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R4sumd. Nous prdsentons des mesure~ optiques de pas d'hdlice dans des mdsophases chirales

cholestdrique, smectiques torsadds par joints de grain (TGBA et TGBC) et smectique C hdlicoidal.

Cette dtude permet de discuter l'ordre des transitions de phases. De nouvelles lignes de ddfauts

parallbles aux lignes de Grandjean-Cano sont observdes dans les phases TGB uniquement. Elles

sont interprdtdes comme des dislocations de l'empilement rdgulier des parois de joints de grain et

donc comme une visualisation directe de leur existence. Leur origine et leur stabilitd sont discutdes

grice h un modble dlastique de ddformation d'un TGB sous contrainte. Leur cmur est ddcrit comme

une paroi formde de lignes de dislocations coin.

Abstract. We report optical pitch measurements on chiral mesophases cholesteric. twist grain
boundary smectic (TGBA and TGBC) and helicoidal smectic C. The nature of the pha~e transitions

is discussed. A new series of defect lines parallel to the usual Grandjean-Cano steps is observed in

the TGB phases only. They are interpreted as edge dislocations of the layered array of smectic

slabs stacked along the TGB screw axis and thus a~ a direct vi~ual evidence of the Renn-Lubensky

structure. Their origin and stability are di~cussed in an elastic model of strain of a TGB sample.
Their core is described a~ a wall constituted of edge dislocation lines.

1. Introduction.

Following the predictions of de Gennes [I] and Renn and Lubensky [2-4] the discovery by

Goodby and coworkers [5] of the helicoidal smectic A or Twist Grain Boundary Smectic A

phase (TGBA) in 1989 has opened a new way in research of liquid cry~talline original phases.

The TGB structure is now well characterized as the liquid crystal analog of the Abrikosov

phase in type II superconductors. Slabs of smectic A material of thickness i~ are regularly

stacked in a helical fashion along an axis fi parallel to the smectic layers. Adjacent slabs are

continuously connected i'ia a grain boundary constituted of a grid of parallel equispaced screw

dislocation lines analogous to magnetic vortices. The finite twist angle of each grain boundary
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is A6
=

2 tan~ ' (d/2 i~
m

dli~, where d is the smectic period and i~ the separation of parallel

screw dislocation lines.

In 1991 Goodby's group obtained this phase in different series with several kinds of

polymorphism [6, 7]. The Bordeaux group has synthesized several tolan series in which the

TGBA Phase appears in various sequences such as Crystal (K)-helicoidal Smecticc

(Sc~)-TGBA-Isotropic (1) [8] or K-Sc~-smectic A (SA)-TGBA-Cholesteric (N*)-Blue phases

(BP)-1 [9]. In the series presented in reference [9], the Sc~ phase is absent for short lateral

chains whereas BP and N* disappear for long ones.

In the following series (nF~BTFOjM~) [10]

F F F

H-(CH~)~-D ~ -COOfiCmC ~ -/H-C~Hj~
~ ~

CH~

we have observed and characterized a new TGB phase predicted by Renn and Lubensky [3, 4]

namely the twist grain boundary smecticc phase (TGBC) in which the TGB slabs are

constituted of tilted smectic C material.

The first proof of the discontinuously twisted structure proposed by Renn and Lubensky
[2] lattice of screw dislocations connecting a twisted stack of smectic slabs has been

given by Ihn et al. [I Ii by electron microscopy on freeze fracture experiments. Navailles et al.

[12] have performed X-ray experiments at thermal equilibrium on well aligned TGBC samples
of 12 F2BTFOjM7 and observed a commensurate lockin of the size of the smectic slab on the

helical pitch.
Several complementary studies (DSC, phase diagram of binary mixtures, electro-optical

studies, X-ray diffraction) reported in our previous publications [10, 12] have clearly identified

the TGB phases of the nF~BTFOjM~ series. In the present paper, we focus our attention on

the variations of the helicity in the Sc~. N*, TGBA and TGBC phases of the 10, II and 12

F~BTFO~M7 and point out some relationship between the nature of the transitions and the

helicity. In section 3, we report optical observations of new defects which bring direct visual

evidence of the existence of a regular stack of slabs along the screw axis. These observations

are discussed and analysed within the frame of a simple elastic model proposed in section 4.

The nature of the new defects is discussed in section 5.

