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Abstract. Recently, a model for the preparation of "protein-like" heteropolymers with
a

unique and stable ground state has been proposed and examined computationally. Formally,
this model is similar to another recently proposed and computationally examined model of the

evolutionary design of protein-like heteropolymers. Using
mean

field replica theory, we
find, in

addition to the freezing transition of random chains, a transition to the target "native" state. The

stability of this state is shown to be greater than that of the ground state of random chains. The

results derived here should at least qualitatively be applicable to known biopolymers, which
are

conjectured to be
m viva "designed" by evolution. Furthermore,

we present a
crude prescription

for
a

laboratory procedure in which chains
can be syntheeized

m vitro.

1. Introduction.

Due to its biological importance and physical complexity, the problem of the folding transition

of copolymers has attracted considerable attention [1-3]. Biologically, proteins represent a sort

of "designed" heteropolymer, in this case the result of evolution. It is also known that pro-

teins have a unique structure. It is intriguing to consider that the existence of a specific (I.e.
designed) unique ground state could be the result of evolution. This has been studied com-

putationally, by a Monte Carlo procedure which swaps monomers via the Metropolis criterion

such that the polymer energy is minimized [4].
A method to synthesize renaturable heteropolymers in a laboratory procedure has also been

recently suggested. In this design procedure, monomers are equilibrated in space and then in-

stantly polymerized. It has been shown computationally that the polymerization conformation

will often be the ground state conformation, I-e- the polymerization conformation has been

designed, or "imprinted" [5]. The significance of the imprinting of the polymerization con-

formation is that if monomers are equilibrated in the presence of a target molecule and then

(*) On leave from: Institute of Chemical Physics, Russian Academy of Sciences, Moscow 117977,
Russia



1772 JOURNAL DE PHYSIQUE II N°10

polymerized, the complementary site formed by equilibration of the monomers with the target
molecule prior to polymerization would be preserved in the polymerization conformation. If

this polymerization conformation is the ground state, then the sequence has been designed so

that it folds to a conformation which has a site capable of recognizing the target molecule.

Clearly, in spirit, these two design procedures are radically different. However, in the mean

field approximation, both models are formally indistinguishable, as both choose sequences with

a fixed monomer composition such that the energy of interaction is minimized [5].
In this paper, we employ the replica approach to describe the effect of design on the freezing

transition previously predicted for random chains [2, 6]. The mean field replica approach is

believed to be applicable to disordered polymers, as the polymer problem is similar to the long

range SK spin-glass [7]. Indeed, due to polymer flexibility, all monomers can come in contact

with each other in real space, and, therefore, interact with each other, no matter how far they

are along the chain. In this sense, the heteropolymer is perhaps the best physical realization

of the SK system, with a truly infinite radius of interaction [6].
The freezing transition in random copolymers is due to the competition between the entropic

favorability of a large number of conformations and the energetic tendency toward one or a

few conformations with distinctively low energies. Qualitatively, we expect that the design
procedure should lead to sequences whose unique ground state conformation is the target
conformation, as we have, in a sense, exerted a "field" which chooses an ensemble of sequences
which have been optimized for the particular target conformation.

2. Formulation of the model.

Consider a heteropolymer chain with a frozen sequence of monomers sI, where I is the number

of monomer along the chain Ii < I < N) and sI is the type of monomer in the given sequence.

In the present model,
we consider only two values for s, s =

+1, and have the interaction

Hamiltonian of the form
~

7i
=

)B ~
s I s j

6(r
I r

j) (1)

~ ~

where 6(r) is the Dirac delta function. As we wish to concentrate on heteropolymeric effects, we

do not explicitly write, but implicitly assume, an overall attractive second virial coefficient as

well as a repulsive third virial coefficient. Specifically, we assume that the complete Hamiltonian

is given by the sum of heteropolymeric and homopolymeric terms:

7i'
=

~B
f

sI s j
6(rI

r
j) + B0p + Cp~ (2)

~
I,J

where 80 and C are the mean second and third virial coefficients. As
~~

assume that (Bo( » B,

we can optimize the free energy with respect to p independently of any heteropolymeric proper-

ties. Thus, these homopolymeric terms lead to a compact globular state with constant density

p =
-80/2C. Furthermore, B is due to heteropolymeric effects; it is the "preferential" en-

ergy: for two types of species labeled I and 2, the preferential energy is the energy difference

