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Abstract. We present experimental results
on

the analysis of turbulent velocity measure-

ments in the flow that develops in the gap between two coaxial counter-rotating disks (von
K£rm£n swirling flow). In the absence of a well-defined

mean
velocity we introduce the

use
of

a
"local Taylor hypothesis" to obtain spatial information from hot-wire measurement at a fixed

location. The results
are in agreement with conventional open-flow experiments.

1. Introduction.

New interest has emerged for the study of the flow between rotating disks known as K6r-

m6n swirling flows [1-3]. The reason is that when both disks rotate in opposite directions a

high Reynolds number flow can be obtained in a compact region of space. This convenient

experimental set-up has recently lead to interesting results such as the visualization of vortex

filaments [4] and pressure measurements [5]. However, in the analysis of turbulent flows em-

phasis has traditionally been on velocity measurements with the difficulty that most theoretical

(exact or heuristic) predictions are made in the spatial domain v(t fixed, x) whereas experimen-
tal measurements are performed in the time domain v(t,

x
fixed). For example, Kolmogorov's

1941 similarity theory yields an energy spectrum that, in the inertial range 1IL < k < 1Ii
scales as

k~~/~ in the space domain but as
w~~ in the time domain L is the integral length

scale and ~ the dissipation one. Transition between the two domains involves the Taylor hy-
pothesis [6]: if the velocity is sampled at a constant rate At at a fixed point of space, the

resulting time series (v(t,), ti
=

to + At, t2
=

to + 2At,.. ) is converted into a corresponding
spatial series: (v(x~) e v(t~

=
x,/U)). This scheme is possible in experiments performed in

conditions where the~large scale average velocity does not vary appreciably (in grid generated
turbulence, for example, the fluctuations are of a few percent) but is open to question in other

experimental set-ups such as jets where the fluctuations can be as high as 30 percent or more.

It is certainly not applicable in situations where a steady mean flow does not exist at all and

this has seriously limited the study of turbulent closed flows in the past.
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We note that remarks along similar lines were made long ago, first by Fisher and Davies [7]
who have shown experimentally that the convection velocity of inertial range eddies fluctuates

as a results of large scale variations of the mean flow, then by several authors a review may be

found in Tennekes and Lumley [8]. However, the purpose of these authors was to interpret the

time spectra of Eulerian velocity measurement, that is the analysis was made in Fourier space
and restricted to flows with some mean velocity. For example Tennekes [9] developed a model

in terms of Doppler broadening (w
=

kfl) to explain discrepancies in the position of the viscous

dissipative scale as deduced by Lagran#an or Eulerian spectra; this is a phase modulation

effect which however small is virtually impossible to deconvolve back to real space. On the

contrary, the approach described in this paper is to transform immediately the times series into

a spatial series using direct information on large scale velocity variations; the resulting spatial
series may then be analyzed conventionally. For this purpose we use a local implementation of

the Taylor hypothesis.

2. Experimental set-up.

Air is the working fluid. We use two aluminum horizontal coaxial disks of radius R
=

10 cm,

a variable distance H
=

25 cm apart see figure 1. The disks are fitted with a set of 4 vertical

blades of height hb
=

2 cm and thickness 0.5 cm. Each disk is driven by an independent d.c.

motor, whose rotating frequency f is adjustable from 10 to 45 Hz and controlled by a feed-back

loop. As observed by previous authors [4, 5, 10] it is thus possible to obtain a turbulent flow

with a high Reynolds number. We shall prefer the use of the Reynolds number based on the
Taylor scale R> since the presence of blades

on the disks, not accounted for in the calculation of

R~, plays an important role in the degree of turbulence in the flow. Using 4 blades,
we obtained

fi

R

~~

h
--.

f~

Fig, I. Experimental set-up. The working fluid is air. R
=

10 cm, H is adjustable from 0 to 60 cm

jr, h) are
the coordinates of the hot-wire probe.
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R>
~w

450 with the disks counter-rotating at 2700 rpm (45 Hz). Velocity measurements are

performed using a TSI hot-film 10 ~m thick and 3 mm long whose position is adjustable. The

probe is connected to a TSI 1750 anemometer. In the experiments, the sensing element is

parallel to the rotation axis, so that the measured velocity is u = u~ + vi. However, we

have checked that our results are independent of the orientation of the probe in agreement
with the usual isotropy at small scales for high Reynolds numbers. A National Instrument

NB-MIOI6-XL 16-bit digitizing card is used to record the signal from the probe and to set the

rotation frequencies.