2. Behaviour of the helical twist at the phase transitions.

Helical pitch measurements were performed in thin wedges made of two flat mm thick pieces
of glass. The glass plates were thoroughly cleaned with absolute ethanol and dried. The planar
alignment was promoted by a simple gentle unidirectional buffing of the glass substrate with a

velvet fabric. No polymer coating was used. Thin wedges were formed with two 20 x 20 mm

plates assembled with a 0.15 mm spacer at one end. The resulting wedge angles were then

calibrated by optical reflection of monochromatic light. Typical values were about 0.5-

0.6 degrees. The cells were then filled by capillarity in the isotropic phase and introduced in a

FPS Mettler hot stage fitted on a Leitz Ortholux polarizing microscope in the transmission

mode. The samples were cooled down to the cholesteric phase where regular arrays of

Grandjean steps formed rapidly. The residual temperature gradient was estimated from the

motion of the phase boundaries and was less than 0.05 °C per millimeter during the pitch

measurements. In order to improve the accuracy of previous experiments reported in reference

j10], particular attention was paid to the stability of the temperature and to the quality of the
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thermal equilibrium during the measurements cooling rates were never higher than 0.2 °C/mn
in or near the TGB phase.

Finally, in the Sc~ phase, the helical pitch was measured from similar observation of

Grandjean-Cano steps with a homeotropic geometry. In calibrated wedged cells made of clean

buffed glass plates, homeotropic alignment was often spontaneously achieved in samples
cooled down to the Sc« phase and improved by gentle back and forth motion of the upper plate.
Were also used homeotropic drops deposited on a rubbed glass plate, which often exhibited

linear Grandjean-Cano defects and/or fringes of equal thickness with a period equal to the pitch

or half-pitch (for further details, see Ref. [13]). Displacements of these defects or fringes have

been particularly useful to precise rapid variations of the Sc~ pitch close to the TGBA phase.

. For n =

10, the phase sequence is K-Sc~-TGBA-N*-BP-I on heating. Most of the data

about the helical pitch have been given previously in reference [10]. The pitch is continuous at

the N*-TGBA transition in spite of a rather energetic transition. It increases on cooling in the

TGBA phase and diverges on approaching the Sc~ phase. This divergence is related to the

second order nature of the transition. Here we specify the variation of the pitch in the

Sc« phase. It exhibits a steep decrease close to TGBA which is usually characteristic of a

second order Sc« SA transition (Fig. la).

. For n =

I, the sequence is K-Sc«-TGBC-TGBA-N *-BP-I on heating. Several complemen-

tary observations support a second order TGBA-TGBC transition ii the enthalpy signal is

very weak [10], it) the pitch of the Sc« phase increases on approaching the Sc«-TGBC
transition (Fig. lb). Nevertheless iii) when the sample is heated so rapidly that the TGBC

phase does not have the time to develop over the whole sample, it is possible to observe

unstable Sc« regions in which the pitch falls off abruptly. This is again the signature of a nearby

second order Sc-SA transition (Fig. lb). Lastly iv) there is no discontinuity of the smectic

layer spacing neither at the TGBA-TGBC nor at the TGBC-Sc« transition [10].

We present in figure16 new careful measurements of the helical pitch P (T) which also

support a second order TGBC-TGBA transition for the compound n =

I. No anomaly of the

pitch is detected at the N*-TGBA transition. The TGBA-TGBC transition is marked by a steep

but continuous variation of the pitch. We misinterpreted this sharp evolution as a discontinuity

in reference [10]. A very slow heating or cooling rate reveals in fact that it is possible to keep

the same system of Grandjean-Cano (GC) lines while passing through the transition. The GC

lattice continuously expands itself without any destruction from TGBA to TGBC. The first

photograph (Fig. 2) shows this continuous transformation in a weak temperature gradient (less

than 0.05 °C/mm perpendicular to the GC lines). The variation is however very abrupt and the

graph P (T) is presumably characterized by a quasi vertical tangent at the transition point.

Finally, we note that the pitch diverges in the TGBC phase when approaching the almost

second order TGBC-Sc« transition.

. The last compound n =

I? exhibits the sequence K-Sc~-TGBC-N*-BP-I. Like for

n =

II, the pitch in the Sc+ phase increases in a monotonic way on heating (Fig. lc). On the

TGBC side. the pitch diverges again on approaching the Sc~ phase. The inset in figure ld

shows that the inverse pitch IF varies almost linearly with temperature throughout the TGBC

phase.
A noticeable discontinuity is observed at the N*-TGBC transition the second photograph

(Fig. 3) clearly shows two kinds of GC steps in a weak temperature gradient. A decrease of the

temperature destroys one sort of steps before it generates the other, unlike what is observed

with the n =

I compound at the TGBA-TGBC transition.

