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R4sum4. Les fluctuations h l'dquilibre ainsi que la relaxation des dtats ldgdrement en dehors de

l'dquilibre des phases lamellaires h
«

solvant dopd
» sont dtudides, aussi bien d'un point de vue

thdorique qu'expdrimental, dans la limite de basses frdquences et de grandes longueurs d'onde.

Les systdmes ddctits sont des cristaux-liquides smectiques A lyotropes formds de trots consti-

tuants un tensioactif en solution dans une suspension c.l~lll~idale forme des bicouches de grande
extension latdrale qui s'empilent de faGon pdriodique le long d'une direction dans l'espace. Avec

de tels systdmes anisotropes et h plusieurs constituants deux modes prdsents dans la partie h basse

frdquence du spectre des fluctuations (associds h la relaxation d'ondes, coupldes. de concentration

colloidale et de ddplacement des couches smectiques) ont une certaine importance expdrimentale.
Dans la limite d'un couplage faible, l'un des deux modes est similaire au mode barocline des

phases lamellaires h deux constituants ; le second s'identifie au mouvement brownien de diffusion

d'un colloide dans un substrat anisotrope. Les constantes dlastiques du cristal liquide smectique de

mdme que le coefficient de diffusion du colloide peuvent en principe dtre ddduits de la mesure des

relations anisotropes de dispersion de ces deux modes ; cela est illustrd par des expdriences de

diffusion quasi-dlastique de la lumidre sur des ferrosmectiques.

Abstract. The equilibrium fluctuations and weakly out-of-equilibrium relaxation properties of

«
doped solvent

»
dilute lamellar phases are investigated, both theoretically and experimentally, in

the low-frequency. long-wavelength limit. The physical system of interest is a three-component
smectic A lyotropic liquid cry~tal where surfactant bilayers infinite in extent are periodically
stacked along one direction in space and separated by a colloidal solution. Two experimentally
relevant modes are found in the lowest frequency part of the fluctuation spectrum of such

multicomponent system~. Both are associated to the relaxation of coupled layer displacement and

(*) Present address Laboratoire de mindralogie-cristallographie, URA CNRS 9, universitd Pierre-et-
Marie-Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.

(**) URA CNRS 792.



1478 JOURNAL DE PHYSIQUE II N° 9

colloid concentration waves. in the limit of small coupling, one mode is close to the well-known

undulation/baroclinic mode of tw.o-component lamellar phases, while the other corresponds to the

Brownian diffusive motion of the colloid in an anisotropic medium. Elastic constants of the

smectic liquid crystal and diffusion parameters of the colloidal solution may be deduced from a

measurement of the anisotropic dispersion relation of these two modes, as illustrated by dynamic
light scattering experiments on the feirosmectic system.

Introduction.

Lamellar L~ phases are the liquid crystalline Smectic A phases one often encounters in the

phase diagram of Surfactant/Solvent Systems [I]. Although from a physico-chemical point of

view they may be quite complex, Since prepared by mixing not only a Surfactant with one

solvent but most often by also adding co-Surfactants, co-solvents, Salts, etc., an idealization of

the Structure both convenient and realistic in many cases, especially in the dilute regime iS that

of a tw>o-component smectic A phase (Fig. 1) [2-4] : surfactant bilayers (perhaps holding a co-

Surfactant or slightly Swollen by a co-Solvent) are periodically Stacked in Space, Separated by a

soft>ent (which may be itself a multicomponent mixture). In Some particular cases, however,

this idealization iS no longer relevant. For instance, one may think of three distinct types of

lamellar phases that require a description in terms of three-component Smectic A Systems. The

first type occurs when the amount of co-Solvent swelling the Surfactant bilayers becomes

comparable to the amount of solvent separating them (Fig. 2a). The three components to be

considered are the surfactant monolayer (which may still be a composite object), and the two

solvents. We call such a system a tu,o-solvent lamellar phase. A second type arises when the

surfactant bilayer hosts a colloidal component (a protein, for instance ; see Fig. 2b). We call it

a doped-bilayer lamellar phase. The third type is dual to the second one while the surfactant

bilayer is
« pure », the solvent is now hosting a colloidal component (Fig. 2c). Accordingly, its

denomination is a doped-soft>ent lamellar phase.
All the three types have been experimentally prepared [5-7]. As far as their macroscopic (I.e.

elastic or hydrodynamic) properties are concerned, the two-solvent, doped-bilayer and doped-
solvent lamellar phases are on a phenomenological basis quite similar. They are three-

component smectic A phases, and therefore the elastic free energy density has to be written

(for incompressible systems) in terms of three variables, coupled in general, namely the

Vllll~j~~~Ril/§$~11/(j/I(S/
II

~illl~~i @lliliiiill$I ~iiil~l$I

d

/§$~11/jj/§(SiS/~t§t§i~§§~~~R&ilul$i iii~$iill~liiillilll<ili

Fig. I. Schematic drawing for a two-component lyotropic smectic A phase ; surfactant bilayers with

thickne~s w' are periodically stacked (period d) along a direction
=.
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Fig. 2. Schematic drawings for various kinds of three-component lyotropic smectic A phases ; a) two-

solvent lamellar phase, where surfactant monolayers are separated by polar or hydrophobic regions, with

thicknesses respectively d~ and d~ : b) doped-bilayer lamellar phase c) doped-solvent lamellar phase in

the last two cases, a colloid is added to either the bilayer or the solvent component.
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smectic layer displacement field and two composition variables (for instance, the surfactant

and colloid concentrations, for the two doped systems the solvent I and solvent 2 concen-

trations, for tu,o-solvent systems). Moreover, on account of the symmetry of the phase and of

the number of locally conserved variables one expects eight hydrodynamic modes [8] in the