E12 (l~ii + E22). The meaning and value of the preferential energy for any real system
depen/

on the nature of the actual interactions involved le. g. hydrogen bonding, hydrophobic
forces, etc. ). Essentially, some conformations with a given density (fixed due to the homopoly-

meric terms) might be more
thermodynamically favorable than others, due to heteropolymeric

effects. This will be the main subject of our analysis.
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The partition function is expressed as

zlseq)
=

jj
exP I-yli lconf, Seq) 13)

conforrnat;ens

Note that the Hamiltonian depends on both conformation and sequence. The standard way

to approach the partition function of a system with frozen disorder is to employ, first, the

principle of self-averaging of free energy and, second, the replica trick:

Fjseq) t F
=

jfiseqjj~~q
=

-TjIn Zjseq))~~q
=

-T lim
i~~i~~~)i~~~

,

j4)

where (.. )sea means average over the set of sequences.

In the works [2, 6], while averaging, the sequences were considered to be random. The main

purpose of this work is to incorporate the fact that sequences are somehow selected. This

means

(. )seq "

~j
l~seq (5)

seq

where Pseq is the probability distribution for different sequences which appear in the process

of design or synthesis of chains.

Both of the recently suggested models of sequence preparation is, 4] (see above) employ in the

selection process the same volume interactions with which the links of chains interact. In both

cases, Pseq is governed by the Boltzmann factor related to the same Hamiltonian Ii taken for

the "target" conformation *. Since we are not interested in any particular * conformation and,

besides, this conformation seems to be out of control in any real (not computer) experiment,

we average over the conformation *:

~seq ~j
~XP

~
li (*,

~~)1,
(~)

~

where Tp is "polymerization" temperature at which design procedure is performed and

z =

~ ~
exP (-j7ii*, eq)j

17)

seq *

is the normalization constant. The probability Pseq includes all possible sequences, not only

the ones with any given composition.
Collecting the above equations, we can write the n-replica partition function, up to the

constant factors, as

~ ~~~~~, ~~~~

"

