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Abstract. We discu~s the adwrption of a single polyampholyte chain on a planar wlid surface

carrying
«

charges per unit area. We consider the two cases where the interaction between the

monomers and the surface is short range (strongly screenedj and long range (unscreened). For

short range interactions we use the replica trick and a Hartree approximation to show that the chain

adsorbs even if it ha~ the same net charge as the surface if the interaction potential is larger than a

critical value V~ Log f/g where f and g are the fraction of monomers having respectively the

~ame charge as the ~urface and the opposite charge. For long range interactions the adsorption i~

monitored by the electric field gradient existing in the vicinity of the surface. It occurs if the charge

density of the surface is large enough «af~
~

(f g )/~f + g1"~ where a is the monomer size and

fB the so-called Bjerrum length.

1. Introduction.

A polymer chain comprising charged ionic groups of the same sign (polyelectrolyte) is in

general soluble in a solvent with a high dielectric constant such as water because of the strong

Coulombic repulsions between the monomers [I]. When two monomers of opposite
electro~tatic charges are interspersed within the same chain lpolyampholyte), the situation is

more complex [2, 3] on the one hand, if the total charge does not vanish, the polyelectrolyte
effect due to the average Coulombic repulsion between monomers tends to swell the chain and

to make it soluble ; on the other hand the polyampholyte effect due to the attraction between

monomers of opposite charges tends to collapse the chain and to make it insoluble.

The physical properties of neutral polyampholyte chains (with no net electrostatic charge)

are dominated by the attractive interactions. It has been observed experimentally [4, 5] that if

the positively charged and negatively charged monomers are randomly distributed along the

polymer backbone neutral polyampholytes are insoluble and can be dissolved only by addition

of salt. Non-neutral polyampholytes are soluble if their total charge is large enough.
From the theoretical point of view, the attractions that provoke the phase separation of a

polyampholyte solution or the collapse of an individual polyampholyte chain are induced by
fluctuations in the charge density similar to those existing in a simple electrolyte solution. In

reference [3] these fluctuations were treated at the level of the Debye-HUckel approximation.
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This gives a good qualitative explanation of the experimental observations if the sequence of

charges is random.

Another parameter that influences strongly the properties of polyampholytes is the

distribution of the charged monomers [6]. A polymer where the positively charged and

negatively charged monomers are alternating can be soluble in water whereas a polymer made

of the same monomers but randomly distributed along the chain is insoluble. It can be argued
that the random polyampholyte is well described by the Debye-HUckel theory which predicts

strong attractions and thus a precipitation but that the altemating polyampholyte is equivalent

to a polymer carrying dipoles. This leads to a much weaker attraction which can be described

by a negative virial coefficient not always large enough to provoke precipitation.
The properties of polyampholyte chains in solution have also been studied by numerical

simulation. Alternating polyampholytes behave as neutral polymers and the polyampholyte
interactions can be characterized by a negative virial coefficient between monomers [7].

Random polyampholytes have also been simulated [8] if each chain is exactly neutral, a

collapse is observed that is well described by the Debye-Hiickel theory. If the chains are only
statistically neutral I.e. if they are neutral on average, each chain carries a charge of a given
sign, this is found sufficient to overcome the polyampholyte attraction and to swell the

polymers. It is however not clear whether this result is valid in the asymptotic limit of infinite

molecular weight or if it is a finite size effect.

Recently, experiments have been performed in Strasbourg [9, 10] to study the adsorption of

polyampholytes on charged latex particles. The spectacular result that has been obtained is that

the polyampholyte solution can adsorb even if its overall charge has the same sign as that of the

latex particle.
The purpose of this paper is to study the adsorption of a single random polyampholyte chain

on a charged planar surface mimicking the latex particle. In the following section, we discuss

the simpler case where the polyampholyte is modelled by a Gaussian polymer chain with two

types of monomers some of these being attracted by the surface some being repelled by the

surface with the same short range potential. The more realistic case of long range electrostatic

interactions is discussed in section 3 at the level of scaling arguments. The final section gives

some concluding remarks.