long wavelength, low frequency part of the collective motion Spectrum.
However, in view of the system we are experimentally dealing with (see below) we focus

our attention in this paper to the specific case of doped-soft>ent lamellar phases. As will be

apparent soon, this restriction amounts to assuming that some coupling terms that are in

principle present in any elastic or hydrodynamic description of a three-component smectic A

phase are small and may therefore be equated to zero. Our conclusions, though built within the

general framework pertaining to three-component smecticA systems, are thus not of

completely general validity.
The paper is divided into three main parts. In the first part we give the elastic free energy

density of our system. With the help of a very schematic microscopic description of the doped-
solvent lamellar phase, we extract from the a priori numerous coefficients in the free energy
expansion a small number of relevant elastic constants. In the second part, we expose the

hydrodynamic properties of the system. We show in particular that the (anisotropic) dispersion
relations of the two lowest frequency modes are controlled by experimentally relevant elastic

constants and hydrodynamic parameters. The third and last part is devoted to the quasi-elastic
light scattering experiment we have performed on the

«
ferrosmectic

» system [7], one of the

first examples of a doped-solvent lamellar phase. We show how the experimental spectra may

be described by the full hydrodynamic theory and extract from them values or estimates of

elastic or hydrodynamic parameters, complementing a previous work on this system [9].

Elasticity of doped-solvent lamellar phases.

In addition to temperature T and total mass density p, two composition variables are required in

order to characterize the macroscopic state at thermal equilibrium of any three-component

system. In the case of the doped-solvent larilellar phase, we choose them as mass fractions of

surfactant, c~ and colloidal particles, c~. With the simplifying assumption of an incompJ.essible

system, the free energy per unit mass f does not depend on the total mass density and the free

energy F of a doped-solvent lamellar phase with smectic period d is given by :

F
=

lp f (T, c~, c~ ; d) d~x (1)

One obtains the equilibrium smectic spacing d~~ by minimizing F with respect to local

variations in spacing 3d(x), at fixed temperature and global composition of the system, I-e- as

a solution of
?~

=

0. The equilibrium smectic spacing d~~ therefore depends a pJ.tori on
ad

temperature, as well as on both composition variables c~ and c~.

The (harmonic) elastic free energy describing isothermal fluctuations around this equilibrium

state is found by expanding F, up to second order in the fluctuating variables. Since the total

mass, as well as the masses of each species are conserved quantities, and with d~~ given by the

above minimum equation one gets

F
=

Feq +
d~x i Ill' 3d~

+

1(
3Ci + Ill 3Ci + 2

l~l~
3d 3cp +

+ 2 ~(~( 3d 3c~ + 2
~

~(
3c~

c~j
(2)

c~ c~ c~
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With the identification 3d(x)/d
=

a-u (u is the layer displacement field), taking into account

the smectic layer curvature energy [10] and with convenient notations we recast the elastic

energy in the following form

F
=

Feq + ld~x lB(?zU)~ +
K(V( U)~ + xi fit-j + xi fit') +

+2C~a-u3c~+2C~a-u3c~+2C3c~3c~] (3)

where B is the smectic layer compression modulus (at constant surfactant and particle
concentrations), K is the smectic bending modulus (expressed in terms of the bilayeJ. bending
modulus

K
through the relation K

=

K/d Ill), xi ' (resp. xi ') is related to the particle (resp.
surfactant) osmotic compressibility and the C's are coupling constants.

It will later prove convenient to handle a reduced (diagonal) form of this free energy
expansion. Using as normal coordinates :

C~ Xi ' CC~
a,u, 3@~ =

3c~ + CXp 3c~ + C~ Xp a-u and 3i~
=

3c~ + a-u

Xi ' Xi ' C~

we get :

F
=

F~~ +
d~x [B (a-u )~ + K(V (11 )~ + ii ' 3?) + k/ ' 3i)] (4)

2

with, in particular, the elastic constant B expressed as

C)xi'+C)xj'-2CC~C~
B=B-

~
(5)

xl xi -C

From equation (4) the layer displacement correlation function is readily computed, using
equipartiiion

k~ T
(U (q U (- q )) CC

,

(6)
Bqz +

Kq(

which shows that the elastic constant B here defined has the same meaning as usually for

smectic A liquid crystals. Besides, it results from equations (3) and (5) that B is equal to the

smectic compression modulus at constant surfactant and particle chemical potentials. The

other two constants are given by :

~P ~j [~~
(7)

Xt " Xt Xp

More insight into the meaning of the numerous elastic constants entering the above formal

expansion of the free energy may be gained by introducing the following microscopic,
simplified model of a doped-solvent lamellar phase we describe the structure as an ensemble

of surfactant bilayers, with thickness
u> [12], separated by a solvent containing an amount ~fi

(volume fraction) of colloid particles and periodically stacked in space along a direction z, with
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period d (see Fig. 2c). The bilayer thickness and colloid volume fraction are related to the

compositions through

Pp ~b (d w,)

~~
Pt W + iP,(' ~b ) + Pp ~bl(d w)

~
p~w>

~~
PtM'+ iP,(I -~b)+p~~bj(d-w,)

with p,, p~ and p~ standing respectively for the (constant) mass densities of the solvent,

colloidal particles and surfactant.

