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Abstract. -The flexibility of mixed fluid membranes is examined in terms of the so-called hat

model that is based on local curvature fluctuations. For monolayers, the hat model reproduces the

increase of the flexibility obtained previously with a continuum model. In bilayers, the bending
frustration ofthe constituent monolayers causes equal molecules to avoid and unequal molecules to

seek each other when they are in opposite monolayers. This local interaction across the middl/

surface ofthe bilayer leads to an additional increase of bilajer flexibility. The cooperative effect of

local bending frustration in partially polymerized bilayers may result in the segregation of polymer
chains belonging to opposite monolayers. Possible consequences of the segregation are a nearly
divergent flexibility, a Dronounced roughness of the bilayer, and budding of bilayer vesicles.

1. Introduction.

There are two entirely different ways of calculating the effective bending rigidity or its inverse,

the effective flexibility, of heterogeneous fluid membranes, Continuum theories deal with

averages of molecular properties, in particular the spontaneous curvature, over membrane

pieces of constant curvature [1-41. In other words, the membrane is regarded as smooth and

uniform. Thermal undulations do not enter these calculations and, if introduced afterwards, are

described in terms of nonlocal modes. Specific continuum models underly the work of Safran,

Pincus and Andelman [31 and our thermodynamic theory [41 which both express the effective

bending rigidities of mixed monolayers and bilayers as functions of molecular parameters.

The other approach, called the hat model [51, starts from local bending fluctuations of the

planar membrane, Each molecule in a monolayer (or pair of opposite molecules in a bilayer) is

regarded as a spherical cap which in the rest of the membrane is associated with a brim of zero

mean curvature. Local curvature fluctuations come about by two mechanisms, the molecular

bending fluctuations and the lateral diffusion of conical membrane defects, if such defects exist

[51. In mixed membranes, the subject of the present paper, local curvature fluctiations
are

produced by fluctuating cap curvatures and the diffusion of surfactant molecules of different
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spontaneous curvature. A membrane cannot be smooth, even in the absence of any thermally

excited bending, if the component molecules differ in spontaneous curvature.

The bending rigidity of mixed monolayers is in general smaller than the weighted average of

the component rigidities, In the continuum model the reduction takes place because the

concentrations of surfactants of different spontaneous curvature adjust to a given curvature (if

there are appropriate reservoirs). In the hat model, the lateral diffusion of molecules of

different spontaneous curvature gives rise to an increase of the total strength of the local

curvature fluctuations. This translates, through the equipartition theorem, into an additional

contribution to the membrane flexibility,
Based on a microscopic description of membrane curvature, the hat model is more realistic

and, therefore, more complex than the continuum model. Its straightforward application is

restricted to the almost unstressed membrane near its spontaneously curved state, and a

complete description exists only for the case of a planar equilibrium state.

In the following, we will first derive a formula for the flexibility of two-component

monolayers, employing local bending fluctuations. The hat model is shown to give the same

effective bending rigidity for mixed monolayers as does the continuum model. In the case of

mixed bilayers, to be treated next, the hat model predicts qualitatively new results which are

missed in the continuum model. This is because the typical frustration of monolayer

spontaneous curvature in a bilayer can be alleviated in a mixed bilayer. The local energy of

frustration depends on whether equal or unequal molecules face each other across the middle

surface of the bilayer. Taking a preference for unequal molecular pairings into account, we

obtain a further increase of the flexibility of the two-component bilayer.
Finally, we consider partially polymerized surfactant bilayers, assuming each of the

polymers to be embedded in one of the monolayers. For long enough polymer chains the

multiple local frustration across the bilayer mid-surface can be so strong as to make polymers
in opposite monolayers avoid each other, This is in addition to the well-known segregation of

nonintersecting polymer chains sharing the same two-dimensional space, I,e, the same

monolayer. We derive a formula for the critical degree of polymerization below which this

segregation takes place, assuming semidilute polymer solutions of equal concentration in both

monolayers. Possible consequences of the new segregation effect are a near divergence of the

flexibility and a considerable roughness of the bilayer. In suitable cases, the latter may result in

simultaneous outward and inward budding of bilayer vesicles, as has recently been observed

after partial polymerization by Sackmann and coworkers [6].