2. Adsorption of a polyampholyte chain with short range interactions.

We first study the adsorption of a polyampholyte chain within the framework of an extremely
simplified model where the monomers building up the chain do not interact with each other but

interact with the adsorbing surface with a short range potential. This would roughly correspond

to the case where a large amount of salt has been added to the solution and where the

electrostatic interactions are strongly screened. Note however that experiments cannot be

performed easily in this limit since the latex particles have a tendency to flocculate. We thus

consider here polyampholyte adsorption as equivalent to the adsorption of a neutral random

copolymer I ].

The adsorbing polyampholyte comprises N monomers of three types: a fraction

~f + gl of the monomers are neutral and do not interact with the surface ; a fraction

f of the monomers have the same «
charge

» as the surface and feel a short range repulsive
interaction with the surface (TV (> 0 and a fraction g of the monomers are attracted towards

the surface and feel an attractive potential kTV. (In the case of a polyampholyte in a salt

solution with a screening length
K

' adsorbing on a plane of charge density «, the potential

V is equal to
«f ~/K where i~ is the B jerrum length defined below ). The number of charges and

their positions along the chain are quenched and imposed by the chemistry. We introduce the

charge q of monomer I equal to one if the monomer is repelled by the surface, if it is
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attracted and 0 if it is neutral. The average value of the charge is (q,)
=

f g and if the

charges are randomly distributed, the two points correlation function is

(q, q~)
=

~f + g 6,~ + ~f g )~ (l 6,~) where 6,~ is a Kronecker symbol.
For the sake of simplicity we use a lattice model with a lattice spacing a. The monomers

interact with the surface if they lie in the first layer parallel to the surface. The energy of a given
configuration of the chain characterized by the coordinates z, of the monomers perpendicular to

the surface is

H
=

Ho +kTV ~jq~ 60= (Ii

where Ho
=

3 kT/2 a~ ~j (z,
~

z, )~ is the elastic energy of the Gaussian non-interacting

chain.

The partition function is Z
=

~j exp (H/kT) where the sum is extended to all the

curl

configurations of the chain. The partition function can be calculated using the replica trick [12]
following closely the lines of reference [13]. We introduce n replicas of the chain

z) and calculate Z". This quantity can be averaged over the various realizations of the

distribution of charges as

(Z")
=

~j exp
~j

H(/kT) fl II ~f + g ) + f exp [~j V3~
~«

+ g exp (~j V30 <,j

~~~j
, , ,,

~'

,~

~'

(2)

As a first approximation, we assume that the interaction potential is smaller than

kT (V « and expand the replica partition function in powers of I'. This leads to

lZ")
=

~j exp A

«ni

where the effective free energy is

A
=

~j (H(/kT) + ~j 30
=<>

[V (f g
V~/2 ~f + g) (_f g J~)1

v2/2 ~j B~
-«

Bo -p
iii + g ) lf g

II (3)

ax ~ ,

'

As in reference [13], we discuss the adsorption of the polymer chain by looking for the

ground state of the quantum Hamiltonian

H,,
=

ah6 ~j
~

+ a ~j 3 (=~ )[i'(j' g ) Vh2 ~f + g ~f g )~)
~zl~

n

II ~/2 ~j a2 B (=~ 6 (zp ~f + g ~f g l~ (4)

n x p

where for convenience we have gone to the continuum limit for the variable z
and replaced the

Kronecker symbol~ by Dirac 6 functions.

In the approximation of ground state dominance [14(, the partition function (Z") is equal to

exp(- Nnfo) where nF~ is the energy of the ground ~tate of the Hamiltonian H,,.

In order to find the ground state, we use a Hartree variational approximation and look for a

wave function P
=

fl
~fi (z~ ). In the limit where the number n of replicas goes to zero, the
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Hartree equation reads

F~ ~fi =

a~/6
I

+ U (z )
~fi

(5

The effective potential in this equation is localized on the surface and proportional to a

6 function, it is given by

u(zi=a3(ziivu-gi-v2/2ju+gj- u-gj2j +v2/2aj6(z)jju+gi- u-g)~li

(61

where the average (3 (z)) is calculated with the ground state wave function

(3 (z))
=

j~ dz
~fi

2(z j 6 (zi
=

j (o)2 (7)

The effective interaction potential between the monomers and the wall is here of purely
electrostatic origin. We have thus assumed implicitly that when the charges are not present on

the solid surface, it is neutral with respect to the adsorption of the polymer chain it neither

repells nor adsorbs it. The adsorbed states of the chain correspond to localized states decaying
from the adsorbing surface j (z

=

(2 k )~'~ e~'~ where D
=

k~ ' is the thickness of the adsorbed

chain on the surface. Such solutions exist only if the Hamiltonian has a bound state I-e- if the

effective potential U in equation (5) is attractive. This is the case when the potential
V seen by the monomers is large enough

~
~

~~ ~)+il'
~~~