In terms of the variables d,
~fi

and u~ three simple, distinct types of fluctuations around the

equilibrium state may be considered, as hinted in figure 3 : figure 3a schematically displays a

fluctuation in bilayer thickness at constant smectic spacing and colloid volume fraction

figure 3b, a fluctuation in smectic spacing, at constant bilayer thickness and colloid volume

fraction figure 3b, a fluctuation in colloid volume fraction at constant smectic spacing and

bilayer thickness. Note in particular that the fluctuations in smectic spacing (at constant bilayer
thickness and colloid volume fraction) depicted in figure 3b also modulate surfactant and

colloid concentrations is space.
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Fig. 3.- Canonical fluctuations in a doped-solvent lamellar pha~e; a) modulation of the bilayer
thickness w, at constant smectic period and colloid volume fraction; relevant elastic constant:

Xi ' b) modulation of the smectic period d at constant bilayer thickness and colloid volume fraction (in

the dilute limit the surfactant chemical potential is very nearly proportional to the surfactant bilayer
thickness and the elastic constant associated to this deformation is B C). Xi) c) modulation of the

colloid volume fraction 4 at constant smectic period and bilayer thickness (elastic constant in the dilute

limit Xi C~ Xi).
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The restoring forces have basically their origin in, respectively, surfactant-solvent interfacial

energy (or cw.>,ature energy, for ciunipled membranes see Ref. [12]), (Fig. 3a) ; bilayer-
bilayer interactions (either direct or entropy-driven interactions) (Fig. 3b) and colloidal

solution osmotic compressibility (Fig. 3c), in the following, we describe these restoring forces

in very simplified terms, leaving to Appendix A a more elaborate approach. The bilayer-
bilayer interactions are assumed to stem from a potential energy V, per bilayer and per unit

bilayer area which depends on the smectic spacing d ofilj, we thus neglect here a plausible
dependence on the colloid volume fraction ~fi. The dependence on bilayer thickness may
always be safely neglected, since it is essentially constant in the dilute limit. The energy for

changes in bilayer thickness, implying both changes in area per surfactant head and stretching

or compression of surfactant tails is represented, in the harmojic approximation and per

surfactant molecule, by the following expression
e

~" where u>o is the thickness
2 u,o

the bilayer would have when bilayer-bilayer interactions are negligible, I-e- in a very dilute

lamellar phase and
e

is a constant characteristic energy. We assume here that both
e

and

u>~ are independent on colloid volume fraction. The colloid contribution is given by the excess

free energy per unit volume of the colloidal solution, g(~fi assumed here not to depend on the

confinement within finite thickness layers.
With these assumptions, the free energy F of a volume fl

=

Afi-area along bilayer plane A ;

height along the stacking axis h- of the doped-solvent lamellar phase may be written as :

F =V(d)Aj+)F(I-1)~/~+gl~b)(d-w')A~ (9)
"'o

(with
v~ the volume of one surfactant molecule) or, in terms of the free energy fper unit volume

2
(and with W(u,)

= e

~' ~
:

2 Wo Vi

f= ~~~~)~'~~~~+g(~b>(i
-j).

(ioj

The free energy per unit mass
/

may now be easily expressed. For the sake of simplicity, the

(constant) mass densities of the solvent, particles and surfactant will be taken as equal we

shall therefore neglect the differences between mass and volume fractions. We thus get the

identification

j V (d) + W(dc~)
c.~f d, c~, c~

=
+ i c~ g ( i i

p d c'j

The equilibrium smectic spacing d~~ is given by the solution of the minimization equation

V(d) + W(dc~)
=

djv' + c~ W') (12)

which is d~~mw~/c~ in the dilute limit. In this (over) simplified model the spacing

d~~ is independent on c.~, as expected from our starting assumptions note that this is at contrast

with experimental findings on «
ferrosmectic

» systems [13].

A simple computation yields the following expressions for the elastic constants :

B=d(V"+c)W"); X['= ~~' Xi'=dW"+~~~~
l Ct ' C't (13)

