretically. The intensity
or

frequency of the light is modulated in order

to create sidebands
on the reflected de Broglie wave. The weights and phases of the various side-

bands are calculated using three different approaches: the Born approximation, a semiclassical

path integral approach, and
a

numerical solution of the time-dependent Schr6dinger equation.
We show how this modulated mirror could be used to build practical atomic interferometers.

1. Introduction.

A number of experimental techniques have been developed to enable the interference of atoms

to be observed, as the present special issue illustrates. The essential requirement for producing
quantum interference is that a system can pass between two points in its configuration space

via more than one path that is, the quantum amplitude for a passage via either path is

non-negligible for a given evolution of the system. The two paths can be visualized as forming

a closed loop in configuration-space. If the relative phase between the two quantum amplitudes

can vary, then the system can
finish in one of two (or more) final states, with probabilities

depending on this phase.
The well-known features just mentioned are illustrated by the three main elements of a

typical particle interferometer: a first beam splitter, one or more mirrors to bring the two

paths back together in position, and a second beam splitter to close the loop. Diffraction or

refraction can also be used to play the role of a "mirror" in bending an otherwise straight path
for the interfering particle.
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In this paper we describe a new beam splitter for neutral atoms, and also show how a practical
interferometer can be made, having a number of promising properties such as simplicity, and

fairly high (about 8%) transmission efficiency into the useful output states. The beam splitter
is a vibrating mirror that, is a surface which reflects atoms incident upon it, and which

moves rapidly to and fro along the normal direction. Such a beam splitter can form the basis

of a number of interferometer designs. An especially interesting possibility is a very simple
interferometer having only a single "optical element" a horizontal mirror is used, and atoms

bounce repeatedly on it. Gravity plays the essential role of bringing the atomic trajectories
back to the mirror surface, and the same vibrating mirror is used to separate and recombine

the interferometer arms.

The ability to create a variety of motions of the mirror surface enables one to manipulate
the reflected de Broglie waves in a general manner both delicate adjustments and large
shifts of the atomic momentum can be produced. In the general case, one notes that at normal

incidence, the path length for a wave to travel along the z-axis from a position z, be reflected

at zm, and then return to z, is 2(z zm). By varying zm in time, the variation in path length

can be understood as forming an "optical element~' such as a prism, lens, or phase grating.
Here the 'iens" (or other element) is extended in time and affects the motion along the mirror

normal z, while a conventional lens is extended in position and affects the motion transverse to

its axis. Narrow slits and amplitude gratings can be made by switching the mirror reflectivity
between one and zero. Our proposal relies on the possibility of vibrating the mirror rapidly

(typical vibration frequencies are in the MHz region). This would be difficult for a traditional

mirror made of matter, but is easy to achieve for a mirror formed by a light field, since laser

beam intensities or frequencies can be modulated rapidly using acousto-optic modulators.

In the following, we first briefly consider beam splitters in general, and the basic principle
of the vibrating mirror (Sect. 2). An ideal mirror for atoms would consist of a sharp potential

barrier ill. In practice, one cannot find an ideal mirror, and an important type of mirror for

atoms is a quasi-resonant evanescent light wave at the surface of a dielectric [2]. This produces

a potential V exp(-2Kz) having an exponential dependence on atomic position z. We consider

atoms bouncing on such a potential, and calculate the effect of a time-modulation of the

amplitude V(t) for the exponential function, such a modulation is equivalent to moving the

potential along the z-axis by zm(t) given by

V(t)e~~~~ a V(0)e~~m~~~ml~)~ or 2Kzm(t)
=

In(V(t)/V(0)). (I.I)

In sections 3 and 4 we consider two perturbative methods to calculate the probability for

an atom to be scattered by the vibrating mirror from one energy eigenstate (or plane wave)
to another. The first method uses the Born approximation in first order; this approximation
is valid when the first order scattering probability is low. The second method calculates the

phase accumulated by an atom undergoing reflection from a vibrating mirror, using an action

integral along the classical path of an atom reflected by a stationary mirror. The range of

validity now includes the physically interesting situation where the scattering probability from

one eigenstate to another is of the order of I. In section 5 we consider the case of an initial

wave-packet rather than a single plane wave, and compare the approximate analytic results

with those of a numerical solution of the Schr6dinger equation. This enables us to confirm the

validity of the various methods. In section 6 we then go on to consider the application of these

ideas to make a realistic atom interferometer.
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2. Atom beam splitters.