For a neutral chain f
=

g and there is no adsorption threshold, the chain always adsorbs even

though the average potential acting on the monomers vanishes. The interpretation of this result

is clear, the monomers with a charge opposite to that of the surface are in contact with the

surface while the monomers with the same charge as the surface are in the loops dangling in the

solution and do not feel the repulsive potential which is assumed here to have an infinitely short

range. It is important to note that even if the chain is on average repelled by the surface

~f
> g ), it can adsorb if the interaction potential V is large enough.
Within the Hartree approximation, it is possible to find the threshold for adsorption

V~ even when the potential is not small as assumed up to now. At the adsorption threshold, the

chain is only weakly confined in the vicinity of the interface and the thickness D diverges.

Using equation (7), we find that (3 (z))
=

0 which means that the monomer concentration on

the surface is very small. At the level of the Hartree approximation, the coupling between

replicas due to the last term in equation (3) vanishes and only averages within one replica are

contributing in the vicinity of the adsorption threshold. One can then expand the partition

function (Z") in powers of V neglecting the crossed terms involving two replicas. This gives
(Z")

=
exp -A where

A
=

~j (H(/kT) + U(z~ II. (9)

In the continuum limit, the effective potential U(z) acting on a monomer reads

U(z)= -Log (fe~' +ge~
+ I ~f+g)) a3(z). (10)
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The polyampholyte chain adsorbs if this potential is attractive (~o); this leads to an

adsorption threshold

V~
=

Log
~

(
g

If the overall charge of the adsorbing chain is opposite to that of the surface, there is no

adsorption threshold (V~
~

0 ). When the total charge is small, f/g
~

l and V~ is small one

can check by expansion around f
=

1/2 that this result is in agreement with equations (8). The

value of the adsorption threshold V~ has a simple interpretation kT Log
~

is the contribution
g

to the chemical potential of a monomer of the free energy of random mixing of positively and

negatively charged monomers. As explained above, adsorption is possible by putting the

attracted monomers in contact with the surface and the repelled monomers away from the

surface. If the charge of the monomers were not frozen (as supposed up to now), but annealed

this could be done by reducing the entropy of mixing and compensating this penalty by the

energy gained upon adsorption of each monomer. For annealed chains we get a threshold given
by (I Ii. Within the Hartree approximation we thus obtain the result that the adsorption

threshold for the quenched and annealed problems are equivalent. This result has already been

conjectured for similar problems [15].

The thickness of the adsorbed polymer chain can be calculated when the potential is small.

In this case f g « f + g and we find

ka=3V~f+g)(V-V~). (12)

As the adsorption strength increases, the thickness decreases as
V~~

For larger values of V equation (5) leads to a saturation of the thickness but the limiting
value is reached only for values of V larger than one for which the approximations made break

down.

3. Adsorption of a polyampholyte chain on a charged surface in the absence of salt.

3.I ADSORPTION OF A WEAKLY CHARGED POLYELECTROLYTE CHAIN ON A CHARGED SUR-

FACE. Before discussing the adsorption of
a polyampholyte chain, we briefly consider as a

pedagogical example the adsorption of a single weakly charged polyelectrolyte chain on a

surface of opposite charge [16].