i~"~~~~~~~~~ ~~j )~*l~~~~ °~~°~~'°~~~[ ~

~
j

~, ~, ~

exp n7i ion° ~~~~ T
ni

~ ~~"'~~~~
'

~~~

where C~
=

Co, Cl,
.,

Cn stand for conformations of replica number a, and index a =
0 is

attributed to the target conformation *. As expected, we return to the usual case of completely

random sequences at Tp - cc. The new physics which appears at finite Tp is the main subject

of further analysis.
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3~ Replica theory analysis~

We write the n-replica partition function

lz~ls~q))seq
"

~j ~j (9)

seq Coocio.. Cm

x exp

If f
/dRidR2 sI 6(r) Ri s j

6(r) R2 6(Ri R2)
,

n=0

~
" I,J=1

where T"
=

Tp for o =
0 and T*

=
T for o > 0, and we perform Hubbard-Stratonovich

transformation

(Z"(seq))sea
=

/
D# ~

exp 1-
f

/dRidR2
~~

4" (Ri )4" (R2 6(Ri R2
~

cn,ci,.. cm
~

n=0

~

x
~

exp

If
/dR

f
#"(R) sI 6(rJ R) (10)

seq n=0 1=1

Here #"(R) are the fields conjugated to the corresponding densities £ )~~ sI6(rJ R), fD#.
means functional integration over all the fields (#"(R)), and we have dropped all irrelevant

multiplicative constants from the partition function. Note that the sum over sequences enters

only in the last "source" term of (10). The summation over sequences can be easily performed
to yield

exp jsource termj
=

~ ij
exp

sI f /dR j"jR)6jrl R)

si,s2;. sN=+11=1 n=0

=

jj ~
exp lsl

f /dR #*(R)6(rJ R)

I=1s=+1 n=0

=

jj
2 cosh

If
/dR #"(R)6(rJ R) Ill

1=1 n=0

We perform now the expansion over #. It is the most important approximation of this work.

The corresponding conditions of applicability will be given later. Keeping the terms up to

tJ(#~),
we get the n-replica partition function in the form:

lz~ls~q)lseq
"

~j /
vi eXp j-Ejooflil l121

where the effective energy of n-replica system is given by

E(Qnp)
=

(/dRidR2

x

f §
<"(RI )4"lR2) 6jRi R2)

f
4"lRi)4~lR21QaPlRi, R2) l13jn=o

n,P=o
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and
N

Qnp(Ri, R2)
"

~ 6(rJ Ri) 6(r( R2 (14)
1=1

is the standard two replica overlap order parameter [6, 3]. Recall that the value of Q~p(Ri, R2
has the very simple phyiical meaning: it is proportional to probability of finding simultaneously

one monomer of the replica o at the point RI and one monomer of the replica fl at the point
R2. Also note that the normalization conditions

/dRi Qap(Ri, R2)
"

pp(R2) and /dRidR2 Qap(Ri, R2)
=

N (IS)

are obvious from the definition of Qnp, equation (14), where pp(R2) is the density. As we are

concerned here with a large globule, density is assumed constant throughout the globule, such

that

pp(R)
= p (constant in space, same for all replicas) (16)

and therefore

Qnfl(Rl, R2)
"

Qafl(Rl R2) II?)

We also mention that the diagonal element is given by

Q~~ iRi, R~
= p 61Ri R~) j18)

We can therefore rewrite the effective n-replica energy in the form

i " ~na
E(Qnp)

"

~ /dRidR2 4"(Ri)4~(R2) ((- )
6~p6(Ri R2) Qn#p(Ri

2)j
~

",P"0
~

(19)
Now we pass from summation over conformations (microstates) to functional integration

over Qnp (macrostates). Qnp is the only relevant order parameter. The corresponding entropy
is given by [6]

IN
e~lo"#I

=

~j 6 Q~p(Ri, R2) ~ 6(r) Ri 6(r( R2
,

(20)

Co,Ci;. Cm I=1

and therefore

(Z" (seq) )sea
=

/DQ /D# exp (-F + Fo ) F
=

E(Q~p ) S (Q~p Fo
=

In z (21)

The mean field evaluation of this partition function implies a saddle point approximation for

the integral over Q (Eq. (21)). Normally, this means taking the maximal value of the integrand.
It is commonly believed, however, that in order to find the correct analytic continuation in the

n -
0 limit, one has to take the maximal rather than the minimal value of the relevant free

energy F, because there are
n(n -1) /2 off-diagonal elements in the Qap matrix, and therefore

for the 0 < n < 1 case, the integral over Q~p represents summation over a negative number

of variables. Following this principle, we write

(Z"(seq))sea
=

/D# exp
[-Maxj~jf(Q)]

=
Minj~j /D# exp [-F(Q)]

,

(22)

I.e., we have to maximize the effective free energy functional (21).
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4. Replica symmetry breaking~

We choose some standard function q~(x), say Gaussian, with the normalization condition
fdx q~(x)

=
1, and say that

Qnp(Ri R2)
=

~

~

7l~~ ~/~
,

(23)

(R/~) ~t

where d is the dimensionality of space, R/~
can be interpreted as the diameter of the tube in

which replicas o and fl coincide, and the normalization condition defines the coefficient. We

now repeat the arguments of [6]: as the entropy scales like -(ll~"~) ~
at n < 1, we get each

a # fl term of the free energy functional of the form

~
Ai

~
A~

~~~~~~ iRi~)~ (RjP)~

where AI and A2 are positive numbers. For d > 2, which is the main concern of this work,

we find two maxima, namely R/~
= cc and R/~

=
0 (in the later case, see the discussion in

[6] concerning the short distance cut-off ll~*~ =
v~/3, where v is the excluded volume). The

first corresponds to two replicas, a and fl which are independent and do not overlap at all

(Qnp
"

0), while the second corresponds to replicas which coincide at the microscopic level

(Qap
= P 6(Ri R2)). Thus, from these scaling arguments in R/~,

we conclude that Q~p is

of the form

Q~~jRi R~)
= p q~~ 6(Ri R~) ja ~ p)

,

j2s)

where off-diagonal matrix elements of the new matrix q~p are either 0 or 1. If we additionally
define diagonal matrix elements q~~ as

Qna + 1-
)

,

(26)

we can write

(Z"(seq))sea
=

Minj~ ~j
e~lo"#I /D# exp

~j
q~p #* #P

,

(27)
z " 2

~

~

a,#=0

where integration over R disappears leaving the product of N
= p f dR integrals. Moreover,

we can perform Gaussian integration over # yielding (~)

(~) It is instructive to perform first the Gaussian functional integrals over
#° yielding