Up to now many atomic beam splitters have been suggested, and several demonstrated. In

the following list we mention the beam splitters used in existing interferometers. These are,

to our knowledge, the longitudinal Stark method [3]; the simple Young's slits arrangement

[4, 5]; rhicro-fabricated gratings [6]; the Raman pulse technique [7, 8]; the optical Ramsey
interferometer [9, 10]; and the longitudinal Stern-Gerlach interferometer ill]. There has been

rapid progress and some very promising results, in terms of the minimum detectable phase
shift in a given integration time, combined with a large effective area of the interferometer

both are important since for most experiments the phase change produced by the effect to be

measured is proportional to the area of the loop in parameter-space.
Methods to produce larger beam separations have been investigated, notably adiabatic pas-

sage in a ~~dark" state [12, 13], the magnetc-optical beam splitter [14], and Bragg reflection

at crystalline surfaces [15]. The Raman pulse method has also already been used to produce

very large splittings by the use of many pulses. The vibrating mirror can produce a beam

separation Ap of the order of several AK for an incident momentum p =
100 AK, as we will

show. This allows a useful effective area for the interferometer without making it too sensitive

to misalignments. (The parameter K in Eq. (1.1) is of the order of the wave vector for light
in resonance with the atomic transition, so AK is approximately equal to the familiar "recoil"

momentum.)
The basic idea of the vibrating mirror is familiar from optics. To calculate the effect of a

reflection from a mirror whose position zm varies sinusoidally, zm (t)
= zo

sir tot, we assume the

incident and reflected waves can be written

#;nc(z, t)
= exp I(-kz fit), (2.I)

#tell(z,t)
ci

expi(kz fit usinuJt + x) (2.2)

The reflected wave here is an approximate solution of the wave equation, valid when ~uJ < fl,

We look for a solution having a node on the mirror surface:

§~inc~Zm> t) + §irefl(Zm, t)
#

0 (2.3)

This implies that

u =
2kzo (2.4)

The reflected wave has a carrier frequency fl plus a frequency modulation imposed by the

mirror. It can be decomposed into its component frequencies as follows:

m

exp I(-fit u sin tot)
=

exp(-iflt) £ Jn(u) exp(-inuJt). (2.5)

n =-c~

The weight of a given sideband fl + nuJ is thus given by (Jn(2kzo)(~.
Our vibrating mirror for matter waves works along the same general principles. An atom ar-

riving with the momentum p; has an energy Ail
=

p) /2M. After reflection its final momentum

pi is given by ~ '~
~ ~~~° ~~'~~

where
n is a positive or negative integer. For AUJ < p) /2M, the momentum transfer Ap

= pi -p;

is simply given by

Ap m n

~"~
= nq (2.7)

P;
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where the elementary momentum spacing q is equal to

q +

~"~
(2.8)

P;

The efficiency of the transfer from pi to pi, for the case of a vibrating exponential potential,
is the subject of the following sections.

3. Perturbative calculation in the Born approximation.

In this section we present a perturbative calculation of the momentum transfer for atoms re-

flected off a
modulated evanescent potential. Since the problem is invariant under a translation

parallel to the mirror surface, we only consider the motion along the z-axis, defined normal to

the surface.

3.I THE couPLiNG BETWEEN UNPERTURBED STATES. The Hamiltonian is split into two

parts:

H=Ho+Vi

where Ho is the un-modulated part:

This Hamiltonian is responsible for the standard reflection of atoms off the evanescent wave

[2]. Vo is the light shift of the ground state of the atom at the prism-vacuum interface located

at z =
0. We consider that the atom adiabatically follows the energy state given by (3.1)

without emitting any spontaneous photons. For simplicity, we further do not consider possible
atom-surface interactions (van der Waals potential, e-g-), supposing that the atom remains far

enough from the surface so that these are negligible compared to the evanescent wave potential
in H. Vi is the modulated part of the atom-laser interaction [16]

Vi
=

eve exp (-2Kz) sin(uJt) (3.2)

We will treat the case that the modulation amplitude
e is between 0 and 1.

We evaluate the efficiency of the momentum transfer along Oz by calculating perturbatively

the coupling between eigenstates of the unperturbed Hamiltonian Ho induced by the time

dependent part Vi The eigenstates of Ho, characterized by their asymptotic momenta p > 0,

are given by [17] (P e p/AK is the scaled momentum):

flf$(z)
=

~K>plw(z)1
(3.3)

where K,p[w(z)] is the Bessel K-function of imaginary parameter iP, and

w (z)
=

@
exp (-<z) (3.4)

These wavefunctions are the eigenfunctions of the unperturbed Hamiltonian Hoi normalized

in a box between z =
0 and

z =
L » K~~
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According to Fermi's golden rule, the probability for an atom initially in ill) (z) (correspond-
ing to an incident momentum pi to make a transition to ill)(z) (corresponding to a momentum

pi) is given by:

Wfi
=

)
)(ill)) eve exp (-2Kz) )ill)))~ p(Ei

=
Ej + hw) (3.5)

4l 2

where p (Ei
=

Ei + huJ) is the density of states at the final energy:

p (Ef
=

Ei + huJ)
=

~~
=

~~
(3.6)

dE xhpf

and 4l corresponds to the flux of the incident atomic wave:

4l
=

) (3.7)

The coupling term in (3.5) can be obtained analytically [18], yielding:

(
p

+
p~) (Pi ~ Pi)

(3.8)

We now discuss this result in the limits of large and small momenta fl, Pi, respectively.