The polymer has N monomers and a fraction f of these are charged. In the bulk, the

conformation of this chain can be described in terms of electrostatic blobs [17]. At small length
scales, the electrostatic interaction is weak and the statistics of the chain is Gaussian. At larger
length scales, electrostatic interactions are dominant and the chain is stretched. The crossover

between the two regimes occurs at the length scale f where the electrostatic interaction is of the

order of the thermal excitation kT.

f
= a

(f~la )~ "~ f'~ ~° ( l 3)

where f~
=

e~/4
ar

pkT is the Bjerrum length,
e

being the elementary charge and p the dielectric

constant of the solvent (water).

One can then define blobs of size f each containing p =

(fla)~
monomers. The weakly

charged polyelectrolyte chain can be viewed as a linear string of blobs of size f with a radius

R N/pf N f~'~
The adsorbing surface is an infinite plane with « charges per unit area. In the absence of

added salt the concentration of counterions decays as a power law from the surface and all the
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counterions are localized within the Gouy-Chapman length A l/«f~ from the surface [18].

The electric field created by this plane is E
=

«e/p if the distance to the wall is smaller than

A and has a small negligible value (decaying as /z) at larger distances. Note that we ignore the

effect of the counterions of the polymer.
We consider here only the strong adsorption limit where the adsorbed polyelectrolyte chain

is confined within a thickness D from the surface smaller than the blob size f. At the length
scale D the chain remains Gaussian and it is useful to divide the chain into blobs of size

D each containing g~
=

(Dla)~
monomers.

We first consider the case where A is larger than D. The confinement energy per blob is

kT and the confinement energy per monomer is kT(Dla)~~. The electrostatic energy of a

monomer at a distance
z

from the surface is Ez and on average the electrostatic energy is

kTf«f~ D. The equilibrium thickness of the adsorbed chain is obtained by minimizing the sum

of these two energies

D
=

(a~/f«fB)"~ (14)

It decays with the charge density of the plane as «~ "~ i-e- more slowly than the Gouy-
Chapman, length A. The strong adsorption criterion imposes that «a~

>
f.

At large values of the charge density «, the Gouy-Chapman length becomes smaller than

the thickness D and only a finite fraction AID of the monomers feel the electric field. This

occurs is «af~
>

f"~ The electrostatic energy becomes then kTf Log DIA. (The logarithmic
variation is due do the decay as I/z of the electric field. The minimization of the free energy

gives an equilibrium thickness of the adsorbed chain independent of the surface charge density

«

D ma'f"~ (15)

3.2 ADSORPTION OF A POLYAMPHOLYTE CHAIN. We now discuss the adsorption of a

polyampholyte chain using the same kind of heuristic arguments as for the polyelectrolyte
chain. The disorder due to the randomness of the distribution of the charges along the chain is

treated by a so-called Imry-Ma [19] argument.
We restrict ourselves to the case where there is no salt and where the polyampholyte is

soluble, this is the case if the total charge is large enough. The criterion obtained in

reference [3] is

f-g» ~f+g)~'~fB'a. (16)

We first consider the case where the thickness of the adsorbed chain on the surface is small

compared to the Gouy-Chapman length A. In a first approximation, the electric field is the

constant electric field created by an infinite plane of constant charge density E
=

e«le. All the

monomers would then feel the same electric field and if the polyampholyte chain has the same

net charge as the adsorbing plane the total electrostatic force is repulsive. However, because of

the existence of the counterions of the adsorbing plane, there is an electric field gradient and

the electric field decays to zero away from the surface. If the thickness of the adsorbed layer is

small, we approximate the field gradient by a constant E
=

e«/p z/A ). The electric field is

larger close to the surface and energy can be gained by distributing the charges of the

polyampholyte chains in such a way that the repelled charges are away from the surface and the

attracted charges are closer to the surface. The adsorption results then from a balance between

the total electric field that tends to repell the chain from the surface and the electric field

gradient that tends to attract the chains towards the surface.
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The average repulsive electrostatic force per monomer is ~f g ) e«/p. In order to estimate

the attractive force due to the electric field gradient, we divide the adsorbed polymer chain of

thickness D into two layers of thickness D/2. On average each of these layers has the same

charge since the charged monomers are distributed perfectly randomly. In order to adsorb the

polyampholyte chain a fluctuation of attracted monomers is needed in the layer close to the

plane. If the total charge of the chain in this layer is 3N the attractive force is