The values of the pitch given in figure lc were recorded by the Grandjean-Cano method and

are much more accurate than those previously deduced from the rotatory power [10] (we had

actually not been able to prepare regular GC steps in our first experiments). Knowing the
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Fig. 2. Photograph of the TGBA-TGBC transition in the Cano wedge with planar boundary conditions.

The size of the photograph is 220 x 330 ~m, n I. T 102.6 °C with a gradient of about 0.05 °C from

top to bottom. Narrow Grandjean-Cano steps in the TGBA Phase (bottom) continuously transform into

wider steps in the TGBC Phase (top). The helical pitch is continuous at this transition.

values of the grain boundary angle A6 for the TGBC phase of the n =

12 compound [12], we

can infer the size i~ of the smectic slabs along the screw axis : it grows from 47 nm at the N*-

TGBC transition (A6
=

2 ar/16, P
=

0.75 ~m) to 150 nm at the Sc« frontier (A6
=

2 ar/20,

P
=

3.0 ~m). The corresponding distances between screw dislocations in the grain boundaries

are 9.4 nm and II.8 nm, respectively [12]. The values of the i~li~ ratio (5.0 w
iji~

w 12.7

are thus significantly larger than expected from the RL model [2].

3. Observation of dislocations in the regular array of grain boundaries : slab-dislocations.

The prismatic-samples used for pitch measurements contain, parallel to the edge of the prism,

generally perfectly visible Grandjean-Cano lines (Figs. 2, 3). In the TGB phases, it is possible

to visualize other lines, almost regularly distributed, parallel to the GC steps but with a shorter

spacing. Their contrast is generally much improved when the polarizer is set at 45° from the

buffing direction and a A/4 plate is inserted just before the analyzer set parallel to the polarizer
(Fig. 4, to be compared with Fig. 3). Anticipating the model developed in the next section, we
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Fig. 3. n 12, T 103.3 °C, photograph size 220 x 330 ~m. Cholesteric-TGBC transition for

12 F~BTFOjM~ in a weak temperature gradient (about 0.05 °C from top to bottom). The regular array of

narrow Grandjean-Cano steps in the cholesteric phase breaks apart at the transition. A new array of wider

steps appears in the TGBC Phase. The pitch is discontinuous at this tran~ition.

interpret these new lines as edge dislocations of the layered array of smectic slabs : each little

line is associated with a jump of the number of slabs in the finite thickness of the prismatic
sample (Figs. 8, 9). Just as the GC lines show the layered symmetry of the cholesteric

structure, these new dislocations constitute a direct visual evidence of an additional layering
along the screw axis.

This visual proof adds up to X-ray studies performed on the TGBC phase of the last

compound fi =

12 [12]. The observed commensurate lockin of this TGB phase allowed a direct

X-ray measurement of the finite rotation angle of the slabs AH. In the case of all reported
TGBA Phases and of the lGBc Phase of the shorter compound n =

I, X-ray studies indicate

that the structure is incommensurate [12, 13] and the present optical observations constitute the

only evidence of the existence of a stack of smectic slabs along the screw axis. We have indeed

observed these slab-dislocations in the TGBC phases of both commensurate n =

12 (Fig. 4)

and incommensurate fi=11 (Fig. 5). On the other hand, for the TGBA phase of

n =

10, the slab dislocations only appear on the first GC steps in the thinner region of the

wedge (Fig. 6). This feature will be explained by the model developed in the next section.
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Fig. 4. n 12, T
=

103. °C, photograph size 220 x 330 ~m~ Am plate inserted. The sample is the

same as in figure 3. A new series of parallel lines (little arrow~> appears between the Grandjean-Cano

~teps (big arrows) of the TGBC phase of 12 F~BTFOjM~. These new defects are interpreted as edge

dislocations of the layered array of smectic slabs (or equivalently grain boundaries) forming the TGB

~tructure. We call them slab-dislocations.

In the TGBC Phase of the n =

12 compound, we finally remark that the number of slab-

dislocations per pitch (~ 10-12) is lower than the number of slabs in a pitch counted on X-ray

diffraction patterns (16, 18 or 20 [1?]). This will also be explained in the next section.