~
N

(Z"(seq))sea
=

Minj~~ ~j
e~lo"~l /l~# exp

~ ~j )~p #~ #P
,

(28)
2 2

",P"1

where

~
q~oqop (29)q«P " q«P

~~~

In this form, we reduce the problem to a form similar to that of Sfatos et al. [2], with
a new effective

order parameter )~p. This form explains that replica 0 plays the role of external field in replica space,

adsorbing other replicas. In other words, two replicas cv, fl > 0 attract each other directly,
as

in the

random polymer, and, additionally, because both are attracted to target replica.
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lz"lseq))sea
= exp [-Maxjq~~jfiqnp ii Fiqnpi

=

)
in ldet i-qnp)i sjq~pi in

z
j30)

where we have dropped all irrelevant additive constants.

To maximize the n-replica free energy over q~p means in fact finding the optimal grouping
of replicas. There is the following obvious transitivity rule: if, say,

R/~
=

0 and Rf~
=

0,
meaning that conformations of replicas o, fl and ~ are all the same, then Jl~°~ =

0 as well.

In other words, if Qap "
1 and Qp~ "

1, then Qn~ =
1 as well. Using matrix row and column

operations, we can organize any such matrix into block diagonal form. This means gathering
replicas that overlap in the groups and placing replicas of the same group into the same diagonal
block in the matrix. One of the blocks is comprised of some y + I replicas which do overlap

(I.e., practically coincide) with the "target" replica 0. Other In + I) Iv + I)
= n y replicas

belong to n
lx groups, some x replicas in each:

--fi' 0 0
Bpl

--+-----

y+I I i-j I
~

0 0

(

'"( l n+1

0 0 0

j

i-
T

iBP
0 0 0

x

One can say that y replicas here are "adsorbed" on the target conformation, which plays
the role of external field for

n
other replicas. A similar situation exists in neural networks [11],

where the memorized image plays a similar role to the target conformation. On the other hand,
the grouping of other replicas is due to spontaneous replica permutation symmetry breaking.

The determinant of the Qnp matrix can be directly calculated. First, since the matrix is

block-diagonal, its determinant is the product of block determinants. Each
x x x block has

a lx I)-fold degenerate eigenvalue ii
Q)

and one distinct eigenvalue ii q + xQ), where

4
=

1 T/Bp and
"

1 are diagonal and off-diagonal matrix elements, respectively. As to

the Iv +1) x (y +1) block, it has one distinct diagonal element qoo =
Tp/Bp

=
fp and for

this reason the eigenvalue if q] is only (matrix size 2)
=

(y -1)-fold degenerate, while the

two others are
(1/2) ii + #p + q(y I)] +

Iii
fp + q(y 1)]~ + 4yq2 Taking the product



1778 JOURNAL DE PHYSIQUE II N°10

of all eigenvalues throughout all blocks, and noting that det (-q~p)
=

(-1)"+~ det (q~p), we

obtain

~~ l~~ ~
~~]~

~
~)~

~
,

~~~~In [det (-Qn#)j
"

V
~~

~
T

~
~~~

T

~
~

~

~ ~~~ ~~~

To estimate the entropy S(q~p) related to the grouping of replicas, we follow reference [2]

to argue that due to the polymeric bonds connecting monomers along the chain, once one

monomer is fixed in space, the next must be placed within a volume a3. Since replicas that

belong in the same group coincide within a tube of radius Rt
'~

v~/3, there are
a3 Iv ways to

place the next monomer and thus the entropy per monomer is In(a3 Iv). But since all replica
conformations coincide within the group, we must restrict the position of the next monomer to

a single place. Thus, the entropy loss for each group is six I), where s =
In(a3 Iv) is related

to the flexibility of the chain, and therefore

S
=

Ns
fi(x

1) + y (32)
X

As to the last term in (30), lnz, it is formally related to the normalization condition

for the probability Pseq, but physically it is the free energy of single replica 0 taken at the

polymerization temperature Tp. It can be therefore easily found by taking n =
0, y =

0 in the

preceding formulae:

In
z =

N ln
~~

lj (33)
BP

Collecting equations (30), (31), and (32), we obtain

~~
~2x~ ~~

~
~~~ ~ ~~