3Ne«D/ (PA ). The charge fluctuation can be calculated by making a blob model of the

adsorbed chain. We decompose the chain into Gaussian blobs of size D each containing

g~
=

(Dla )~ monomers. In each of these blobs the fluctuation of monomers which are attracted

towards the surface within a layer of size D/2 is 3g~
=

~f+ g)"~g(~ [20]. The total

fluctuation for the chain is 6N =N6g~/g~ =Na~f+g)"~/D. The attractive force per

monomer is then au + g )~'~ «/(pA ). The total electrostatic force acting on a monomer is

furor
=

iT«fB ~f g a
~f + g1"~/A j (17j

Adsorption occurs when the force is attractive I-e- if the charge density of the plane is large
enough

"aiB
>

~f ~ II ~f + ~)~~~ (18)

Above the adsorption threshold, the attractive electrostatic force is compensated by the

elastic force kTa~/D~, the thickness of the adsorbed chain is then

D
w a ~f + g )~ ' '~ ( «af

~
)~ ~'~ ( i 9

As the charge density of the adsorbing plane increases, this thickness becomes larger than

the Gouy-Chapman length when «af~
w

~f +
g)"~ For larger values of «, only a fraction

AID of the monomers feel the electric field. The charge fluctuation in a layer of charge
A dose to the surface is then 3g~

=

[Ag~~f + g )ID "~ for each blob of size D and the total

attractive force per monomer is kT a ~f + g )"~ («f~ )"~ D~~'~ This gives a thickness of the

adsorbed chain on the plane

D
m

au + g )~ "~ («af~ )~ "~ (20)

4. Concluding remarks.

The important result of this paper is that both in the case of short range interactions (strongly

screened electrostatics) and in the case of long range interactions, a charged polyampholyte

can adsorb on a surface carrying an electrostatic charge of the same sign. The adsorption

mechanism is however different in the two cases for short range interactions the adsorption is

due to the redistribution of the charges of the polymer on the surface and an entropy penalty

must be overcome ; in the case of long range coulombic interactions, the adsorption is due to

the gradient in electric field existing in the vicinity of the adsorbing surface. These results are

in qualitative agreement with recent experiments.
It is clear that the arguments that we have given are rather rough especially in the case of

long range interactions and that a more detailed theory would be needed. Several extensions of

our model must also be performed before any quantitative comparison with experiments is

possible

. we have studied here the adsorption of a single chain and not the adsorption of a

polyampholyte solution. It is however reasonnable at least qualitatively to assume that if a

single chain adsorbs, this is also the case for a solution
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. we have considered only direct electrostatic interactions and ignored both the non

electrostatic interactions and the image charge effect due to the discontinuity of the dielectric

constant at the adsorbing surface [21j. The situation that we have discussed is close to the case

where the polyampholyte with the same charge sequence is just at the adsorption threshold on a

neutral surface («
=

0) and where the charge of the adsorbing plane is then increased to a

finite value ;

. we have considered a surface with a uniform charge density. In many cases the charge is

localized on certain sites. The discreteness of the charges may be important for the adsorption
problem ;

. we have considered only random polyampholytes. The precise nature of the distribution of

charges is probably important for the adsorption problem. The mechanisms invoked here

suggest that no adsorption or at least a much weaker adsorption would occur for perfectly
altemating polyampholytes.

Finally, let us mention that our predictions could perhaps be tested directly by computer
simulations.
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