4. Elastic behaviour of a TGB material in a wedge.

The texture of a cholesteric sample in a wedge with planar boundary conditions has been

studied extensively [14-16]. The cholesteric structure can be viewed as a layered material with

layers of thickness P/2 perpendicular to the screw axis (heli-layers). In such a picture, weak

elastic distortions can be described by a coarse grained elastic model [17] like in a smectic

sample. The elastic moduli of compression B and bending K of the cholesteric layers are

simply related to the Frank constants of twist K~ and bend K~ by B
=

K~(2 ar/P)~ and

K
=

3/8 K~ [17]. The Grandjean-Cano lines are nothing but edge dislocation lines of this

layered structure.
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Fig. 5.
n I, T 102.2 °C, photograph size 220 x 330 ~m, Am plate inserted. Grandjean-Cano

lines (big arrows) and slab-dislocation~ (little arrows) in the TGBC phase of I I F~BTFOjM~.

In smectics. regular arrays of edge dislocations in wedges have been observed and studied-in

detail by several authors [18-20]. The strain field due to the presence of an isolated dislocation

in an infinite medium was first calculated by de Gennes [2 Ii. Pershan [22] and Nallet and Prost

[19] argued that the strain field is basically the same in the confined geometry of a wedge of

weak angle. The curvature strain is almost negligible outside a parabola xi
=

4A [xi

(xii is a coordinate parallel to the layers and pe$icular to the dislocation core,

xi is a coordinate perpendicular to the layers and A
= ,

K/B is the smectic penetration length).

Following Nallet and Prost [19], the energy of each dislocation can be written as the sum of

three terms : a wedge confinement energy Ew which originates from the strain field outside the

parabola, a far field energy E~ representing the energy inside the parabola and a core energy

Ec. The far field and core contribution E~ + Ec is proportional to the linear extension of the GC

line and will be referred to as a line energy. It depends on the Burgers vectors b of the

dislocation whereas the wedge contribution Ew also depends on its position.

We now want to describe the array of GC lines in a TGB material. Like in a cholesteric or a

smectic, we need to estimate the elastic energy of strain but three parameters are now required.

we choose the pitch P, the size i~ of the smectic slabs along the screw axis and the smectic

per;od d_ Other parameters such as the rotation angle A6 between two adjacent slabs or the
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Fig. 6. n 10, T 100.5 °C, photograph size 220 x 330 ~m, Am plate inserted. The Grandjean-

Cano steps of the TGBA phase of 10 F~BTFOjM~ (big arrows) embrase several scarcely visible slab-

dislocations (little arrows).

distance i~ between screw dislocations within a grain boundary follow :

A6
=

2 arijP

i~
=

d/ (2 tan (A6/2 )). (

Let us emphasize at this stage that with our approach we have identified three different

layerings in the TGB material I) the heli-layers of thickness P (a few hundreds of nm)

correspond to helical periods of the director and are perpendicular to the screw axis

# like in a cholesteric it) the slab-layers form a regular stack of period i~ (a few tens of nm)

along # and are characteristic of the TGB structure iii) finally the conventional smectic layers
of thickness d (a few nm) are found in each block.

We denote by Po, i~o and d~ the unstrained values of the pitch, of the size of the smectic

slabs and of the smectic period, respectively. We first remark that the smectic period d is

controlled by a molecular length and thus expected to experience very small deviations from

d~. We will therefore restrict our attention to the other two strains I-e- P -P~ and

ib (ho- Po and i~o depend on temperature only for a given TGB sample. The energy density
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of weak isotherm elastic compressions of the TGB structure is then Af~~~
=

f~~~(P, i~)
f~~~ (Po, i~o). We finally assume for the moment that we are dealing with an incommensurate

TGB phase for which the free energy density f~~~ is expected to be analytic and can be derived

twice with respect to P and i~. This property is certainly false in the case of a commensurate

TGB since the lockin terms in the free energy density are non-analytic. This yields a

phenomenological form of the elastic energy density of compression

~fTGB
"

fTGB(~, ~b) fTGB (~0, ~b0)

B P P
o

2 B~ i~ i~o 2 p p
~

f~ f~~
~~~

~ ~0
~

~ ~ ~~~
~0 ~

The elastic coefficients B,, B~ and Bj~ are the second derivatives of f~~~ at the minimum

(Po, i~~). The first part of the integral describes compressions of the pitch just like in a

cholesteric. The elastic constant Bj is thus expected to be of order K~(2 ar/P~)~. The second

term describes variations of the size of the smectic slabs at constant pitch. Physically, it

depends only on the interaction energy of the screw dislocations since their density

(i~ i~)- ' is a function of P only. Lastly, the coupling term Bj~ is allowed by symmetry and

has to be added.

Cartesian coordinates (x, y, z) are well-appropriate to our experimental geometry. We

choose x along the bisector and y parallel to the edge of the wedge (Fig. 7). Planar boundary

conditions insure that the screw axis is essentially along z. The free energy density (2) can be

diagonalized and integrated over the volume of the sample. It reads (per unit length along y) :

~~TGB
"

j (Bj B~ B(~) P P~ 2 f~ f~~ p p~ j
~ ~ ~~~

~ ~2 ~0 ~ ~~
~b0

~
~

0

~~~

with B~
>

0, Bj B~ B(~
>

0 and C
=

Bj~/B~. h(x)
= ax is the thickness of the sample in a

wedge of weak angle a.