~
l

~)Tp~~ ~ ~

~
~

x

~
~~~~

where we have employed the fact that the last two terms in (31) cancel with normalization

constants from Gaussian integration not explicitly written. We are left, therefore, only with

maximization over x and y in the n -
0 limit, yielding the opportunity to comment on the

physics of the possible phases.

5. Phase diagram~

Let us discuss the possible values of x and y in the n -
0 limit. For the replica system, when

n is positive integer, we have 1 < x < n
and 0 < y < n. Clearly, x =

1 means there is no

grouping, I.e. no replica symmetry breaking. On the other hand, x = n means all the replicas
belong to the same group, or replica symmetry is broken. When n becomes less than I and

goes to 0, inequalities flip. Nevertheless, x must remain in between of
n

and I, and approaching

x to I means disappearance of replica permutation symmetry breaking. In other words, x =
I

corresponds to the freezing transition. This transition has been investigated in [2]. Maximizing
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x in equation (34), we recover the result of [2] for random chains (~)

~~ ~'~

~
~~~ ~

l ~~~~/~)x ~~~~

The solution of this equation is of the form
x =

T((s)/Bp, where ((s) is the function defined

by the equation 2s
=

In(I () + (/(I (). According to our discussion, this solution is valid

when it gives x < I, I-e- at T < Tf, where Tf is given by

~ /~) °~ ~~ ~~
~ ~~

~
l

~i~~Tf
~~~~

Tf is the temperature of freezing transition for the chain with random sequence [2], and we can

write

~ ~~~ #l~~s~ ~
~~~~

We find that xo and Tf are independent of any design parameters such as y and Tp. This

has a clear physical meaning: if one considers the chain prepared by our procedure in some

particular conformation *, then for almost all of the conformations except *, this chain behaves

as if it had a completely random sequence. This is why freezing into a random conformation

is not at all affected by the procedure of sequence selection.

Consider now maximization with respect to y. The condition 0 < y < n
is obvious for

positive integer n: y =
0 means no replicas in the target group (3), while y = n means all

replicas are in the target conformation. When n becomes less then I and goes to 0, y remains

in between 0 and n, which is also 0. Since y is always small, the second logarithmic term in

(34) can be linearized to obtain

jF
=

)
(In

I ~xj 2s) + sn
)

(In
I ~xj +

)j~/) 2s (38)
X X P

P

Thus, the effective free energy (38) is linear in y. The maximal value is therefore reached

always at the boundary of the interval, I.e. either at y =
0 (no replicas in the target group)

or at y = n
(all the replicas are in the target group). The corresponding phase transition

occurs when the y dependence of the free energy flips sign, and the transition point Tj~ can

be easily found, since linear in y term of the free energy (38) vanishes at the transition point.
We substitute s from the condition (36) and find

Tir
=

BP
i

in

imiiq When T > Tf
i~~~

Tf otherwise

Clearly, this is a first order transition.

(~)In fact, this result corresponds exactly to the so-called Parisi ansatz [9] with one-step replica

symmetry breaking. In our
model, however, it can be obtained in a more

sophisticated manner,

without any ansatz. Indeed,
we can

easily consider the general
case

of some g groups of replicas,
with different numbers x, of replicas in each group. We have then £)_~In [I @x,j instead of

Q In [I @xj in the In (det (-q~p)) term and s
£(_~(x~ I) instead of

s
fit(x I) in the entropy

term. Maximization with respect to x, within the constraint £(~~
= n y gives that all x~ = x are

the same, leaving
us with the simplified version considered above.

(~) In thermodynamic limit, the probability to obtain given target conformation out of random choice

is negligible.
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~ Random
~

(
T

( ~
Target

# ~~°~~~

traps

lj

Polymerization Temperature Tp

Fig. I. Phase diagram for designed copolymers. There are three phases: I) random globule, in

which
a vast number of conformations (folds)

are
allowed for the chain in the equilibrium; 2) fro2en

globule, in which only a
few conformations

or even one conformation
are

allowed; 3) target globule,
in which the designed conformation (*) is the only allowed

one. Note that the target globule phase
region of phase diagram can be divided in two parts: the target conformation is the most stable state

in_both, but
a

few of the other random conformations may be thermodynamically either metastable,
thus serving

as traps in kinetics,
or

unstable without traps. Lines at low T and Tp represent the areas

of inapplicability of the theory.