2. Hat model for the monolayer.

Like nonlocal descriptions of membrane bending fluctuations, the hat model starts from the

bending energy per unit area of membrane in its usual form,

g
=

K(J-J,~)~+kK. (I)

Here J
= cj + c~ is the total curvature, I.e, twice the mean curvature, and K

= c-j c~ is the

Gaussian curvature, while g itself is a second-order expansion of the bending energy in the

principal curvatures cj and c~ about the flat state. The elastic parameters are the bending
rigidity K, the bending modulus of Gaussian curvature, k, and the spontaneous curvature

Jo. Unless otherwise stated, we will take k to be uniform. The Gaussian curvature term in (I)

can then be omitted since its integral is known to depend only on membrane topology which is

not affected by fluctuations.

A simple and complete description of the hat model is possible when the membrane is flat in

its equilibrium state (Ju
=

0 ). We first consider a flat monolayer consisting of a single species
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of molecules of zero spontaneous curvature. Each molecule is viewed as a circular (or
hexagonal) disk. Its total curvature, assumed to be uniform, undergoes thermal fluctuations

about a mean value which is zero in our example. Let us assume for a moment that there is a

single molecule of nonvanishing total curvature in the membrane. It will form
a spherical cap

which is surrounded by an axisymmetric brim (or foot) whose shape follows from the

requirement of zero mean curvature, Cap and brim together make up the hat, as illustrated by
figure I. With z being a coordinate parallel to the axis of rotation, the most general
axisymmetric shape of zero mean curvature is the catenoid

_
_~

z co =
± i-o In '

+
'

~

l (2)
1-o j-j

z

r~
i
i

i '

Y
~~~

r r

Fig. I. Schematic cross section of a single hat through its symmetry axis. The spherical cap in the

center extends to r = ;~~j and is followed at larger ; by the b;im of zero mean curvature. The dashed line

continues the catenoid representing the brim to its innermost point. The slope (= gradient angle) of the

hat is continuous at ;= i~~j. The equal but opposite principal curvatures of the brim vary as

lli~
at large enough ;.

where r m i-o is the radius [7]. There is always a brim obeying (2) that can be matched, with a

continuous gradient, to a given spherical cap. We are interested here only in weakly bent

molecules, I-e- the case
q~~(r~~j)« where

q~
is the gradient angle of the membrane and

r~~~ » i-o the molecular radius. This permits, for r ~ r~~j, use of the approximations

z co =
± i-o In

~ ' (3)
"mot

and, especially,

If all the molecules are free to form spherical caps, the curvature of a molecule is determined

by its own total curvature and by the saddle curvature (with J
=

0) produced by the other
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molecules. We rely on the superposition principle to describe this situation, which is legitimate

as long as the mean square gradient angle is everywhere much less than unity in a membrane of

zero (average) spontaneous curvature. The precise shape of a hat in a spontaneously curved

membrane is unknown, but we expect the hat model to remain valid for a spherically curved

membrane with J
=

Jo. Accordingly, we allow in the following formulas for a nonzero

spontaneous curvature,

Since no bending energy resides in the brim associated with a spherical cap (if the Gaussian

curvature term in is discarded), the fluctuations of the total curvature of each molecule obey

the equipartition theorem which in its usual form reads

K
(J Jo )~) a =

kT. (5)

Here a =

art$~j is the molecular area, k Boltznwnn's constant, and T temperature. The

ensemble of local bending modes is equivalent to the ensemble of the usual Fourier modes of

membrane undulations, with a being related to the upper wave vector cutoff [5].

Solving (5) for I/K, we obtain

=

(J Jo )~) ~ (6)

This relationship expressing the flexibility as a function of the local bending fluctuations can

be generalized to mixed membranes. They are characterized by two kinds of local fluctuations,

the thermally excited elastic bending of the molecules and the change of local spontaneous

curvature through the lateral diffusion of different surfactant molecules. The two kinds of

fluctuations are statistically independent as the bending fluctuations of a particular molecule do

not depend on its position on the membrane surface. Therefore, the effective flexibility

I/K~~~ controlling undulations and other deformations can be written as the sum of two parts

~
~

ei
~

~<tt
~~ ~~~~~

~~
~ ~~ ~~~~~ ~'~~~ ~T

~

~~~

the first resulting from elastic bending fluctuations and the second from lateral diffusion. We

have to assume here that every molecular location is independent of all others, especially its

neighbors, which implies random mixing for the diffusive part. The effective rigidity given by
(7) should apply if the scale of the deformation is larger than the mean distance of the less

concentrated monolayer component.
Let us now calculate the effective flexibility of a monolayer consisting of two surfactants

and 2 with equal molecular areas aj =a~ =a and equal molecular bending rigidities