3.2 SEMICLASSICAL LIMIT. In the limit l~, Pi » I, we may replace by exponentials the

sinh functions in (3.8) whose arguments are of the order of fl, Pi. The transition probability
is then approximated by (AP e Pi fl):

2

(3.9)
fAP

=
e2 p;~fl~ (/~P)w~

=

f~lf
~i~h II AP) ~

The function
jz

(3.10)~ ~~~
sinh ((x)

appearing in (3.9) is equal to unity for x =
0 and decreases exponentially for (x( » 1. It

describes the decrease of the efficiency of the momentum transfer if the potential undergoes

too many oscillations during the reflection of the atom. Indeed the interaction time of the

atom with the evanescent wave is given by

r =

~
(3.11)

KPi

and the momentum transfer can be written

~~
m uJr + Q (3.12)

where Q % q/hK. The rapid decrease of the function fl(x) means that only a few AK of

momentum can be transferred efficiently.
In figure 1, we show Wfi at pi =

100 AK for the upper and the lower sideband, as a function

of Q. Note that the results (3.8) and (3.9) predict an asymmetry in the transfer efficiency
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depth
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Dashed

lines: the result of the Wfi
(Eq.

(3.8)),
multiplied

by a factor p, lpi in order to ormalize the amplitude of the
upper (lower) line to n = +I (-I).

Solid
line: result of the

semiclassical
approximation,

(ai(~, (Eq. (4.20)). Circles:
umerical (Sect.

5) for the
normalized momentum

~l(p)/~l(p,)(~
with p~ = p) + 2Mhw

(I.e.
ideband n = +I). For

been joined in
the egion Q < 4.2 (light

line).
The arameters of the

umerical calculation are

given in the text (Sect. 5). same as before, but now n = -1.

between the upper and lower sideband Pf+
= l~~ + 2 flQ. This asymmetry is due to the fact

that the momentum transfer AP+
=

Pf+ fl is not the same for the two sidebands (~):

(AP+( (AP-(
m

~~
(3.13)

Since the transfer efficiency (3.9) depends strongly on the momentum transfer, this difference

shows up in the ratio W+ /W- between the weights of the sidebands:

)
~ exP (7r$ = exP (7r~j3) (3.14)

~

3.3 QUANTUM LIMIT. In the limit of small momenta fl, Pi < I, one expects the evanescent

wave mirror to produce the same results as a ~'hard" ideal mirror (Sect. 2. ), since the wavelength
of the incident atom is then longer than the characteristic decay length 1/2J~ of the mirror

potential. In this limit expression (3.8) becomes:

Wfi m (e~ flPf (3.15)

This result can be interpreted by noting that the vibrating evanescent wave mirror, in this

regime [17], behaves as an ideal mirror moving as

zm(t)
=

)
In(1+ esinuJt) (3.16)

K

(~ The asymmetry (3.13) is due to the non-linear dispersion relation Q
=

hk~ /2M of de Broglie-waves.

For light waves
propagating in vacuum in one

dimension, Q
=

ck, and this asymmetry vanishes.
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For a
small modulation amplitude e, this gives a

sinusoidal variation having amplitude zo "

e/2J~. Following the discussion of section 2, the weight of the first sideband is then given by
(Ji(u)(~

m
u~/4 where the argument u =

en (using Eq. (2.4) and k
=

p/h). The flux into the

sideband Pi is then given by (3. IS), per unit flux in the incident state.

4. Semiclassical path integral approach.

In this section, we present a semi-classical perturbation method which allows us to derive the

atomic wave function after reflection off the modulated mirror. This method is similar to the

one developed for the problem of atomic wave diffraction by a thin phase grating [19]. It

leads to a perturbed wave function which is phase-shifted with respect to the wave function

obtained for a non-modulated mirror. The phase shift is simply the integral of the modulated

potential along the classical unperturbed trajectory of the bouncing atom. In [19], this method

was derived using a Feynman path integral approach which allowed for
a detailed study of

the approximations involved in the derivation. For the sake of simplicity, we present here an

alternative derivation based on a modification of the standard WKB treatment so that it can

be applied to a time-modulated potential.

4.I PHASE SHIFT OF THE SEMICLASSICAL WAVE FUNCTION. Consider the wave function

ill°(z) which is an eigenstate of Ho at the energy E;. We look for a perturbed wave function

of the following form

ill(z, t)
=

ill°(z)e~'~'?~ exp (isi (z, t) IA) (4.1)

where Si (z, t) is a small correction introduced by the modulated part of the potential. The

time-dependent Schr6dinger equation gives:

~~ ~Mi~(z)
~~ ~ /~i~~

~ 2~i ~~~~ ~ ~~'~~ ~~'~~

In the semiclassical limit, where the de Broglie wavelength of the particle is much smaller than

the typical length scale J~~~ of the potential Vo(z), we can approximate ill°(z) in the classically
allowed region by the well-known WKB result:

where the

local
wave

k(z) is

k(z) = j~/2M (Ej - vo(z))
(4.4)

Using

now
this

esult

for
ill°(z),

we can
d~#KB ~ +

~~~~~

- q~@~~(z) dz ~ M

where
u(z) is the classical

velocity

of the particle moving in the unperturbed
potential.

be either
negative

(before flection) or positive
(after

eflection). Note that we
have neglected

in
(4.5)

the erivative of the prefactor
of (4.3)
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This equation can be solved formally by the method of characteristics: using the characteristic

curve z~ It) defined by

~~~ ~~~ ~ ~~~ ~~~~ ~~'~~

the left hand side of (4.6) can be written

1( + v(z))) Si
= jsi~lzc (t) it) 14.8)

The characteristic curve z~ (t) is the classical trajectory corresponding to a reflection in the

unperturbed potential [17]:

At the ouncing time" t = to, the atom

t

Si (z, t)
=

dt'l§ (z'
= zc (t')

,

t')

-cc~

~
2M

/
~~ ~~

8z2 8z
~~'~ ~~~~'~'~'~ ~~'~~~

In the limit t
- -cc, (4. lo) vanishes and (4.1) then reduces to the unperturbed wave function.