Summarizing this discussion, we conclude that there are three different globular phases for

heteropolymers prepared by our procedure: Ii) random globule, essentially similar to homopoly-
meric one, where energetical preferences between monomers are not sufficient to stabilize any
particular conformation, so that the thermodynamic equilibrium is realized as the mixture of

astronomically large number of conformations; (it) frozen globule, where each chain chooses

some small number of the minimally frustrated [12] conformations, but the choice is essentially
unpredictable and remains out of control; (iii) target globule, where chain chooses exactly the

conformation prescribed in the preparation procedure. This is shown in phase diagram (Fig. ii.
Now we are prepared to finally perform the n ~

0 limit. Indeed, for both y =
0 and y = n

casks, the effective free energy (38) is linear in n. According to the original expression of the

replica approach (4), the real free energy of the heteropolymer chain equals to

~
_

_~n
~irr~ iz"iS~t~S~~ -

-T iii ~~~ ~i~
"

l
~~°~

From this, we write the free energies of all three globular phases: random lx
=

1; y =
0),

frozen (x
=

T/Tf; y =
0), and target (x

=
T/Tf for T < Tf, x =

I for T > Tf; y =
n)

)Frandom "
TIn (1- ~)~~j (41)

~'~°~~~ ~ ~'~ ~~ ~~~~~ ~ /~j)~) ~(
~

~~~~

~~~~~~
~ ~'~ ~~ ~~~~~ ~ /~~)~

(
l

((s)~~Tp
~~~~
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Note that these are already real free energies, so that a lower free energy corresponds to a more

stable phase, according to usual physical logic. By looking at the free energies above, one can

easily reproduce phase diagram (Fig. 1): in each region of the diagram the corresponding free

energy is minimal.

6. Discussion.

The free energies of both frozen and target phases do not depend on temperature in the low

T limit:

These limits are naturally interpreted as the energies of ground state conformations for a

chain with random and selected sequence, respectively. The ground state energy for a random

sequence is independent of Tp, while the energy of the target conformation increases with

Tp. We see that the selection of sequences, or preparation of heteropolymers by our synthetic
procedure, reduces the energy of the ground state. This implies a very peculiar character of

the density of states of the selected chains (Fig. 2). Indeed, since the selected sequence looks

random for all conformations except for the target one, its energy spectrum includes the target
conformation as the ground state and the typical ground state of random chain as the first

excited state.

As was recently understood [14], this kind of spectrum is very important from the point of

view of the kinetic accessibility of the ground state. Of course, one cannot analyze kinetics

purely by thermodynamic considerations. In general, self-organization of the correct globular
structure includes coil-to-globule compaction and some search for the correct globular confor-

mation. We are not in the position to estimate the time scales involved in those processes.

However, we can qualitatively compare the kinetics if the target phase self-organization for the

two cases T < Tf and T > Tf.

Indeed, consider the target phase on the phase diagram and examine first the T < Tf case. In

this case, the frozen phase is, from a thermodynamic point of view, metastable. Even though it

is less stable than the target state, metastability means that a macroscopic free energy barrier

must be overcome to leave this state. It is, therefore, a very strong trap along the way of

chain self-organization into the target conformation. We conclude, that at T < Tf, the target

conformation may not be kinetically accessible, even though thermodynamically it is the most

stable. On the other hand, at T > Tf, the randomly frozen conformation is not stable at all;

thus, there are no effective long-living traps on the pathway of self-organization, and, therefore

self-organization is expected to be considerably faster and more reliable.

We now analyze the conditions of applicability of our approach. In fact, besides the fact

that we were doing mean field theory, there is only one delicate approximation which comes in

equation (13), where we neglect higher order terms in the expansion over #. It is easy to show,

that all the subsequent terms in # are positive land therefore do not cause the divergence of

the integrals over # like Eq. (12)). In particular, the next term in # looks like

/dRidR~dR~dR~ injRi)iPiR~)i~iR~)16jR~)Qnp~~iRi, R~,R~,R~) 146)
,p~=o
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Fig. 2. Sample energy spectra for sequences imprinted at different polymerization temperatures
(Tp). The energy of the target conformation (Etarget)

vs,
polymerization temperature (Tp) is plotted.

As Tp is increased to Ti, Etarget increases. In the region Tp @ Ti (magnified section),
we see

that

Etarget is equal to Efff~~~, the average ground state energy of
a

random chain. This is related to

the phase transition between target and frozen phases (see phase diagram, Fig, I). It is instructive

to see a
realistic representation of the very bottom part of the energy spectrum, as

is shown here

in the magnified section. As was