K = K~ = K~j, but different molecular spontaneous curvatures J~ # J~. The diffusive contri-

bution to the local curvature fluctuations may be expressed by

(J Jo )~)
~ ~~

=
(J~ Jo )~ w,~ + (J~ Jo II

w>~ (8 j

with

Jo
=

Jj w'~ + Jj
w>~ (9)

and

Nj N~

W'j = ~ ~ ,

W'? =
(10)

1+ 2
Ni+N2
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Here w~ and w~ are the probabilities of finding surfactant or 2, respectively, Nj and

N~ being the numbers of molecules in the monolayer. Equation (8) is easily transformed into

((J Jo)~)~~.
=

(J~ J~)~ w~ w>~
(l1)

so that (7) takes the form

(Jj J~ )2 aN N
~

~
Kel

~
iT(N) + N~)~

~~~~

The last equation recovers the result predicted by the continuum theory [4, 8] for the same

system in the case of zero spontaneous curvature (Ju
=

0).

We checked that the following natural generalization of the hat model preserves agreement
with the continuum theory when the surfactant molecules differ not only in spontaneous

curvature but also in molecular area (aj # a~), and bending rigidity (K # K ~). Equation (6) is

replaced by

=
(J Jo )~

i (13)
K ett

kT

with

d
= a w>~ + a~ w>~

(14)

and

(J Jo )~) a~
=

(J Jj )~) + (Jj Jo )~ a(
w'~ + (J J2 II

~
+ (J2 Jo )~l al

w>~
l 5)

The subscripts and 2 denote the mean square bending fluctuations of surfactant and 2,

respectively. The two terms carrying a subscript contribute to I/K~j, the others to

I/K~,~~. The probabilities w'j and w,~ as given by ( lo) are retained, although modifications may

apply for aj # a~, The same naive random mixing was adopted in this case in the continuum

theory. One of the results obtained from lo) and (13-15) is

(aj/K~)N~ + (a~/K~) N~
=

(16)
K~j a~ Nj + a~ N~

a formula used first in the continuum model, but inspired by the hat model [9].

No direct comparison of the two models is possible for Jo # 0 as the hat model applies to

(small enough) deformations of the spontaneously curved state of the monolayer with spherical

curvature J
=

Jo, while the bending rigidity of the thermodynamic theory derives from a

second order expansion of the bending energy about the flat state. The continuum model

starting from the flat state contains a correction of the bending rigidity which is due to the

monolayer bending tension and vanishes for zero monolayer spontaneous curvature [4, 10].

This correction vanishes generally for an expansion about the spontaneously curved state

(J
=

Jo ). It exists for the bilayer with monolayer bending frustration, to be treated below, but

will be omitted in the present article.

Difficult problems arise if ii # k~, I,e, if the assumption of a uniform modulus of Gaussian

curvature has to be abandoned. They cannot be handled by a continuum theory averaging over

molecules. Inspection of the hat model suggests that in a monolayer consisting of two different

surfactants the bending fluctuations of the surfactant molecules with the larger k should be

diminished and those of the other molecules enhanced, as compared to the one-component
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monolayers, The situation is complicated by an interaction between surfactant molecules

through the Gaussian curvature which the spherical cap produces in its surroundings. The

negative Gaussian curvature « attracts »
the molecules with the larger k and

«
repels

»
the

others with regard to the spherically curved center. This is a special case of the

I/r~ interaction between disklike membrane singularities recently predicted by Goulian,

Bruinsma and Pincus [I I]. Any selective mutual repulsion or attraction of molecules is in

conflict with the assumption of random mixing.
In order to estimate the interaction energy that results from AR

=
k k~, we consider two

nearest-neighbor molecules of equal area a =

art$~j. One of them (type I) is a fluctuating

spherical cap, the other (type 2) interacts with it through the Gaussian curvature of the brim

which, according to (4), is [q~(i~~j)r~~j/r~]~. (Here we make use of the fact that for

J
=

0 the equatorial principal curvature is equal but opposite to the meridional principal

curvature, q~ (i~~j) i~~j/r2). Considering a nearest-neighbor molecule, we estimate its average

interaction energy from the average Gaussian curvature at r =

2 r~~~, as

AR lK (2 rmoi )I
a =

AR 1v7 ~(rmoi )1 ( ( ' 7)

With (q~~(r~~~))'~~ =3°, the value computed from the hat model for
K =

lx10~'~J

regardless of molecular area [5], one finds 5.3 x 10~ ~ AR for the interaction energy. Assuming

AR
=

I x10~'~J, probably a generous guess, and kT
=

4 x10~~~ J, one arrives at ca.

10~ ~ kT. While this energy seems small enough to be neglected, gradient angles of 10° or more