We are left with two uncoupled variables with respect to which AF~~~ can be minimized

separately. Minimization with respect to (P P o) is analogous to the problem of a cholesteric

in a wedge. It generates a network of edge dislocation lines as follows. Let N (,r) be the number

of helical periods P (x)/2 along z at abscissa.r (and thickness h(x)) :

N (x)
j

=

h (,,.)
~ ax. (4)

Following Nallet and Prost [19], we can divide the sample into basic cells containing only

one dislocation line (Fig. 7) cell number j contains the j~~ dislocation of Burgers vector

,

b~
at position X~. The number of P/2 units jumps from N~ =

I + ~j b~ to N,
~

= N~ + b~. It

,

extends from abscissa
x~

defined by h(x~
= N~ Po/2 to,r~

~

for which h(.r~
~

=
N~

~

Po/2
(I.e. the elastic stress is zero at x~ and.r~

~
j).

Minimization of AF~~~ [P Po] with respect to the position X~ of the j~~ dislocation line is

straightforward. It yields

2aX~ b~N~

Po
~J ~

2 N~ + b~

~~~
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Fig. 7. Schematic representation of the cholesteric layers in a Cano wedge of weak angle
a.

The

sample is divided into basic cells containing one Grandjean step I-e- one edge dislocation of the heli-

layers of period P/2. Cell number j is represented here. The sample thickness h(.r)m.I
=

is exactly
N~ and N~+b, times the unstrained value of the period P~/2 at the boundaries of the cell

x~
and.r~

~

respectively. The position
X~

of the Grandjean step is obtained by minimization of the elastic

energy of compression (see text, Eq. (6)).

Minimization with respect to the Burgers vectors b~
remains in principle to be performed to

describe the array of dislocations completely. The line energies E~ + Ec have to be included

which requires the knowledge of their dependence on b,. Like in a cholesteric, the value of

b~
is expected to change in the sample if the line energies increase slower than

b(Ec Ln b for instance in a lyotropic smectic [19] whereas Friedel and Kldman showed that

Ec depends on the way the dislocation is dissociated at short scale into two disclination lines

123j).

A calculation of the b dependence of the line energies in a TGB phase is beyond the scope of

this paper and will not be needed. We shall only assume that the regular array of dislocations

exists in the well aligned TGB material and consider a particular (and constant) value of b for

simplicity. Optical pitch measurements reported in section are consistent with Grandjean-

Cano lines of Burgers vector I. We shall therefore retain this value in the following (note that

N, simply equals j in this case). Our conclusions can easily be extended to b
=

2.

Before minimizing AF~~~ (Eq. (3)) with respect to the second independent variable

f~ f~o P Po
V

=

C
,

it is worth noting that the physically acceptable values of

ho
Po

the ratio C
=

B j~/B~ are between 0 and I : equations I show that elastic variations of the pitch

P arise from combined variations of A6 and f~. The two extreme situations are variations of P

at constant i~ (P and i~
are decoupled in this case and C

=

0) and variations of P at constant

twist angle A6 (relative variation of P and i~ are strictly equal and C
=

I).

We can now proceed with the minimization of (3) with respect to V. Let us consider a

volume of TGB material between two adjacent GC lines of rank j I and j. The system is

conveniently described by the reduced abscissa I =

2 mx/Po (Fig. 8). With the assumption
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m

in between two adjacent Grandjean-Cano

steps of rank j and j. The reduced abscissa is defined as r =
a.i/P

~~

in which P
n

is the unstrained value

of the helical pitch. The number of periods (heli-layers or half-pi tches) is j whereas the number of smectic

slabs is M, (k
=

L~,~, 1, 0, 1, k~~~) of order j/2 Po/f~jj. A slab-dislocation defect is represented

between k and k
=

2.

b,
=

I, this cell extends from reduced abscissa j j/ (2 j ) to j + j (2 j + I ). The number of

P/2 units (I.e. half pitches) is j and the helical pitch is unstrained at abscissa r =

j only.
We now remark that the finite thickness h (,r) of the wedge at abscissa.r (or r) contains an

integer number of slabs M,. In an unstrained TGB, M~ is expected to be close to the natural

irrational value fro defined as

P~ j
Mo

"
j ~ ~ ~ qo (6)

in which q~ is the natural number of smectic slabs in a pitch of unstrained TGB [2]. We define

Mo as the closest integer to M~ and choose M~
=

M~ + k

h(x)
= m,i =

(Mo + k) f~(x)
=

J
j

(7)

Variations of the number of slabs Mo + k within the cell of rank j can occur through integer

steps of value p~ (I.e. all values of k may not be physically present). The associated defect lines