c~=o; c~=dc'~w"( c=
~~~

'~C't
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The diagonal form for the elastic free energy density is obtained using as normal variables

a~u, 3?~
=

3c~ + C x~ 3c~ I.e. (I c~) 3~fi

and 32~
=

3c~ +

~~

~
a-u I-e-

~~

Xi -C Xp
d

and the reduced elastic constants are in this case :

fi
=

dV "
ii'

=

~ "

l it '
=

dW" (14)
' Ct

In particular, the smectic layer compression modulus B (the one that appears in the

correlation function (u(q) u(- q))) is related to the bilayer-bilayer interaction potential V

through the expression fi
=

dV" already valid with two-component lamellar phases [3, 14].

This result is not general, however, as may be seen in Appendix A where a more complex

model is considered, leading to a less transparent link between elastic constants B,

C~, etc. and the microscopic energies V, W and g.

Hydrodynamics of doped-solvent lamellar phases.

On general grounds [8] eight hydrodynamic modes are to be expected in the long wavelength,

low frequency part of the spectrum of any three-component, smecticA phase. If one

concentrates on the very low frequency part of the spectrum, three modes may at once be

neglected, namely sound (that couples longitudinal momentum and pressure, and accounts for

two modes) and heat diffusion, because they relax quickly towards equilibrium. This is

equivalent to considering an incompJ.essible and atheimal system. Moreover, among the five

remaining modes the relaxation of a shear wave that is transverse to both the optical axis of the

smectic phase and the mode wave vector is always decoupled. We thus consider only the four

hydrodynamic equations that describe the time evolution of the transverse component of the

momentum which lies in the optical axis-wave vector plane, g~ ; the fluctuations in particle and

surfactant compositions, 3c.~ and 3c~ ; and the layer displacement, u. Drawing an analogy with

similar equations for (incompressible, athermal) two-component smectics A valid when the

wave vector modulus q is much smaller than the reciprocal smectic spacing I/d [2, 3, 15], we

get :

Y~ 2
qi

,gt
~ ~~q gi~l ~q'

31.p =

-hq( 34p -~q( 3Pt ('5)

3Ci
"

-~q(3fit-~q(3fip

ii
=

~'
g~.

pq

In these equations for the spatial Fourier components of the dynamic variables (with the x-z

plane containing both the wave vector q and the normal to the layers z) we have made use of

simplifying assumptions on the anisotropies of the viscosity and diffusion coefficient tensors

(isotJ.opic viscous dissipation, with viscosity
Y~

mass diffusion-quantified by the dissipative

parameters a~, etc. along the plane of the layers only) and on the values of the
«

flexodiffu-
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sion
»

and permeation dissipative coefficients (taken equal to zero). These simplifications are

too stringent, at least in principle, in the limit where the wave vector q is perpendicular to the

layers, I.e. q, =

0 [16] we shall therefore discuss later on the small q, limit separately. In

practice, the available experimental light scattering data on ferrosmectic systems indicate that

all dissipative processes along the z-axis, including the colloid mass diffusion, are truly
negligible [9].

Ignoring the difference between adiabatic and isothermal processes, the thermodynamic

«
forces

»
W (the elastic strain vector) and 3ji (the chemical potentials per unit mass) that

appear in equation (15) are given in terms of appropriate derivatives of the elastic fi.ee energy
density

which leads to

~fi-
=

iq= Bu + C~ 3c~ + C~ 3c~

~' ~~~ ~~
(17)

p 3ji~
=

xj ' 3c~ + iq= C~ u + C 3c~

p 3ji~
=

xl ' 3c~ + iq= C~ ii + C 3c~.

The hydrodynamic equations are more easily written and solved when one uses the normal

variables a-11, 3?~ and 32~ that diagonalize the elastic free energy density. Indeed, one then

gets

#~ =

'~ q~ gj +

~' l(Bq)
+

Kq()
u iq= c~ &i~ iq=(c~ cc~ xp> &B~j

CCt-CpXi~ CfpX[~+CfC
,

Cf(Xi~~C~Xp)
~3c~ Cxp 3c~ + iq=

~

ti
=

~
q; 38~

,

q, 3?~
Xi Xi C p p~

(18)

C~xj'-CC~_ axj'+a~C, m~(xi'-C~xp),
3c~ iq=

~
u =

~

qj 3c~
~

qj 3c~
Xp Xt C p p

qi
u =

gj

which may be further reduced if one assumes that 3?~, and u are slow variables, I-e- relax

towards equilibrium on much longer time scales than 3?~ and g~. Such an assumption is

physically quite reasonable as may be grasped by considering the simple model for a doped-
solvent lamellar phase introduced in part 2 : the dynamic variables are then related to u and

3~fi on one hand and to g~ and 3u> on the other hand. The second group of variables is

presumably associated to the second sound mode, known in two-component lyotropic
smectic A to relax at a much higher frequency than the baioclinic mode, associated to the layer
displacement variable u [3] moreover, colloid concentration fluctuations may be definitely
slow for big enough colloidal particles.

With the approximation that g~ and 3?~ have already reached equilibrium when u and

3i~ still evolve with time, one may set
@~ =

0 and 3i~
=

0 everywhere in the above equations
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and eliminate g~ and 38~. We then get a set of hydrodynamic equations for the two slow

variables u
and 38~, valid when q, is not too small, of the following form

'~~~
+ p

'
~~

ti + (fiq~ +
Kq() ~'u

I
~'~~

Axj ' 3?~
=

0

~~ ~~~ [ ~ (19)
3?~ iq= Ah + Di q, 3c~

=

0

a~ a~ a
~

with Di
=

xj the colloid diffusion coefficient in the plane of the layers (see

p
~

a~

~ ~ ~~ ~

below), p~'
=

~ ~~~

,
a parameter analogous to the inverse surfactant

"t xj ' Xi C

mobility in two-component smectic hydrodynamics [2, 3, 15], and A a parameter expressing

the dynamic coupling between particle and layer motions in doped-solvent lamellar phases :

a~(x~-'C~-C~C)-a(xj'c~-C~C)
~ a~(xj' x~~'-C~)

These equations have a simple solution when q= =

0, I-e- when the wave vector q lies in the

plane of the membranes. There is no longer any coupling between the two dynamic variables u

and 3?~ for this particular orientation of the wave vector, the layer displacement modulation

is an undulation, with no changes in the local spacing between surfactant membranes. The two

uncoupled modes are therefore I) the usual undulation mode of one- and two-component

smectic A phases, where the layer displacement u relaxes with frequency w~ =

j
q~ ;

it) the in-plane particle diffusion mode, with a characteristic frequency for the relaxation of

concentration fluctuations given by [9] w~ =
iDi q~.

For a general, oblique orientation of the wave vector q the two modes both mix layer
displacement u with concentration fluctuations 3?~, except of course if one may assume that

the dynamic coupling coefficient A is negligible (as would be the case for
c~ and

~fi
small, using

equation (13) as a simple model of the elastic constants, for instance). One would then get an

u-mode, the baroclinic mode of two-component smectics A [3], with a dispersion relation :

Bqi
+

Kq(
~

w~ =

I q, (20)

4

q)
'lq +

and a concentration mode, corresponding to the anisotropic, in-plane diffusion of the particles,
with frequency

w~ =

iDi q(. (21)

With non zero dynamic coupling A and for a given oblique orientation of the wave vector q

one mode has a baroclinic-like behaviour whereas the other one is closer to the anisotropic
particle diffusion mode. Both are qualitatively depicted in figure 4, which schematically
displays the superposition of a layer displacement wave with a particle concentration one. The

relative amounts of particle concentration and layer displacement modulations are different for

the two modes. As may be seen from equation11 9), the amplitudes of the layer displacement
and particle concentration waves in a mode with relaxation frequency fl are related by :

d-u
=

3?~(w~ fl )/fl. A or, equivalently, by : 3?~
=

a- u A(f2 w~)/w~ (the frequency

w~ is defined in the Appendix B Eq. (B.5)).

The anisotropic dispersion relations of the high and low frequency modes may be obtained

from the general solution of the coupled hydrodynamic equations (Appendix B, Eq. (B.6)).