of the spherical cap boundary could seriously impair random mixing. In the following

treatment of bilayers we return to the simple case K~ = K~, k~
=

k~ and aj = a~,

3. Hat model for the bilayer.

Deriving the effective bending rigidity of the symmetric bilayer from the hat model is

straightforward on one hand since the spontaneous curvature of a bilayer with equal sides is

zero for reasons of symmetry, On the other hand, there is a new degree of freedom in mixed

bilayers because a given molecule in one of the monolayers can face either an equal molecule

or a different one in the other monolayer. For simplicity, we will assume in our calculations

that the pairings are precise so that each surfactant molecules faces just one counterpart in the

other monolayer.
The bending rigidity of a symmetric bilayer is twice that of the monolayer provided there is

free exchange of both types of surfactant molecules and no local molecular coupling between

the monolayers. The absence of such a coupling seems to be a common (tacit) assumption of

continuum theories, A doubling of the bending rigidity is also predicted by the hat model for

the one-component bilayer, the local mean square bending fluctuation of a pair of opposite

molecules being half that of a single molecule.

In the one-component symmetric bilayer the spontaneous curvatures of the molecules on the

two sides counteract each other so that both monolayers cannot assume their spontaneous

curvatures but remain flat. The energy e
of this frustration is for a pair of opposite molecules

F =

KJ~
a

,

(18)

where K
still refers to the monolayer and J~ is the molecular spontaneous curvature. Inserting

K =

0.5 x 10~ ~~ J, a 0.6 nm~, and J~
=

2 x
10~ m~ ~, values typical of phosphati-

dylethanolamine [12], one computes

~ =

l,2 x 10~ ~' J. (19)
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The result is less than kT
=

4 x 10~ ~' J (at room temperature). The energy of frustration could

be increased by using surfactant molecules with larger areas and should in general be smaller

than our estimate which is based on a rather large spontaneous curvature.

In mixed symmetric bilayers the local energy of bending frustration depends on which of the

molecules are paired. Overall, the surfactant molecules will tend to pair in such a way that the

total energy of bending frustration is less than with random pairing. This implies that in a

bilayer consisting of two surfactants of different spontaneous curvature unequal pairs will be

favored over equal ones. The associated increase of the number of pairs with a net spontaneous

curvature leads to an increase of the bilayer flexibility due to molecular diffusion. In mixed

bilayers, lateral diffusion includes changes in local pairing.
In order to calculate the diffusive contribution to the flexibility of a two-component bilayer,

we imagine two types of surfactant molecules, and 2, with equal areas but different

spontaneous curvatures. The numbers of the two types of molecules are N~ and N~,
respectively, now in each monolayer. In the relaxed state the different spontaneous curvatures

manifest themselves by different cone shapes. Examples are sketched in figure 2 which also

defines the probabilities
w,,~

of the four possible pairings. The two unequal pairs should have

the same probability for symmetry reasons, I.e.

"'12 ~ W2i ~ "'.
(~~~

~"ff ~"22 "'f2 ~"2f

Fig. 2. The four possible one-to-one molecular pairings between the monolayers of a two-component

bilayer. The two surfactants differ only in spontaneous curvature. Cross sections of the spontaneously
curved molecules are shown. The figure defines the probabilities w.

of the pairings,

The probabilities of finding in a monolayer molecules of type I or 2 obey

(21)
N~

~, ~~lj~
#

/~~ ~ /#~

~~~~
N2

~> ~ = /f

since w,~ and w,~~ are the probabilities of finding equal pairs, Two unequal pairs may transform

into two equal pairs and i>ice >,ersa. The probabilities of all four pairings are related through the

detailed balance condition

w>~~ w~~ =
w>~ e~

~'~~ (23)
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where E ~0 is the energy difference between the two equal and the two unequal pairs,
Equations (21) to (23) lead to

w, =

~~~

l /1- ~ ~~ ~~

~

(l
~~~~)j

(24)
2(1 e~ (N + N~)~

The diffusive part of the mean square local curvature fluctuations of the bilayer is obtained by
inserting this into the formula

( j2j ~i ~2 ~

~'~~ 2
~ "' (?5)

which takes the local bilayer spontaneous curvature to be (Jj -J~)/? or zero for unequal or

equal pairings, respectively, J~ and J~ being the spontaneous curvatures of the two types of

molecules in a free monolayer, Here we have used he assumption of equal bending rigidities,

K) = K~.