We are interested here in the case t to » r, when the final time t is in the asymptotic region
after the reflection.

We now neglect the second term of the right hand side of (4.10). We will investigate the

validity of this approximation in detail later on, but we can justify it here in a few words. We

are neglecting a second derivative b~si/bz~ and a second order term (bsi/bz)~. The second

derivative should have a small contribution in the semiclassical regime of interest here; its

effect is mostly to correct the classical motion and to change the prefactor entering in (4.3).
The second order term (bsi/8z)~ should be small compared to the first order term entering
in (4.2), since we expect Si itself to be a small correction to the unperturbed wave function.

Using the expression (3.2) for Vi (z', t'), the integration in (4.10) now yields the phase shift

[20]:

~
t

Si (z, t)
e p; / sin tot'

,

h h 2M cosh~ (t' to IT
~~

-c~

=
-eflfl(uJr)sinuJto (4.11)

Since we have t to » r, this result does not explicitly depend on the upper bound t, up to

small terms of order exp[-2(t to)/r].
We recover the function fl (uJr)

=
fl (Q) defined in (3.10). The "bouncing time" to (zj t) of the

classical trajectory (4.9) is fixed such that the latter ends at time t at the position z: z~ (t)
= z.

Expanding the trajectory (4.9) for t to » r, we find:

z =
(e, +

~ (t to) (4.12)
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where the "effective mirror" position (e, equals [17]

l~ (4.13)je& (P>) "

)
~~

i~

We obtain finally
~~l'~~

= -U Sin lwt (z fe~)) (4.14)

where the modulation index
u is given by:

u = e
fld(Q). (4.15)

4.2 THE FINAL ENERGY SPECTRUM. The reflected
wave function in the asymptotic region

J~z » 1 can now be written

fllfin (z, t)
=

C exp (-E;t + p;z + hl~ + Si (z, t)) (4.16)

In this expression C is a normalization factor and1~
=

1~(p;) is the phase shift of the wave

function due to the reflection off the non-modulated evanescent potential. Replacing Si(z, t)
by its expression (4.14), and using (2.5) to expand the result in terms of energy sidebands, we

have
~

fllfin (z, t)
=

Ce'~ £
an exp

~ (-Ent + pnz) (4.17)

n =-c~

~

where the n'th sideband has energy En and momentum pn (q e hwM/p;):

En
=

Ej+nhuJ (4.18)

Pn " Pi + nq (4,19)

and its amplitude an equals:

an =
Jn (u) exp (-inq(e,/h) (4.20)

Note also that, if the phase of the modulated potential at t
=

0 is shifted by #, then the phases
of the sidebands are shifted accordingly:

tot
-

tot # ~ an -
ane~"~ (4.21)

As usual in phase modulation problems, there are two limiting regimes for the result (4.17-
4.20), depending on the order of magnitude of the modulation index u. For a low modulation

index, u « 1, the Bessel functions Jn(u) have magnitude (u/2)'"', and the diffracted spectrum
consists essentially of the carrier n =

0 and the two first sidebands n =
+1. In this regime,

we recover the result (3.9) of the Born approximation for the first sideband, evaluated for a

semiclassical momentum pi m AK:

j2 j ~j2 _~

il~
2 p2 fl2 (Q) ~v (~ ~~)~~ "

4 4~ ~

where we have assumed in addition Q < Pi so that Q Ci AP. Note, however, that the

semiclassical approach does not account for the asymmetry of the sideband weights (3.14) this

property is related to the approximations involved (see below).
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The semiclassical result (4.17) and (4.20) extends the Born result (3.9) into the region of

high modulation index
u » I, where several lines are present with an appreciable weight. The

most intense lines correspond to n -J
+u, and they lead to a velocity change for the atom

Auat,max ci uq/M. For
e < 1, where the vibration of zm(t) is harmonic (2J~zm(t)

= e sin tot),

we can relate Auat,max to the "maximal velocity of the vibrating mirror" umir,max = euJ/2J~:

AUat,max
" 2Vmir,max fl(Q) (4.23)

For a ~'hard" mirror formed with a potential step, one would expect simply Au~t,max
=

2umjr,max. The reduction factor fl(Q) (fl(Q) < for Q > 1), which appears either in the

modulation index u (see (4.15))
or in Au~t,max (see (4.23)) is due to the "softness" of the

potential. Indeed, the efficiency of the momentum transfer is proportional to the Fourier

transform of the potential "seen" by the atom during the reflection (4, ii)

~° ~~c~~~~ = cosh2
j))

to) /~' ~~.~~~

the transform being evaluated at the modulation frequency
uJ.