shown in [13], conformations of low energy are

absolutely different

structurally, and therefore, different pairs of monomers are
in contact and

are
contributing to the energy

in those conformations. For this reason, the bottom part of the spectrum obeys the random energy

model (REM) [8]. With the change of Tp, the energy of the target conformation changes in a regular
fashion,

a5
plotted. Other states represent different independent realizations of the REM system.

Eight examples
are

shown in the inset. For Tp > Ti, the average energy for the target conformation

state is larger than Eff$~~~. Note that Etarget is the average energy, and that for Tp » Ti, the

probability distribution of the energy of the target conformation becomes (up to normalization) equal

to the density of all other states.

This should be negligible compared to the Q~p-term in equation (13) throughout the region
of # contributing to the integration over #. In other words, if we treat equation (13) in

terms of effective j-dependent Landau free energy and write it schematically in the form

f
=

Q24~ + Q44~, then the fourth power term should be negligible up to where quadratic term

is of order one. From equation (27), it is clear that the quadratic term can be estimated as

Nl#~, where I is the smallest, and therefore most dangerous, eigenvalue of the -Qnp matrix.

On the other hand, the normalization condition for Qnp~& implies that Q4
'~

N. Therefore,

the condition of applicability is Nl#( » N#(, where #o is given by Nl#(
~-

I, yielding
I » N~~/2. Note, that this has a clear physical meaning: I goes to 0 means that the #-

dependent Landau free energy approaches a phase transition, which is known as microphase
segregation [2]. Thus, our theory becomes inapplicable close to the microphase segregation
regime. As to I, we know all of the eigenvalues: they are T/Bp, T/Bp x, and (at y =

0)
Tp/Bp I. From (36), we have Bp

=
Tf((s); therefore, the condition of applicability of the

approach can be written in the form

T 1
~

Tp
1 ~

l ~P
> jjs) 147)

~~jj~)
~ @ ~~ Tffls) 4 Tf

On the other hand, the mean-field approach for the globule is valid at a3 Iv » I, or s » I. In
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this case, ((s)
m

1-1/2s. If we define
T

and Tp according to T
=

Tf Ii T) and Tp
=

Tf(1- Tp),
then the conditions of applicability (47) take the form

1 1
~~~~ @

~~~ ~P~£~@' (~~)

Thus, our results are valid only in a rather narrow region below the phase transition. This

is understandable physically: at low polymerization temperature phase segregation occurs in

preparation system of two types of monomers, giving rise to very long homopolymeric parts of

the prepared sequence. This of course prevents effective freezing of the chain to either random

or target conformation. For this reason we expect, that not only our theory breaks closely
below the freezing temperature, but also the very phenomenon of freezing and imprinting
exists only in rather narrow region of parameters for the two-letter heteropolymer. To improve

the situation, one has to pass to a richer set of monomer species, as it is indicated in computer
simulations [5]. The corresponding analytic theory is therefore a challenging problem.

7. Conclusions.

In conclusion, we comment on the relevance of our results. First, in the mean field approx-
imation, there is no difference between the sequence design model of biological evolution [4]
and the imprinting model [5]. Thus, the above results should be valid for both. As for general
heteropolymers, including proteins, we expect that the qualitative results found here should

also be valid, as the physical origins of the transition to the target state is not deeply connected

to the nature of the polymer investigated, but the existence of designed sequences.

From the experimental point of view, the imprinting model is a method to synthesize het-

eropolymers capable of renaturing to their polymerization conformation, and thus capable of

recognizing some ligand molecule present prior to polymerization. In this theoretical work, we

have indeed shown that this is possible. Moreover, based upon our results, we formulate the

following crude prescription to the experimental realization of this theory. First, the polymer-
ization temperature must be sufficiently low, or in other words, the set of monomers must be

chosen such that the preferential energy (B) should be not less than the polymerization temper-

ature. Furthermore, to provide fast reliable folding one has to choose the acting temperature
in between the freezing and target phase transitions.

The existence of a simple procedure which is automatically, I.e. without the biochemical

synthesis apparatus of the living cell, capable of producing fast and reliably folding polymer
chains with specific actiie sites for molecular recognition may shed light also on a possible
scheme for prebiotic evolution, since all of the elements in our polymerization procedure were

most likely present in the "primordial soup" of early Earth.

After the completion of this work, we were informed of the work [15] discussing a similar

subject. We are indebted to the authors for sending us the preprint of their work.
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