can again be viewed as edge dislocations of Burgers vector p~ of the layered structure of TGB

smectic slabs (Fig. 8). They will be referred to as slab-dislocations. Furthermore, equation (6)

shows that the average variation of the number of slabs from cell j to j+I is

q~/2 (the elastic stress would diverge with j otherwise). The GC lines are thus also slab-

ceii,

dislocation lines of order q~/2 jj p~.

1
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The variable V and the elastic free energy of compression (3) can be calculated for all

possible values of k. The variable V reads :

;

fin
V (r, k

= =
C + C (8)

~ ~° ~ ~

Bj~
with C=- 0wCwl

82

V is zero for a set of values (i~ of the reduced abscissa. The free energy is shown in figure 9.

It is a set of parabolae centered at positions r~ :

B~
~

B~ j lfl~ 2
V (r, k )

=

C (r J.~ (9)
2 2 j~ Mo + k

with

J.~ =
j +

~ ~~° ~°
~ ~~

(10)
fro C (Mo + k)

The extreme values of k in cell j correspond to r~~,~ and
r~~~~ as close as possible to

j j/(2 j I and j + j/(2 j + respectively.
If the line energies are omitted, the ground state is given by the lowest branches of the

parabolae (Fig. 9). The slab-dislocation lines are located at the intersection of two adjacent
parabolae of rank k and k+ I. The Burgers vectors p~ all equal I. The number

N~~~j ) of such lines in the cell j is

N,~ )
=

k~~, k~j~
w

Int

(I
C )

~°
+

~° ~°

~~ J j
+~

2 j

m
(I

-C)~°.
(ll)

In which Int [x] stands for integer part of,r. In all cases, N,~ ) is of order (I C q~/2. The

number of lines of zero tension thus gives an estimate of the coupling constant C is

qo can be determined independently.
In the case of the n =

12 compound, both numbers are available qo
=

16, 18 or 20 [2]

whereas the observed number of slab-dislocations is 5 or 6. C is then of order 0.25 to 0.75 if

negligible lines tensions are assumed which, as we shall see later, is legitimate in this case.

If the line energies y(p~) (I,e, energy of the slab dislocation defect per unit length along
direction y) are included, the system may prefer form fewer lines (I,e. p~ is then larger than

one) two lines of Burgers vector p~
=

pi
~

=
are replaced by one double p~

=
2 if the

excess elastic cost of compression is less than the gain in line energy (the branch of parabola of

rank k + becomes unphysical). The number of slab-dislocation lines is then divided by two

Increasing further the line energy will reduce the number of lines until eventually they
disappear completely (note that the situation is actually slightly more complex since the slab-

dislocations removed from cell j have to be included in the GC steps).
In a wedge geometry, the elastic stress falls off with increasing thickness (Eq. (9)). As a

result, the slab-dislocations must become unstable beyond some critical thickness for which
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o.ois

~ qo =)
c

=f a-al '

nJ

~

O.DOS

C '

QJ

£
( ~

k
=

-3 -2 -1 0

~

-O.DOS

1.5 2 2.5
Reduced abscissa r

Fig. 9. Elastic energy density (in 82 P( units) along the wedge (reduced abscissa r =
ax/P

o
is used)

represented for j 2 (two half pitches) qo =
18 and C 0.5. The Grandjean-Cano steps of rank and 2

limit this cell at position r =
2 2/3 and 2 + 2/5 (heavy dashed lines). For each possible value oft

(5 values here) the elastic energy density is a parabola centered at position r~. If the line energy is omitted,
the lowest branches constitute the ground state with 4 slab-dislocations located at the intersection of the

parabolae (heavy dots). When the line energies are included, other states of higher elastic energy but with

fewer defects may be stable the three branches k
=

3, and for instance would form a state with 2

slab-dislocations only (triangles). For very high line energies (above jj,~,,, see text) no slab-dislocation

forms and a single parabola is physical. The corresponding energy equals the line energy at

j ji,m,I

the energy y of the last line (of Burgers vector of order ( I C q~/4) matches the excess elastic

energy of compression in a cell. Estimating these two-energies yields the critical thickness

jj~~j~ (in P~/2 units)

Jj,m«
=

~j [ ~~ ~~) i 2)

This limit depends on the angle a of the wedge (of order 10-~ in our experiments). It was

actually observed in the TGBA phase of the n =

10 compound as mentioned in section 3, the

slab-dislocation lines do not show up for cell thicknesses above 2 to 3 pitches which yields
jj~~~~ws

m
(I -C)~B~P(/y. Below the limit (I.e. j lower than but close to jjj~~~) slab-

dislocations are observed and their number N~~ is controlled by the balance between two

unknown quantities B~ P( and y. N~~ cannot be related to C and qo by equation (I I).

On the other hand, the ratio (I C )~ B~ P(/y is significantly higher for TGBC samples

(n
=

II and n =