Since this Fourier transform has

a natural cutoff frequency of the order of r~~, the transfer efficiency decreases for modulation

frequencies larger than this limit, I-e- Q > 1. The same reduction factor fl(Q) appears in the

classical problem of a particle bouncing on a modulated exponential potential. The equation
of motion for the particle is:

+co ~~ ~2~ +co

~ ~ /-~ ~
dt dt2

~~ ~~" /_~ ~°~~"~~~ ~~~ ~~ ~~'~~~

using an integration by parts. We evaluate this last integral along the atomic trajectory in the

non-modulated potential, obt&ining

~~ ~
=

-2eQfl(Q) cosuJto (4.27)

The maximal atomic velocity change (for cosuJto
=

+1) is then:

/~~at,max
=

earl(Q) 14.28)

or

Auat,max
"

e" fl(Q) (4.29)
K

which is identical to (4.23). Note finally that exactly the same dependence on Q appears in

the diffraction of atoms by a standing wave at oblique incidence [21, 19].

4.3 VALIDITY OF THE SEMICLASSICAL APPROACH. The first validity condition for a semi-

classical approach requires
P; » 1 (4.30)

I-e- an incident de Broglie wavelength much smaller than the decay length of the potential.
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A second constraint on the validity of (4.17) results from the use of the method of character-

istics. Since the expression (4, ii for Si (z, t) has been obtained by integrating over the classical

trajectory of the atoms in the absence of the modulated potential, we require that this classical

trajectory is only slightly perturbed by the modulation. Otherwise the perturbative expansion
underlying (4. ii would not be possible. This condition is fulfilled in two cases. One can

first

take a very small modulated potential (e < 1); the frequency of the modulation can then be

chosen freely. The other option is to take an arbitrarily large modulation factor (up to e =
1),

but to impose a modulation frequency
uJ

much greater than the characteristic ~~frequency" of

the bouncing process 1IT, where r is the reflection time. The modulated potential then induces

a fast atomic micromotion, which is superimposed on the slow unperturbed bouncing motion.

In the following, we focus on this second option, since it may lead to important transfers of

momentum for the atoms. This condition can be written:

MT =
Q »1 (4.31)

In the previous calculation, an additional approximation is involved, which consists in ne-

glecting in the expression (4.10) for Si(z,t) the contributions of the terms 8~Si/8z~ and

(bsi /bz)2. Before going further in a quantitative estimation of the corresponding error, we can

point out two consequences of this approximation, which appear clearly in the result (4.17).
First, (4.17) does not strictly fulfill the dispersion relation for matter waves En

=

pi /2M.
Equations (4.18) and (4.19) only constitute a linearized version of this dispersion relation for

small nq, and this induces a small phase error, that should be compensated by the contribu-

tion of these two partial derivatives neglected in (4.10). Secondly the momentum distribution

deduced from (4.17) is a symmetric comb centered on p, with sidebands whose weight is pro-

portional to (an(~
=

(a-n(~. However we know from the Born treatment (Sect. 3) that an

asymmetry appears in this spectrum, when the parameter Q~/fl becomes of the order of I or

larger (see (3.13)). We therefore expect that the validity of the semiclassical approach will be

limited to Q~ < fl. We show now how one can recover this validity condition from a detailed

analysis of the contributions of the two partial derivatives mentioned above.

We estimate the magnitude of the second term of the right hand side of (4.10), in order to

determine the region of parameter space where it can be neglected with respect to the leading

term. As an estimation we take Si(z, t)
=

o before the bouncing time (t < to), and we use for

t > to the asymptotic expression for S)°~(z, t) given in (4.14) (~). We obtain in this way, for