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Fig. 4.- Schematic drawing of any of the two low-frequency modes, where layer displacement
fluctuations at constant bilayer thickness are coupled to colloid concentration fluctuations (oblique wave

vector orientation).

For small A (I.e. when pA~/Xp is much smaller than )MB -Di )), and in the limit

q~ « q=, the two frequencies are given by

1~2
fly

=

I MB
~ ~~ q(

~~ ~~
(22)

p A~ xi '

~fl~
=

iDi qj.
MB Di

The baroclinic (resp. particle-diffusion)-like mode is then identified with the eigenmode with

frequency fly (resp. f2~). In fact, three generic cases obtain, according to whether

MB
<

Di
<

~
or Di

<
MB or

~
<

Di, with corresponding dispersion relations plotted in
'l 'l

figures 5a, b and c. In figure 5a, the high-frequency mode is baroclinic (undulation)-like when

q= is close to zero (f2 close to w~, and therefore 3?~ small compared to a-u) but particle-

diffusion-like for q, close to zero (f2 close to w~
,

a=u small compared to 3?~) in figure 5b, the

high-frequency mode has a baroclinic (undulation) character for all orientations of the wave

vector, when it is particle-diffusion-like in figure 5c.

As mentioned previously, the above analysis cannot be correct when q, becomes close

enough to zero. We have indeed neglected all the dissipative phenomena, like permeation and

surfactant or particle diffusion that occur along the z-axis these processes relax at small but

finite frequencies elastic strain or concentration fluctuations with wave vector perpendicular to

the plane of the layers. Moreover, the distinction between
«

fast
» (g~ and 38~) and

«
slow

»
(u

and 3?~) variables is no longer obvious when q, =

0.

In this limit, the general hydrodynamic equations for a three-component smectic A take the

following form

'l 2
~~

P
~ ~~

a~-
~

a-
~

F~
~3c~

=
-/q 3ji~-/q 3ji~--q-~fi-
P P P

a-
~

a~-
~

F~
~3c~

=

/ q 3 ji~ / q 3 ji~ q~ ~fi. j23)
P P P

ii
=

iF~ q 31i~ + ifj q 31i~ + itq~fi-
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Fig. 5.-Anisotropic dispersion relations of the two low-frequency modes (continuous curves),

compared to the uncoupled bail~clinic mode (dashed curve) or particle-dijfiision mode (broken curve), as

a function of q(, for a fi.led value of the wave vector modulus q. We have chosen parameters as follows

q =
1.4 x

10? m~ ' smectic spacing d 40 nm solvent viscosity ~ l.35 mPa.s mobility

~c
=9.7x10~'~m~ s~' Pa~' and layer compression modulus fi=235 Pa (Figs. 5a and c) or

b 78 Pa (Fig. 5b) layer bending modulus K
=

1.2 x 10~ '~ N (Figs. 5a and c) or K 4 x 10~ '~ N

(Fig. 5b); particle in-plane diffusion coefficient D~ =1.12x10~"m~.s~' (Fig~.5a and b) or

D~ 1.12 x 10~ '° m-.s~ ' reduced dynamic coupling
I

=

~'~ ~~~~
r =

12.3 (Figs. 5a and b) or~~i

r=1.23 (Fig. 5c); the parametem chosen in figure 5a are typical in a light scattering study of

ferrosmectic samples (see text below, experimental part).
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where the
a

=
s are dissipative coefficients for particle or surfactant diffusive motions along the

c-axis, the F's «flexodiffusion
»

dissipative coefficients (link between elastic strain with

matter flows) and ( the smectic permeation coefficient.

A qualitative discussion is possible without explicitely solving these equations. The

transverse momentum variable g~ becomes uncoupled ; it yields a high-frequency shear wave,

which is one q, =

0 limit of second sound. The other three variables yield three modes that

couple layer displacement with particle and surfactant concentrations. One of these modes, at a

comparatively «high» frequency, has presumably a permeation character and is very
schematically depicted in figure 6a ; it is the other q, =

0 limit of second sound, and its

frequency therefore increases very rapidly as the wave vector q becomes oblique. The last two

modes are the q, =

0 limits of the slow modes that were discussed in some detail above. At

medium frequency one probably finds a mode with a particle-diffusion character (Fig. 6b),
Whereas at low frequency the mode may be associated to surfactant diffusion (Fig. 6c). The

anisotropic dispersion relations in the vicinity of q, =

0 are easily guessed from the previous
considerations and are plotted in figure 7, where the dashed lines are the dispersion relations

for the baroclinic-like and particle-diffusion-like modes for negligible dissipative processes
along the z-axis.

These modes have no quantitati>~e incidence on our analysis where permeation and other z-

axis dissipative processes are altogether neglected j indeed, the fastest q, =

0 mode is probably
permeation as mentioned above, associated to the

«
leakage

»
of the solvent through the

surfactant bilayer (Fig. 6a). Its frequency should be of the order of w~~,~ ~

(fiq~, I-e- with a

rough estimate for the permeation coefficient fin lyotropic smectics ((
~

10~ ~~ m~ Pa~ s~ '

[17] or (
=

10~ '? m~ Pa~ ' s~ ' [18]) and typical values for B la few hundred Pa) and q (about
10?m-')

a frequency much too small to be within the range of intensity correlation

spectroscopy : in light scattering experiments, z-axis dissipative phenomena are infinitely
slow.
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a)

b)

C)

Fig. 6. Schematic drawing of the three, presumably low-frequency excitations when the wave vector

is normal to the smectic layem al layer displacement wave : b) colloid concentration wave cl surfactant

concentration wave the three eigenmodes presumably couple these three waves.

-b-

-C-

q(
Fig. 7. - Schematic of the ispersion relations of three low-frequency modes,

for (fixed-modulus) wave
vectors q nearly to the smectic layers ; the

presumably
solvent-permeation

character for q, close to zero, evolve~ towards the frequency)
second sound mode when cl, increases; the b-branch

(resp. c-branch) has a resumably particle-

permeation (resp.
surfactant-permeation)

haracter at small q, and evolves towards one of
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Quasi-elastic light scattering.

A light scattering experiment is sensitive to fluctuations in the dielectric tensor of the studied

medium. For multicomponent smectic A phases, which are on symmetry grounds birefringent
(uniaxial) media, layer displacement and concentration fluctuations both modulate strongly the

dielectric tensor. Polarized scattering is to be expected from concentration fluctuations, and

both polarized and depolarized scattering, in general, from layer displacement fluctuations. In

the particular case of ferrosmectic phases, which are doped solvent, dilute lamellar phases, it

seems reasonable to assume that the polar.ized scattering originates from colloid concentration

fluctuations alone and that depolarized scattering is negligible. Indeed, owing to their size the

colloid particles are far more efficient in scattering light than the surfactant membrane, and

dilute lamellar phases are only weakly birefringent. For such a system, the quasielastic
(polarized) light scattering is thus described by the correlation function S(q, t) defined as

S(q, t)
=

(3c~(q, t) 3c~(- q, 0 )) (24)

which may be expressed, introducing the normal variables u, 3?~ and &?~, as the sum of

various auto- or cross-correlation functions, each one being easily (though tediously, see

Appendix B) computed from the hydrodynamic equations established above, using linear

response theory [19].

In the particular case where q= =

0, there is no coupling between the slow normal variables u

and 3?~ and the correlation function is simply expressed :

S (q-
=

0, qi t)
=

k~ TXp exp (- Di q~ it (25)

This result was already used for measuring the colloid in-plane diffusion coefficient

Di in a previous work [9]. For oblique orientations of the wave vector q, u and

3?~ are coupled but if one further assumes that the main contribution to S(q, t ) comes from the

correlation function (ii~(q,
t

i~~(-
q, 0 )) (see the Appendix B, Eq. (B.4), for a complete

expression), the light scattering signal is given by :

S(q,t)=
~~~~~