12) since slab-dislocation lines were observed for all thicknesses up to 9-10

pitches (I.e, jj~~,~ is larger than 20) with the same angle a.
This situation corresponds to the

other limit (of negligible line tension) for which equation (I I holds. Comparing the number of

lines N~~(5,6) to qo/2 (8 to 10) yields an estimate of the coupling ratio

c
=

B~,/B~. 0.25
<

C
<

0.75 whereas B~ P (IT is larger than 80 for TGBC samples.
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A more accurate description of the stability of the slab-dislocation defects requires a realistic

calculation of the line energies y versus Burgers number p~ (note that the value of

p~ is not even mentioned in the rough estimate of Eq. (12)). We shall see in the next section

that the structure of the defects is actually more complex than the usual strain field of

compression and bending associated with a simple edge dislocation in a layered material. We

will not calculate the line energy but propose a qualitative structure of the defect.

In principle, the present model does not apply to commensurate TGB materials for which the

elastic energy density cannot be differentiated. A non-analytic contribution defined on rational

values of the ratio Pli~ superimposes to the elastic free energy density Af~~~ of equation (3).
The ground state is locked on the lowest energy ratio Poli~o from which

«
excited

» states

differ by finite amounts of the variables P and i~. A correct description of the distortion of a

commensurate structure is clearly very complex. The qualitative behaviour may however be

similar to that described above if the finite differences between all possible states of

comparable energy are small enough to reproduce quasi continuous variations. Furthermore in

the commensurate case, the variables P and i~ may vary by steps of different lockin values

along the z coordinate I.e. across the thickness of the sample allowing finely varying average
values along x. The experimental behaviour of the n =

12 compound, reported commensurate

elsewhere [12] is indeed quite similar to the incommensurate n =

10 and n =

II compounds.
We deduce from this observation that the conclusions of the present discussion qualitatively
apply to the commensurate TGBC Phase of the compound n =

12.

S. Core structure of the slab-dislocations.

Figure 10 shows a slab-dislocation defect across which the number of slabs changes from

M~ to M~
~

(a unit Burgers vector is considered for simplicity). If strong planar anchoring
conditions are assumed, the total twist of the director across the thickness of the sample is

constant equal to jar half-pitches). It follows that the average grain boundary angle A6

changes from 2 arj/(M~ I to AH '
=

2 arj/M~. The density of screw dislocation lines in the

grain boundaries is thus lowered by a factor (M~ I)/M~ whereas the number of grain
boundaries is increased by the inverse factor M~/(M~_ ). As a result, the total number of

dislocation lines remains constant across the defect. A proportion I/M~ of the screw

dislocations leave each of the M~ existing grain boundaries to merge into a new one. To do

so, they must travel parallel to the smectic layers and become hence edge dislocations (see

inset of Fig. 10). It follows that the core of the defect is a wall rather than a line.

Furthermore, a continuous connexion of the slab-layers across the defect implies a small

rotation of the smectic layers (I IA ' AH for slab number I, see Fig. 10). The array of edge
dislocation forming the defect wall produces the required rotations [23] as shown (inset of

Fig. 10). Note that the density of edge dislocations in the wall increases on approaching the

inserted slab.

It must be emphasized that the conservation of the dislocation lines is of course not specific

to the defect wall we just described. It is a general rule that dislocations cannot end in the bulk

of a smectic material (or more generally in any ordered structure). The screw dislocations must

either go through the defect wall or turn backwards and form a hairpin loop. We just argued
that the first situation is met in the slab-dislocation wall, the second one corresponds to the GC

defects.

In the present picture, the slab-dislocation wall extends over the whole thickness h of the

sample from one glass plate to the other. One may imagine a more localized core of limited

extension L~ <
h along z. In such a case. the grain boundary angle would not remain constant

across the sample thickness (A6' for the slabs facing the defect wall but still A6 for the others).
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Defect wall

Mk slabs (Mk + slabs

A8
=

j n/(Mk-1 A8'
=

j ~~/M k

~
grain boundaries

(screw dislocations)

i
half-pitches

x

" l~

rotation angle
of the slabs