It is interesting to inspect the two limiting cases of w> and the associated bilayer flexibilities

following from (24) and (25). For E
=

0 one finds

N N~
w =

~

(26)
(N + N

~

)-

while for E
=

o~ one has

w, =

l ~ ~ ~~

~

(27)
2 (N + N~)-

which is always larger than (26). I~serting first (26) in (25) gives diffusive curvature

fluctuations just half as strong as those of the monolayers. Because of (7), the diffusive

contribution to the membrane flexibility, (I/K)~,~~, is also halved, in agreement with the

continuum theory. If (27) applies in~tead of (26), w> and thus (1/«
)~,~~ are increased. The effect

has its maximum for Nj =N~ where the two quantities are doubled. Accordingly,
I/Kd,tt comes out equal for bilayer and monolayer in this particular case. For the typical lipid

molecules with two hydrocarbon chains the energy E will not exceed 2
~ as given by (19).

However, the polymers in a partially polymerized bilayer may display very pronounced mutual

avoidance even for EM kT since there is the cooperative effect of many pairings of their

monomers when two long polymer chains in opposite monolayers overlap, The case of

polymers will be considered next.

4. Partially polymerized bilayers.

It is well-known that certain surfactants containing unsaturated bonds in their hydrocarbon

chains can be polymerized in sitit, I,e, in monolayers and bilayers [13]. At least in certain

materials the photochemically triggered polymerization produces long linear chains in a kind

of domino effect [6]. In bilayers these chains seem restricted to one of the monolayers where

they probably do not intersect. The following calculations refer to polymers which are fully
flexible nonintersecting chains confined to one of the monolayers.

Let us consider a semidilute solution of such polymers in a partially polymerized monolayer.
In the semidilute state the polymers form blobs, thus filling the available two-dimensional

space rather uniformly [14]. A collection of equally long polymers in two dimensions has been

predicted to display a segregation effect [14]. It has recently been confirmed by computer

simulation [15] and approximately quantified in terms of a line tension [16].
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In a partially polymerized bilayer there will be polymers in both monolayers. If there is no

polymer interaction between the monolayers the polymer concentration should be uniform in

both of them. However, if the monomer spontaneous curvature changes with polymerization,
the polymers will avoid each other to relieve frustration so that an additional segregation effect

may act between polymers in opposite monolayers. A different spontaneous curvature could

arise, e.g., from a change of the monomer conical shape upon polymerization. If the polymers

are long enough, this kind of segregation is possible even in the presence of a certain overlap of

the polymers which is unavoidable with E
~

kT.

For a prediction of whether or not polymers in opposite monolayers will segregate we

imagine two polymer chains, one in either monolayer, of equal length and packed densely
enough to form semidilute solutions, In the absence of polymer interaction between the

monolayers each chain will spread over the whole available area A. Its free energy

F~j of blob formation should approximately equal kT times the number of blobs. We express it

by

F~~
=

kT (28)
Rp

where

~F
~

S~~i (~~)

is the Flory radius of the blobs, N~j being the number of polymerized monomers which on

average belong to a blob. The polymer chain is assumed to be fully flexible so that s equals the

monomer distance in a lattice model [17]. The Flory value of the critical exponent is

v =

3/4 in two dimensions [14]. The number of polymerized monomers in a blob is related to

the total number N of polymerized monomers through

AN~j

~
=

N (30)
(sN [j)-

Computing F
~j as a function of N from (28) to (30) and substituting the fractional concentration