((fly-w~)exp(-iffy(t()+ (w~-fl~)exp(-ifl~(t()) (26)
nj-n?

where
w ~

is the baroclinic mode relaxation frequency (Eq. (20)) and fl
j,

fl~ are the relaxation

frequencies of the two slow modes (Appendix B, Eq. (B.6)). Its time decay is therefore

controlled in general by tu'o characteristic frequencies. Note that in the particular case where

the dynamic coupling parameter A is small, the frequency of the baroclinic-like mode, say

fl~, is close to w~ for all the orientations of the scattering wave vector q and the correlation

function reduces to the very simple following form :

S(q, t
=

k~ TXp exp (- fl
~

it (27)

with fl~ close to w~ hence, the experimental relevance of the two-mode superposition obtains

only for strong enough dynamic coupling A.

Quasi-elastic light scattering experiments on various oriented ferrosmectic samples, varying
both the modulus q and the orientation q~ of the scattering wave vector q, have been

performed. We give here our results for one sample [20], with a reversed sodium

dodecylsulphate-water-pentanol membrane (water over surfactant mass ratio ?.5 membrane

thickness 5 nm), swollen with a cyclohexane-pentanol solvent containing a volume fraction

~fi =

0.8 9l of the magnetic colloid (surfactant-coated Fe~O~-y maghemite particle of radius
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about 3 nm) its smectic period is d
=

38 nm [7, 13]. The good-quality orientation required for

light scattering is achieved through a thermal treatment of the sample held in a sealed glass
capillary with rectangular cross-section (2 mm x 200 ~m) smectic layers are laid parallel to

the glass plates. We also prepared a reference sample, by swelling the same reversed

membrane with the same amount of put-e solvent.

In our light-scattering experiment, fully described elsewhere [3], the normal to the broad

sides of the capillary (also normal to the smectic layers) may be tilted out of the scattering
plane, with a fixed tilt angle ~

=

25 degrees its projection onto the scattering plane is freely
orientable. The scattering angle varies between 10 and 150 degrees. The incident light

(Coherent IK-90 Kr+ ion laser, A
=

647. I nm ; note that a red line has to be used, to avoid as

much as possible absorption by the brownish colloid suspension) is polarized perpendicular to

the scattering plane and an analyser may be set in front of the detector. A 72-channel

Brookhaven Instruments digital correlator, operated in its multiple-sample-time mode to span

the longest possible time range is used to build the autocorrelation function of the scattered

light.
With the reference sample, the time dependence of the autocorrelation function is very close

to a single exponential (Fig. 8) with small departures, especially when the scattering wave

vector is close to being parallel or perpendicular to the layers attributed to an imperfect
orientation of the sample. The light scattering signal originates here in the usual baroclinic-

undulation mode [3]. The anisotropic dispersion relation is well described by equation (20),

which yields (using the simple Poiseuille flow model [2] for the surfactant mobility p and a

solvent viscosity
Y~ =

1.0 mPa.s) elastic constants K about 8x10-'4 N and fi
=

38 Pa.

With the doped sample, the time dependence of the correlation function always departs from

a single exponential, whatever the orientation of the scattering wave vector q. As noted in a

10°
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Fig. 8. Autocorrelation function ~~ ~~~ ~ ~~ l of the scattered light intensity as a function of time,
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(q =1.4 x10?m-'

q= 7.8 x10~m-') line :
fit to an exponential test function, with frequency

Il
=

6.74 x
10~ s~ '
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previous work [9] this occurs also when the wave vector is parallel to the layers

(q=
=

0 though one should expect, according to equation (25) a single mode contribution to

the light scattering signal. It was shown [9] that the size distribution of the magnetic colloid

explains this apparent inconsistency the single mode analysis was thus simply replaced by the

-,
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parameters for the doped system are Di
=

I. x 10~ m~,s~ '
;

fi
=

2.3 x
10~ Pa r =

12

K in the range 10-'3 N.