edge dislocations

Fig. 10. Proposed structure of a slab-dislocation defect in a wedge with planar boundary ~onditions.

The pitch axis # is vertical and perpendicular to the walls of the wedge (thick lines). The thin horizontal

lines are perpendicular to the pitch direction and represent the layered array of grain boundaries (screw

dislocations). The number of smectic slabs jumps from M~ to M, + I (a unit Burgers vector is considered

for simplicity) whereas the rotation of the director across the thickness of the sample remains constant

~jar for j half-pitches). The grain boundary angle A6 between adjacent TGB slabs jumps from

arj/(M, i to arj/M,. A proportion I/M~ of the screw dislocations leave the M, I existing grain
boundaries (vertical lines) to merge into a new one. The inset shows that they must travel parallel to the

smectic layers to leave a grain boundary they become hence edge dislocations in the interspace between

grain boundaries. Furthermore, these edge components generate the required rotation of the smectic

layers (see insert). The core of the defect is a wall of such edge dislocation lines (plane
ar

of inset).

The actual value of L- depends on the balance between the gain in core energy and the cost in

elastic energy.

Finally, we discuss briefly the case of weak anchoring conditions at the surface. The strain

of the helical structure generates a torque which tends to rotate the director on the surface by an

angle Be away from the buffing direction. It follows that the total twist across the sample
jar + Be is no longer constant. The difference in grain boundary angle A6'- A6 is hence

lowered which in turn implies a lower density of edge dislocations in the defect wall and a

lower core energy y. The experiments reported in the present paper may well correspond to this

case of weak planar anchoring conditions since the alignment was promoted without polymer
coating (residual oily defects which are visible in Figs. 5 and 6 do not show up when a buffed

PVA coating is used). Furthermore, a constant total twist owl across the wedged sample
implies a linear variation of the pitch with thickness and thus a regular evolution of the

reflected color within adjacent GC lines. We observed instead that the reflected colors changed

by steps across the slab-dislocations. This suggests that the total twist experiences a little

discontinuity at the slab-dislocation defect.
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6. Conclusion.

In the present paper, we have reported new careful optical measurements of the helical pitch in

well-aligned TGBA and TGBC mesophases of the series nF~BTFOjM~ in a Cano wedge. The

pitch variations are continuous with temperature at the cholesteric-TGBA and TGBA-TGBC
transitions (n

=
10 and n =

compounds) but discontinuous when a direct cholesteric-TGBC
transition occurs in

=

12).

In the TGB mesophases, optical observations in the thin part of wedges of weak angle show

regular array of new defects appearing between the Grandjean-Cano lines, parallel to them.

In the case of an incommensurate TGB phase, the overall structure of the strained sample

was shown to be conveniently described by a simple elastic model of compression of two

coupled layered systems, namely the cholesteric layers of the director field (heli-layers) and

the regularly stacked TGB slab-layers. Just as the usual Grandjean-Cano steps are known to be

edge dislocations of the heli-layers, the new defects were identified as edge dislocations of the

slab-layers. Their core structure was qualitatively described in the case of strong anchoring
conditions as a new kind of defect wall in which some of the TGB screw dislocation lines leave

the grain boundaries to travel parallel to the smectic planes and form local edge dislocations.

More accurate experiments would allow us to determine the static elastic coefficients of the

model. Two regimes have already been observed in the present experiments: at low

thicknesses, the elastic energy of compression overtakes the wall energies and the ratio C (I.e.

coupling over elasticity of the slab-layers) can be estimated. At higher thickness, the core

energies dominate and the defects disappear. The limit allows us to estimate the defect energy

relative to the twist energy.
These observations open new questions about the structure of the defects in TGB

mesophases. More theoretical work is clearly needed to describe the core of the slab-

dislocations completely, the localisation and the energy of the core are unknown.

Anyway, whatever the core structure of the new defects, their observation within adjacent
Grandjean-Cano lines provides a new optical characterization of all the TGB phases in thin

wedges.
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