t > to1

(~.~~~
~~~

= ~£Q~~~~~~~~$

(4.33)8~ji =

)~
Sin(1°t°)

We now choose a time t such that t to is larger than the reflection time r
and we evaluate

the two contributions that have been neglected in the integral appearing in (4. lo)

(~) A more precise evaluation of Si would require lengthy calculations in this semi,classical framework,

due to spurious divergences of the WKB method around the classical turning point.
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The relative magnitude of these two terms depends on the index of modulation. Equation
(4.34) is the leading term in the regime of low modulation index (u < 1), whereas (4.35) is

dominant in the high modulation domain (u » 1).
We note that the magnitude of the two terms (4.34) and (4.35) increases linearly with time, as

expected for corrections to the phase of fllfin (z, t) whose role is to restore the correct dispersion
relation for the de Broglie wave. In practice, we can evaluate these two terms for a time t

located well after the classical turning time to We take for instance:

t to Cf 4r (4.36)

After the time t, the values of the an coefficients appearing in the final wave function (4.17)
do not change anymore, and we can impose "by hand" the correct dispersion relation; in other

words, we then replace the wave function (4.17) by

ill[~(z, t)
=

Ce'~ £
an exp

~ (-Ent + PI z) (4.37)
h

with pi +
@t.

I'(C)
/~

/~

~' ~

+ +

3 4 5 6 7 8
elementary momentum spacing Q

Fig. 2. Regions of validity of the semiclassical approach, as a function of Q and P,
=

p,/hK. The

modulation depth
was

taken
as e =

1. The semiclassical approach is valid in the region between

the lines (b) and (d). The line (c) (it
=

1) separates the regimes of high (above) and low (below)
modulation index

~.
(a) Line Q

"
3, (Eq. (4.30)) defining the region for

a
fast classical micromotion

of the atom. (b) Limit 2(/hPmax)~
=

l~, (Eq. (4.39)). (d) Limit 2Q~
=

l~, (Eq. (4.38)). (e) Limiting
condition p~ =

AK for the semiclassical regime. Crosses: parameters corresponding to the numerical

solution (Fig. 1 and Sect. 5).

In the regime of low modulation index, the leading correction (4.34) is small compared with

the main contribution to Sill if:

2Q~ < l~ (4.38)

As expected, we recover here the condition required for having a quasi-symmetric spectrum.

In the regime of high modulation index, the main contribution to the phase factor Sill is

very large compared to 1, and we now have to require that the leading phase correction (4.35)
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be small compared to 1. We then obtain:

2(APmax)~ < fl (4.39)

where APmax represent the maximal appreciable momentum transfer, measured in units of AK:

APmax
"

UQ
"

fnofl(Q) (4.40)

The validity region delimited by the two equations (4.38) and (4.39), together with (4.30) and

(4.31), is plotted in figure 2.

5. Reflection of wave packets.

In order to check the approximate results (3.8) and (4.20),
we have performed a direct numerical

integration of the Schr6dinger equation, giving the evolution of an atomic wave packet bouncing
on the atomic mirror. As in sections 3 and 4, we restricted ourselves to the one-dimensional

problem, since the atomic degrees of freedom parallel to the plane of the mirror factorize out.

We choose an initial Gaussian wave packet and we integrate the evolution of the atomic wave

function in position space using a 4'th order Runge-Kutta algorithm [22].
The position of the initial wave packet is chosen far enough from the mirror position so that

its propagation towards the mirror is initially the same as for a free particle. For instance,
for the evolution shown in figure 3, the initial wave packet was centered at Kz; =

13, with a

standard deviation Kbz;
=

2. The initial momentum was p; =
loo hJ~, with a standard deviation

bp;
=

o.25 hJ~. We have checked that the final momentum distribution is independent of the

value of bp;, provided that bp, < q, I-e- in the limit of well-resolved orders.

In our calculation, the particles are confined in a square box whose limits are J~zm;n =
-25

and J~zmax =
25. The boundary conditions for the wave function ~l(z) are ~b(zm;n)

=
~b(zmax)

=

o. The expression of the potential in the z > o domain is the same as the one used in section

3 (see Eqs. (3.1) and (3.2)). In the
z < o domain, the potential is chosen to be null. This

form for the potential allows us to study the fraction of atoms that reach the point z =
o.

In a real experiment these atoms would actually hit the surface of the dielectric supporting
the evanescent light wave. They would either stick to the dielectric, or be reemitted with a

thermal velocity; in any case they would be lost for the subsequent use of the bouncing atomic

beam. For the values of the parameters used in the following examples, we have checked that

this fraction of atoms is always negligible, even for a
loo% modulated potential (e

=
1) (3).

After the reflection, I-e- when the reflected wave is in a region where the influence of the

potential is negligible, we calculate the momentum distribution (~l(p)(~, where ji(p) is the

Fourier transform of ~b(z). Two example momentum distributions are shown in figure 4. We

have checked that the result for (ji(p)(~ does not depend on the time at which the Fourier

transform is taken, as expected from the simple evolution of j(p) after reflection: j(p, t2)
"

j§(p,ti)exp(ip~(t~ ti)/2Mh). On the other hand, the shape of the position distribution

(~b(z)(~ changes long after the reflection. For instance the oscillations appearing in figure 3,
which result from the superposition of wave packets with momenta pi, pi + q, will eventually
disappear when the three wave packets become separated from each other because of their

different group velocities.

(~)For the practical design of
an

experiment,
one

should include, for safety, the van der Waals

attractive potential in order to estimate more precisely the fraction of sticking atoms.



1890 JOURNAL DE PHYSIQUE II N°11

-

13r

~

~
j~
~
fi1
)

)
'

~

t=-13T
,

/~
-(5 I (5

position (Kz) a)

go loo no

momentum (p/hK) b)

Fig. 3. a) Reflection of
a wave packet at the modulated mirror. The position distribution at t

=
0

has been cut for the sake of clarity, its actual maximum height is about 15 times the height of the

incident wave
packet. The parameters used are:

initial position ~z, =
13 with standard deviation

6Kz,
=

2, initial momentum pi =
100 AK with standard deviation 6p,

=
0.25 AK, modulation frequency

w =
5/T

so that q =
5 AK, modulation depth e =

I. b) Final momentum distribution.

We now compare the predictions of this numerical treatment with those of the approach
presented in section 4. To this purpose, we consider again the initial Gaussian wave packet:

(p + pi )~
~~~ (_ £pz (5. i)%i(P> °)

" ~~P 46p) li
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Fig. 4. Final momentum distributions, given by the numerical solution (solid line) and the semi-

classical approach (dashed line). The parameters used are:
initial momentum p, =

100 A~, momentum

width 6p,
=

0.25 AK (standard deviation), modulation frequency
w =

4.2/T (momentum transfer

/hp
=

4.2 AK). The situation adopted in (a) (modulation depth e =
0.6) maXimizes the product of the

carrier and first sideband; that in (b) (e
=

I) maximizes the product of the sidebands
n =

+1.