Among these parameters, the bending modulus K is probably the least well-defined

parameter since it describes the dispersion relation of the high-fi.equency mode in the vicinity
of q= =

0, that is to say in the range where its contribution to the light scattering signal

vanishes. The values for B and I stem from an analysis of the signal far from

q= =

0 and are thus on a better ground. One should however remember that the quoted values

are linked to our assumption about the (model-dependent) mobility p. As a final word of

caution, note that the analysis we perform is not entirely self-consistent. According to our

description of the light scattering signal (Eq. (26)), two characteristic frequencies (fly and

fl~) and an amplitude ratio ([fl~ w~]/[w~ f2~]) are determined by the hydrodynamic

model (Eq. (19)). Unfortunately, it is not possible to get satisfactory results when we try to fit

simultaneously the experimental relaxation frequencies f2~ and fl~ and the experimental
amplitude ratio to the three corresponding hydrodynamic functions: the experimental
amplitude of the high frequency part of the signal tends to be smaller than is predicted for a

given amplitude of the low frequency part. This may mean that some of the simplifying
assumptions that led to equations (24) and (26) are incorrect. The basic conclusion (see
Appendix) that the low frequency part of the spectrum of light scattered by a doped-solvent
lamellar phase contains two frequencies fl and fl~ which are the roots of the characteristic

equation (Eq. (19)), is left unaffected, however.

Conclusion.

In this paper we have shown how the framework of the general elastic and hydrodynamic
theory of ordered condensed phases [8], already used successfully to describe simple lamellar

[2, 3] and other [15] two-component smectic A phases may be applied with three-component
smectic A systems belonging to the class of

«
doped solvent

»
lamellar phases. As was the case

with (two-component) dilute lamellar phases, we find that the value of the elastic constant

B directly stems, in the most simple case, from bilayer interactions. Together with the mode

originating in the relaxation of layer displacement fluctuations, I-e- the undulation-baroclinic

mode in two-component lamellar systems, one finds a new mode in doped-solvent systems that

arises from the colloid diffusive motion. Layer displacement and colloid concentration

fluctuations are coupled in general, except in the particular case where the wave vector q of the

disturbance lies in the plane of the smectic layers. The anisotropic dispersion relation of each

mode is sensitive to elastic and dissipative parameters such as the smectic elastic constants

B and K and the in-plane colloid diffusion coefficient Di, which allows in principle an

experimental measurement of these parameters through dynamic light scattering, for instance.

The dynamic light scattering study of ferrosmectic samples, though sensitive to the colloid

concentration fluctuations only, illustrates the validity of this scheme, even if an experiment

devoted to the measurement of the lay,er displacement fluctuations remains desirable to get a

reliable estimate of the splay modulus K. While previous, simpler experiments devoted to the

measurement of the particle in-plane diffusion coefficient Di showed the influence of the

quasi-two-dimensional confinement of the particles [9], our present experiment mainly

corroborates the strong increase in the smectic compression modulus B induced by the

presence of the colloidal component that was observed with other experimental techniques [13,

21]. More work is obviously required in order to get precisely the functional dependence of

fi
on smectic spacing and colloid volume fraction. New systems, such as polymer doped

lamellar phases for instance [22-24], with B a decreasing function of the dopant concentration,

are also promising for further studies.
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Appendix A.

Possible extensions of the simple microscopic model for a doped-solvent lamellar phase.

The free energy of a doped-solvent lamellar phase considered in the text (Eq. (10)), is built as

an addition of free energy contributions for a tw,o-component lamellar system and a binary

mixture. A consequence of this assumption is that the equilibrium smectic period

d~~ and, as a result, the compression modulus at constant surfactant and particle chemical

potentials fi do not depend on the colloid concentration c~. This is not true experimentally for

ferrosmectics, as demonstrated by structural studies of such systems [13] as well as by the light
scattering results presented here. More realistic models should therefore incorporate the

coupling between layer spacing and colloid concentration, I.e. a non-zero C~. One way to

introduce such a coupling is to consider that the colloid has some affinity with the surfactant

bilayer. This may change the bilayer flexibility
K

and therefore the strength of bilayer-bilayer

interactions in sterically-stabilized lamellar phases but this effect is reputed small [25, 26]. If

the affinity is strong, with colloid particles stuck to the membranes the range of the Helfrich

repulsion is also modified, with an increased hard core exclusion zone. Besides, a weak

affinity changes in a controlled way the colloid excess free energy owing to the induced colloid

concentration profile between the bilayers. In the following, we consider in some details this

last effect.

The total free energy G of an incompressible colloidal solution contained between two walls

of area A a distance h apart may be written as [27] :

G
=

A
2

y~ 2 y ~fi, +

~~
(g (~fi ) +

~
(d.~fi

~j dzl(A.
h/2

where g (~fi is the bulk free energy of the colloidal solution, m~ is an energy per unit length and

the wall-solvent interfacial energy is written, in the weak-coupling limit as the sum of a pure

solvent term y~ and a term yj ~fi,, linear in colloid volume fraction at the walls.