3. A local Taylor hypothesis.

Figure 2 shows a recording of the velocity field at a fixed location inside the space between the

counter-rotating disks, the probe being located at r =
5 cm from the axis and h

=
7.5 cm from

the upper disk. One can see that it is not possible to define from this graph a mean velocity
that is steady over a few periods of rotation of the disks, as expected from the geometry of

the flow. Accordingly a direct implementation of the Taylor hypothesis ix
=

fit) to relate time

measurements at a fixed location to the spatial structure of the flow is not applicable (however
if the probe is moved close to the blades, there is a steady mean

flow and the Taylor hypothesis

is applicable as in [10] ). Figure 4a shows the spectrum of the raw data, sampled in the time

domain (note the absence of frequency peak corresponding to the rotation of the disks since

the probe is located inside the core of the flow). A linear region may be detected with an

average slope (-1.59) noticeably shallower than the expected (-5/3) value Kolmogorov's
similartity scaling [11]. This is due to the fact that the spectrum cannot be easily related to

a spatial spectrum through w =
kfl, since fl varies. However we believe that the essence of

Taylor's assumption should be maintained, that is: the small scale structures (in the inertial

range)
are

advected by the large eddies at integral scale. We thus implement a "local Taylor

hypothesis", I.e. we relate the velocity at time t to that at location x by:

U(t)
- VIZ) X #

U(T)dT
~

>

~0 2 4 6 8 10 12

t / T_disk

Fig. 2. Measurement of velocity vs. nondimensional time t/Td;sk where Td>sk is the period of

rotation of the disks.
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Fig. 3. Probability density functions of the velocity field v(t), the mean advection velocity flit),
and the fluctuations iv @).

where fl is the local average velocity:

T+T/2

fl(T)
= y

/
u(t)dt

r-T/2

where the integral time scale T can be defined quite naturally as the rate at which energy is fed

into the flow; in our case, T is the period of rotation of the disks Td;sk A local advection velocity
defined in this manner has of course the same average value (taken over the entire data record)

as the instantaneous velocity; however it is surprising to note that it fluctuates almost as much

as the original velocity field see figure 3, [12]. When the above u(t)
-

viz transformation is

applied, it produces a series of spatial data, but unevenly sampled: when swept by a faster eddy

two consecutive time samples correspond to spatial points that are further apart. If care has

been taken to oversample the time series, it is possible to resample the spatial series at an even

rate, using numerical interpolation. One then obtains a conventional, equally spaced spatial
series of the velocity field which may be analyzed as usual. The resulting power spectrum of the

energy is shown in figure 4b: one clearly identifies
a self-similarity region where Elk)

c~
k~~.",

a value very close to Kolmogorov's scaling -5/3 exponent.
This result is robust with respect to the choice of the integral time T. Indeed when T is

varied from 4Td;sk to Tdisk/4, the variations of the slope and extension of the scaling region

are less than 2.5%. In addition, T
=

Td;sk may be compared to the integral time scale defined

from the spectrum of the time series as
1/Tnt

=
If fE(f)df) / J El f)df). Numerically we

obtain Tnt
+~

2Td;sk, that is within the stability range of the algorithm. It also confirms the

use of Tdisk as the characteristic energy injection time. We have also checked that the result is

independent of the method used in the numerical resampling scheme if the oversampling factor

is sufficient (in our calculation, linear, polynomial and spline interpolations give the same result

[13j).
Comparison between figures 4a and 4b shows that one does not only get a better estimate

of the slope, the range over which one observes the correct scaling behaviour is larger in the

correct space domain and the shape of the cut-off region is changed. Indeed even if observation

of figure 4a leads to a scaling exponent of
~w

-1.59, it is possible to find a -5/3 scaling region

but over a
much reduced interval (less than one decade). In contrast figure 4b naturally leads
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Fig. 4. a): Power spectrum of time series. b): Power spectrum of resampled spatial series.

to a ~w

-1.71 scaling exponent over two decades. We have verified numerically that these effects