Using the approximate results of section 4, the final wave packet is given by

<(Pi t)
=

i ane~~ exP 1~~ iii ~~~
exP I-lPz.

Ill
(5.2)

where the an coefficients, given in (4.20), must be evaluated at p nq. The results of the

two approaches are shown in figure 4, the solid line for the numerical solution and the dotted
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line for the semiclassical approximation. The initial wave packet is the same as above. The

momentum transfer is q =
4.2 hJ~ and the modulation amplitude e equals 0.6 (Fig. 4a) and 1

(Fig. 4b). We see that the agreement between the predictions of the two methods is good,
although not perfect. In particular, the numerical treatment shows an asymmetry between

the heights of the two sidebands (((pi + q)(~, while the approximate treatment predicts equal
sideband weights, because of the relation (Jn(x)(

=
(J-n(x)( (see discussion in Sect. 4).

A more systematic comparison of the predictions of this numerical approach with the results

derived with the Born approximation and with the semiclassical approach is presented in figure
1. We have determined, for the same initial wave packet as above, and for several values for q,

the heights of the sidebands n =
+I. We see that the agreement between the three methods,

in their expected range of validity, is quite satisfactory.

6. An atom interferometer.

The vibrating mirror can be used in a number of ways to make an interferometer. In what

follows we will consider the case of atoms normally incident on the mirror surface, and making
three or more bounces on it. In other words, we rely on the possibility of having a source of

slow atoms released above the mirror [23, 24]. With a fast beam of atoms, either which could

not be reflected at normal incidence, or for which the time to perform repeated bounces is too

long, one would need several mirrors used at grazing incidence if necessary.

Figure 5 illustrates an interferometer based on three consecutive bounces on a vibrating
mirror. This is similar in conception to an interferometer constructed from three diffraction

gratings [6, 25]. For an incident energy E~, we consider two output channels with energies
equal to Ei and Ej + huJ. Each of these two channels can be reached via two paths, which are

shown by full lines in figure 5; the other paths, shown dashed in figure 5, do not contribute

since we assume that the mirror is "turned off" when these paths hit it.

Z
/ ,

/ /

/ /

/

/

/

/

A B C t

sin(oJt p,) sin(wt p~) sin(wt p~)

Fig. 5. Space-time diagram showing a monochromatic interferometer using three bounces on a

vibrating mirror. The paths shown lie at local minima of the classical action. At each reflection, paths
corresponding to sidebands of order higher than I are omitted for clarity, and paths which return to

the mirror when the latter is non-reflecting
are

shown dashed.

The probability amplitude to exit in a given channel is calculated using the propagators for

the regions where the atom is in free-fall, and the phase shifts corresponding to the interaction

with the mirror. The free fall propagators can be evaluated using the integral of the action
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along the relevant classical paths. We write these in the form exp(ioAB) for the various paths

as shown in figure 5. We write #m the phase of the mirror vibration at the m~~ bounce.

This phase is dictated purely by the origin in time of the sinusoidal modulation of the mirror

for that bounce. Using the expressions (4.20) and (4.21) for the coefficients an giving the

amplitude for transmission into the n'th sideband, we now get the two probability amplitudes
for transmission into the two exit channels:

~(~,) ~(i)~j2)~j3)~,j~2-~3)~quAB+aBc)
0 1 -1

~~(i)~12)~13)~,j~i-~~)~,ju~~z+«~zc) (6_1)

A(Ej + huJ)
=

a(~~a)~~a(~~e'~2e'l"AB+"BC)

+~ll)~12)~(3)~i(~i-~2+~3)~'l"AD+aDc) (6 2)
1 -1 1

where the superscript (m) indicates the bounce number. For simplicity we have omitted here

the contribution of the phases1~(p) which appear in (4.17). This contribution is the same for

the two paths and it cancels out in the final interference pattern.

By choosing a symmetric geometry, we impose the conditions aAB = aDc and aAD " aBc

so that the final interferometric phase is given simply by the reflections; it can be written

=
#1 2#2 + #3. Note that the other phases associated with the reflections, q(e~ and,

as already noted, 1~(p), exactly cancel out because of the symmetry. In other words all the

phases which depend on the incident atomic momentum disappear, and the interferometer

will produce high-contrast fringes even when illuminated by a beam of atoms having a broad

momentum distribution. The "traditional" three-grating interferometer has the same property.
Note also that, for any phase grating including the present one, the an coefficients satisfy
a(a-i

"
-aoa(. This ensures that the total probability for ending in one channel or the other,

(A(E;)(~ + (A(Ei + huJ)(~, is independent of the interferometric phase R.