The equilibrium concentration profile
~fi

(z) for given wall separation h and mean colloid

concentration $ is found by the minimization of the free energy G with respect to small

variations in bulk 3~fi(z) and surface 3~fi, concentrations, with the colloid conservation

constraint

fi12
~b (z) d=

=
~bh (A.2)

fi12

and symmetry property ~fi
(z)

= ~b (- z). This leads to the profile equation :

ni~ a-i~
=

?~
jA.3)

?~b

where a Lagrange multiplier A has been introduced, with the boundary conditions

a.~fi
~~,

=

°'( a-~fi
~~

=

0. (A.4)
m~

Integrating once and eliminating the Lagrange multiplier leads to a first order profile equation

m~
?

g(~,) @(~o) (~ ~o> VI
I ~~~~ ~~ ~

~ ~~ ~ ~~°~
~, ~o

~~ ~°~ ~
~, ~jj m ~~'~~



N° 9 HYDRODYNAMICS OF DOPED-SOLVENT LAMELLAR PHASES 1497

with boundary conditions ~ (z
=

0
=

~o and ~ (z
=

h/2
=

~fi,. It can be solved explicitely if

one assumes the following simple model for the bulk free energy of the colloid solution

g(~)=i+v(~-i)+)(~-i)~
(A.6)

with the parameters p (chemical potential) and X (osmotic compressibility ~. a~laar
=

x)
taken as constant. This yields the equilibrium profile :

2 y X h
~ ~~ ~

h 2 f sh (h/2 f )
~~ ~~~~

l
~~'~~

where the correlation length f is given by f
=

m
,/X. Substituting the equilibrium profile into

the total free energy G of the colloid solution we get :

G=2A(y~-yj$+#~+°'~~ (~~~-coth
(~ )j). (A.8)

2m~

This result for G implies that the free energy f per unit volume of a doped-solvent lamellar

phase should now be given by :

instead of equation (10), where the (constant) wall-solvent interfacial energy y~ has been

incorporated into the energy V(d). The equilibrium smectic spacing d~~ then becomes a

function of the colloid concentration c~ as well as of the surfactant concentration

c-j. The coupling constant C~ defined in the elastic free energy expansion (Eq. (3)) is no longer
identically zero from equation (A.9) we get C~

=

2 yj/[(I c-j d~~]. Besides, repeating the

steps that led to equation (14), one in particular finds for the elastic constant B (up to second

order in yj)

XT
Id ch [d(I c~)/2 ii

B
=

dV" (A.10)
2 f sh. [d(I c~)/2 ii

which shows that fi is no longer determined by the bilayer-bilayer interactions alone. Note that

the very presence of a colloid concentration profile i-educes B, whatever the sign of the colloid-

wall interaction yj. Thus, the mechanism described here cannot be the dominant one with

ferrosmectic systems, where one finds an increase in B.

Appendix B.

Time-dependent correlation functions.

Our dynamic light scattering experiments probe the time relaxation of the particle concentration

correlation function S (q, t ) defined equation (24). In terms of normal variables, and taking into

account that correlation functions involving the
«

fast
»

variable 3?j decay quickly vie get in

the long time limit

s(q, t
=

(&B~(q, t) &B~(- q, o>) + q? ~~( j~ ~~
~

iu(q, t u(- q, o )j +

xi x~~ c

+ iq- ~~) j
~

~~

~

( (ii (q, t &i~(- q, o )) &?~ (q, t u (- q, o )) (B.1)
Xi Xi

~
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Linear response theory [19] relates the time Fourier transforms S~~(q, w
), S~~(q,

w
and

S~~(q, w
of, respectively, (&?~(q, t &B~(- q, 0 )), (u(q, t) u (- q, 0)) and

(&?~(q, t) u (- q, 0 )) to generalized susceptibilities that may be constructed from our (linear)

hydrodynamic equations, equation (19). With H(q) the two-by-two matrix built from

equation (19) recast in the form

~ ~uu U + liup ~~p
(~ ~j

~~P ~Pu U + lipp ~~p

and S(q) defined by

s~q~
=

<U ~~~ U~- ~ ii l~'~~~ ~?P~~ ~~l
(B,~~

(&i~(q) u (- q )) (&?~(q ) &?~(- q))

a new matrix C (q, z) is constructed C (q, z )
=

[H(q) + iz]~ ' S(q). One gets frequency-
dependent correlation functions as S~~ (q,

w =

2 Re (C
~~

(q,
w + I e

)), etc. This procedure,
supplemented by the use of equipartition theorem in equation (4), leads to the final result :

S(q, t)
=

~~ [Xp((fly w~)exp(- iffy [ii + (w~ fl~) exp(- ifl~(t( )) +~l ~2

CC~-C~X/~ ~ q~
+

~

((Rj-wd-w~)eXp(-iRj(t()
Xp Xt C Bq~ + Kq~

+ (Wd + Wc n~) exp(- in~ it j)

CC~ C~ xl '

+ 2
~

Xp A~ '
w~

(exp(- ill
i
it exp(- ifl~[ t )) (B,4)

Xi Xl C

where w~ is the baroclinic mode frequency (Eq. (20)). w~ is the particle in-plane diffusion

mode frequency (Eq. (21)) and w~ is defined by :

W~ =
I A~Xj

~~ ~~

~

(B.5)

4
qi

~q +

H

The light scattering signal S(q, t) is therefore the sum of two exponentially-decaying
components with characteristic relaxation frequencies f2 and D~, roots of the hydrodynamic

equation (Eq. (19)), I-e-

~' ~~°~ ~ ~°d ~ ~°C ~ N~~ ~°P ~°d (Wb + Wd + Wc)~l

~~ ~~°~ ~ ~°d ~ ~°C N~~ ~°P ~°d (Wb + Wd + w~)~].
~~ ~~

The simpler form (Eq. (26)), given in the text for S(q, t ) arises if one further assumes that the

u u and u &c~ contribution to the light scattering correlation function are negligible. This is

the case within the framework of our simplified model for a dilute, doped solvent lamellar

phase indeed, from equation (13), we get :

CCj-CpXi~
,

=
~C'i (B.7)

Xp Xt -C~

which is of course small in the dilute limit (c~ « and at low particle volume fraction ~.
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