(shorter scaling range, slightly "humped" cut-off region in the time domain)
are due to uneven

spatial sampling. Figure 5a (dots) shows a random signal with a
k~~/~

power spectrum.
The solid line corresponds to the same signal but unevenly sampled, that is with Gaussian

fluctuations in the sampling interval of amplitude and standard deviation equal to 0.3 (1 is the

original sampling frequency). One clearly sees that at small scales the spectrum deviates from

the original straight line, starting at a characteristic frequency that decreases with increasing

rms value of the fluctuations (note that it explains why the effect has remained unnoticed in

experiments with low fluctuations in the mean velocity and wide scaling intervals). Figure 5b

is equivalent to the preceding situation but the original spectrum has been terminated with

an exponential cut-off (as is believed to be the case in turbulent flows); in the resampling

process, the location of the cut-off as well as the sampling interval have been randomized

around some average value: one sees that the high frequency end of the spectrum becomes

somewhat humped as in experimental observations.

4. Structure functions.

More information about the intermittency characteristics can be gained with the use of the

structure functions SFp(r) =< (viz + r) u(r)(P >. At a sufficiently high Reynolds number

R~, one observes the scaling SFp(r)
c~

r'lP) in the inertial range. The Kolmogorov similarity
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Fig. 5. Numerical model of the effect of uneven sampling on a
signal with a given scaling, a) On the

upper graph the spectrum of the original evenly sampled data are represented by
a

dotted curve, the

solid curve is the non uniformly sampled time series. The sampling jitter is Gaussian with amplitude
and variance equal to 0.3. b) Same as a) but the original data

as an
exponential cut-off.

theory implies that in the inertial range ((p)
=

p/3 and deviations from this scaling are

usually attributed to intermittency effects. Again it is essential that spatial data be used to

relate structure function exponents to usual turbulence analysis. In particular the inertial

range is defined correctly only as the region where the Kolmogorov relation SF3(r)
c~ r holds

[14, 15]. Figure 6 shows the third order structure functions in each domain. One readily
observes a larger linear behaviour in the correct spatial representation, with a slope closer to

the expected 1 value. The calculation of the (p exponents should accordingly be done only on

data in the spatial domain. We have sound (2
=

0.72 and (4
=

1.22 on the resampled spatial
series. However for statistical data such as structure functions it is possible to obtain spatial
information by directly using the following scheme: first the velocity measurement from the

probe is low-pass filtered to get the average velocity over the integral time scale, then the

sampling interval of the AID converter is adjusted to get two successive samples corresponding

to a fixed spatial distance Ax: vi it) and u2 It + Ax If) the process is now entirely digital and

takes 5 ms I.e. faster than the integral time scale. At this point, the cumulative average of
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Fig. 6. Third order structure functions in the space domain (solid line) and in the time domain

(dashed line).
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Fig. 7. Structure function exponents measured directly in the spatial domain using an average

velocity controlled sampling interval, compared to standard results: (*)
our experiment with counter

rotating disks at 35 Hz, ix wind tunnel measurements of Ciliberto et al., lo) Kolmogorov's p/3
dimensional scaling.

(vi u2 (~ can be computed and hence the structure function. Figure 7 shows our results using
this method compared to the Kolmogorov prediction and the wind tunnel measurement of

Ciliberto et al.. We obtain a slightly more intermittent correction but it may not be significant
due to the digital nature of the measurement; efforts are currently underway to drive directly
(using analog electronic devices) the sampling frequency by the mean velocity.

Finally we have used the ESS technique recently introduced by Benzi and cc-workers [16],
to plot directly one structure function against another (the third one, say). We have found

that the scaling exponents take the same values if original time domain data or resampled

space domain series are used. We found this result suprising, although a possible explanation
might be the following: structure functions are defined in terms of velocity differences, so
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that neighbouring points in the inertial range (which contribute to the determination of the

exponent) are advected at the same large scale velocity and the process is self correcting.

5. Conclusion.

The results presented here on turbulent K4rm6n swirling flows show how velocity measurements

at a fixed location may be analyzed even in the absence of a mean flow. Spatial information

is recovered by the use of a local Taylor hypothesis. Our results are coherent with traditional

analysis in conventional open-flow geometries. We believe that this method can be extended

to the study of other turbulent flows in restricted regions of space [17]. Indeed, such flows can

be conveniently used to produce high Reynolds numbers in the laboratory.
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