The fringe amplitude for this interferometer can be written

F
=

2 Re ((aoa()~~)(aiasi)l~~ (a-ia()~~) ~°j (6.3)

This quantity would give F
= cos for an ideal interferometer such as a Mach Zehnder. Using

the semiclassical approximation (4.20), and denoting um the index of modulation for the m'th

bounce, one has

F
=

2(Jo(~i)Ji(ui)) (Ji(~2))~ (Jo(u3)Ji(u3))cosR (6.4)

This fringe amplitude F is optimised for vi " u3 "
1.08 and u2 "

1.84, and we get (F(max
=

o.078. To maximize in these conditions the separation of the interferometer arms we choose

e2 =
1 at the middle bounce, and (4.15) then gives ei " e3 Ci

1.08/1.84 ci o-G for the first

and third bounces. For example, if the initial momentum is p, =
loo AK, (4.15) leads to

Ap
=

4.2 AK for these values of the e's and u's. This gives a good indication of the optimum

case: the numerical solution of the Schr6dinger equation gives the maximum (F(max ci o.081

at Ap ci 4.2 AK, for the same value of pi (see Figs. 4a and 4b). To optimise instead the fringe

contrast, one would use the case (ao( "
(ai( for the first and third bounces, producing loo%

contrast, with a slightly reduced fringe amplitude.

As an
example, consider a cesium atom normally incident on an evanescent wave near-

resonant with the atomic transition 6Si /2 -
6P~/~. Taking

K ci 2x /852 nm, the momentum

loo AK corresponds to a velocity of 35 cm/s, and a bounce height of 6 mm, which is readily
realisable in practice. The momentum change 4.2 AK is produced with

uJ =
2x x 1.7 MHz.

The two interferometer arms are separated in distance by about o-S mm, when both are near
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z

t

Fig. 6. Interferometer design in which the interference phase is sensitive to the acceleration due to

gravity. Since the vibrating mirror can only transfer
a

few AK of momentum, a practical design would

involve several bounces before the arms are recombined,
as

described in the text.

their maximum height, and in time by about 3 ms (the difference in arrival times at the second

bounce). Thus macroscopic path separations can be obtained.

The interference phase will be destroyed not only by mechanical fluctuations of the dielectric

surface supporting the evanescent wave, but also by intensity fluctuations of the evanescent

wave itself. To estimate the effect of the latter, we note that if the intensity fluctuates by a

fraction e, then the effective mirror position (Eq. (4.13)) moves by e/2K. The change produced
in the interferometer phase is then ep/hK radians; this can be understood simply as a higher
sensitivity to fluctuations when the de Broglie wavelength is small, or, equivalently, when the

interferometer area is large. One must eliminate not only fluctuations in time but also in

the transverse spatial profile of the laser beam forming the evanescent wave "mirror". To

make a flat mirror, one could use a Gaussian laser beam of waist w
internally reflected from a

concave glass surface of radius of curvature R: when w =

fi@ the glass surface curvature

compensates the Gaussian fall-off of the laser beam intensity profile, and the mirror presents

a flat reflecting surface for the atoms. A transverse magnetic quadrupole field could help to

confine the atoms without perturbing the vertical motions of the interferometer arms.

The most obvious first use of the vibrating mirror interferometer is simply to investigate the

preservation of coherence during a reflection off the evanescent wave mirror this could be

done by introducing more and more bounces between the splitting and recombining of the two

interferometer arms. A second use is as a probe of the acceleration due to gravity. For this,

one would not use the symmetric arrangement which we have considered so far, but instead

one allows the two arms to bounce many times until they are recombined "automatically" after

m
(and

m
+1) bounces, where mp'

=
(m +1)p, with p'~

=
p2 + 2MhuJ (Fig. 6). The mirror

is vibrated only for the initial and final bounces; in between it is stationary. For this case, the

interferometer phase is dominated by the contributions from the free flights between bounces.

One finds that while such an interferometer provides a sensitive probe of the acceleration due

to gravity, it is also highly chromatic, producing fringes only for a very small class of incident

momenta centred around p.

Conclusion.

To summarize, we have presented here the principles of a vibrating mirror for atoms, which

constitutes a novel beam splitter for atomic de Broglie waves. We have investigated two
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analytical theoretical approaches for this new scheme, in order to determine the amplitudes
and the phases of the outgoing atomic waves. The results are in excellent agreement with a

numerical approach to the problem.
The typical momentum transferred by a vibrating mirror formed with an evanescent light

wave is a few photon momenta. Although this is not as large as the transfers obtained by some

other devices, we believe that it should provide, because of its conceptual simplicity, a conve-

nient tool for atom optics and interferometry. Indeed, unlike other atom optics components
such as micrc-fabricated gratings, it is quite easy to change rapidly (on the microsecond scale)
the modulation factor of the light wave forming the mirror. This gives in return a direct con-

trol upon the phases and intensities of the diffracted de Broglie waves, and this allows one to

conceive simple and useful atomic interferometric devices, such as the ones shown in figures 5

and 6.
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