of polymerized monomers

~fi
=

~~~ (31)

for N, one obtains, with v =

3/4,

F~j
=

kT 4~~ (32)
s-

This energy has to compared to the interaction energy F,~, of polymers belonging to opposite

monolayers. Distinguishing by subscripts between inner and outer monolayer, we may write in

a mean field approximation

~,nt ~ ~in ~out (33)
S"

The total energy of the two interacting monolayers is then

F
~

F
inn

+ Fbi.,n + Fbi.
out ~

"A 4~,n 4~out + PA (4~( + 4~/ut) (341
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where
a and p are the coefficients defined by (32) and (33), respectively. In order to check the

stability of a uniform density 4~o, equal in both monolayers, we now raise the concentration to

~fi~ + A~fi in one half of either monolayer and lower it to ~fi~ A~fi in the other half. The

opposite changes are made in the other monolayer so that the total concentration of

polymerized monomers remains uniform in the bilayer. The total energy in this case obeys

F/A
= a (~fio + A~fi)(~fio A~fi + p [(~fi~ + A~fi)~ + (~fi A~fi)~] (35)

which is easily transformed into

F/A
=

a~fij
+ 2 p~fil- (a 6 p~fio)(A~fi )~. (36)

The result suggests that the two polymers are spread all over the respective monolayers for

~fi~ > ~fio
c

"

a/6 p while they are segregated and confined to different halves of the bilayer

area for ~fio ~ 4~o_
~,

The critical concentration 4~~,
~

of polymerized monomers is readily seen

to be

4~~
~

=

$
=

~
(37)

6 p 6 kT

Inserting E/kT
=

2 ~/kT
=

1/2 (from the above estimate), one finds 4~~
~

=
0.08. According to

this crude estimate, segregation should be possible at the early stages of membrane

polymerization. Since segregation implies the creation of bilayer spontaneous curvature, the

bending rigidity of the bilayer for large-scale deformations should be zero at the threshold of

segregation. Stable deformations of the bilayer from the flat state may be expected at lower

polymer concentrations.

So far, we have considered only two polymers, one in either monolayer. Let us now tum to

the more realistic situation of many polymers forming semidilute solutions in both monolayers.

The segregation of long enough polymers belonging to different monolayers, in addition to the

familiar segregation within each monolayer, is likely to break up the bilayer into patches of

opposite spontaneous curvature, Patches seem more favorable than the separation into two

continuous phases for reasons of entropy and because they permit some overlap between

polymers in opposite monolayers. Each polymer should form a roughly circular patch, its size

being inversely proportional to the total number of polymer chains (if they are equally long).

Since the patches are like molecules with a very large area they may be expected, in view of

(12), to result in a near divergence of the effective flexibility, even though their average

spontaneous curvature is weak as compared to monomer spontaneous curvatures. In addition,

the patches may produce a pronounced roughness of the bilayer. When the area A~ of a patch

and its spontaneous curvature are large enough to form a sphere with J
=

Jo, I,e, for

A~ J(
m

16
ar

,

(38)

the curved patch can form an outward or inward bud, depending on the sign of its spontaneous

curvature, Lateral tension of the membrane may cause an energy barrier to the budding
transition [18].

Simultaneous outward and inward budding following partial polymerization has recently
been observed on lipid bilayer vesicles by Sackmann and coworkers [6]. It will be interesting

to analyze these observations in detail in order to check the concentration of polymerized

monomers, In a dilute solution of polymers. budding could be caused by a single polymer
chain. However, such buds should deviate strongly from the spherical shape as the density of

polymerized monomers is much less uniform in an unfolded polymer (I,e, a single blob) than in

an assembly of blobs.
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5. Conclusion.

The present article is a first attempt to deal with the problem of local interaction between

molecules in opposite monolayers of a mixed bilayer. We considered only the interactions due

to molecular bending frustration, adopting here a word that has long been used by Charvolin

et al. [19] in connection with cubic phases formed by one-component bilayers. While this

interaction favors pairings of unequal surfactant molecules, the van der Waals interaction

between the monolayers could have the opposite effect. Some other simplifications made

remain to be justified. In particular, we assumed one-to-one pairing of the molecules across the

bilayer mid-surface which is not the correct description but seems defensible within limits,

giving reasonable results for E
~

kT.

Very interesting problems, which we hope to tackle elsewhere, are connected with the

embedding of a polymer chain in the otherwise monomeric membrane. We have regarded the

polymer chain as a series of looseley linked monomers with a conical shape different from that

of free monomers. In other words, the persistence length of the polymer in the plane of the

membrane has been assumed to coincide with the molecular distance. The actual polymer
chain may have a backbone with its own preferred shape and bending elasticity and this could

give rise to additional effects, For instance, an augmented persistence length in the plane of the

membrane increases the number of blobs, thus lowering 4~o
~

as calculated from (37). A stiff

backbone may, in addition, warp the membrane if it possesses a spontaneous curvature normal

to the membrane. The probable result would be an enhanced bending frustration when

polymers in opposite monolayers cross each other, and thus a rise of 4~o,
~.

Finally, a mean

field theory will exaggerate the interaction of polymers in different monolayers. Correcting this

would result in a smaller theoretical value of 4~o_~.
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